A Glutsyuk and Yu Sachkov, Sub-Riemannian geodesics on the Heisenberg 3D nil-manifold

Название: [108] A GlutsyukSub-Riemannian geodesics on the Heisenberg 3D nil-manifold
Авторы: A Glutsyuk, Yu Sachkov
Журнал: Nonlinearity
Год: 2025
Том: 38
Страницы: 115013
Аннотация:

We study the projection of the left-invariant sub-Riemannian structure on the 3D Heisenberg group $G$ to the Heisenberg 3D nil-manifold~$M$ — the compact homogeneous space of $G$ by the discrete Heisenberg group. 

 

First we describe dynamical properties of the geodesic flow for $M$: periodic and dense orbits, a dynamical characterization of the normal Hamiltonian flow of Pontryagin maximum principle and its integrability properties. 

We show that it is Liouville integrable on a nonzero level hypersurface $\Sigma$ of the Hamiltonian  outside an appropriate smaller  proper hypersurface in $\Sigma$ and has no nontrivial analytic integrals 

on all of $\Sigma$. Then we obtain sharp twoside bounds of sub-Riemannian balls and distance in~$G$, and on this basis we estimate the cut time for sub-Riemannian geodesics in $M$.

Файл: Download