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Abstract

We study the projection of the left-invariant sub-Riemannian struc-
ture on the 3D Heisenberg group G to the Heisenberg 3D nil-manifold M
— the compact homogeneous space of G by the discrete Heisenberg
group.

First we describe dynamical properties of the geodesic flow for M:
periodic and dense orbits, a dynamical characterization of the normal
Hamiltonian flow of Pontryagin maximum principle and its integra-
bility properties. We show that it is Liouville integrable on a nonzero
level hypersurface 3 of the Hamiltonian outside an appropriate smaller
proper hypersurface in ¥ and has no nontrivial analytic integrals on
all of . Then we obtain sharp twoside bounds of sub-Riemannian
balls and distance in G, and on this basis we estimate the cut time for
sub-Riemannian geodesics in M.
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1 Introduction

1.1 The goal and structure of the paper

The left-invariant sub-Riemannian structure on the 3D Heisenberg group G
is a paradigmatic model of sub-Riemannian geometry [16, 1]. In this paper
we study the projection of this sub-Riemannian structure to a compact



homogeneous space of the group G — to the Heisenberg 3D nil-manifold M.
The sub-Riemannian structure on M is locally isometric to the structure
on G, thus these structures have local objects (geodesics and conjugate
points) related by the projection. Although, the global issues as dynamical
properties of geodesics and cut time are naturally different. We aim to study
these global questions in some detail.

The structure of this work is as follows. In Subsection 1.2 we state the
main results of the paper. Section 2 discusses a well known projection of
Euclidean structure from R to the torus T, which suggests a motivation of
the subsequent study. In Sec. 3 we recall the construction of the Heisenberg
3D nil-manifold M. In Sec. 4 we present basic definitions of sub-Riemannian
geometry, define the sub-Riemannian structures of G and M, and describe
their geodesics; in particular, we recall the parametrization of two distinct
classes of sub-Riemannian geodesics in G — lines and spirals. In Sec. 5
we show that sub-Riemannian geodesics-lines in M may be either closed or
dense, and describe explicitly geodesics falling into these classes. In Sec. 6
we describe dynamical properties of geodesics-spirals in M: we show that
such a geodesic is either closed or dense in a certain 2D torus, and distinguish
geodesics of these classes. In Sec. 7 we describe dynamical properties of
the restriction of the Hamiltonian vector field for geodesics to a compact
invariant surface (common level surface of the Hamiltonian and the Casimir).
We show that the flow of this restriction is conjugated to a p-standard flow.

It is well-known that the geodesic flow on the standard torus T™ is Li-
ouville integrable. In contrast to this fact, we show that the restriction of
our sub-Riemannian geodesic flow to a nonzero level hypersurface X of the
Hamiltonian is Liouville integrable outside an appropriate hypersurface Sy
and has no nontrivial analytic integrals on the whole hypersurface . Next
in Sec. 8 we obtain sharp interior and exterior ellipsoidal bounds of sub-Rie-
mannian balls in G, which improve the classical ball-box bounds. In Sec. 9
we estimate the cut time on geodesics in M and the diameter of M on the
basis of above interior bounds of sub-Riemannian balls in G. Finally, in Sec.
10 we prove two-sided bounds of cut time on geodesics in M on the basis of
above exterior bounds of sub-Riemannian balls in G.

Concerning related research on sub-Riemannian optimal control prob-
lems on compact homogeneous spaces, we are aware only on the works
where left-invariant sub-Riemannian structures on SO(3) and SU(2) were
studied [22, 9, 5, 6, 7, 10]; see also the work [23] on abnormal extremals
in compact Lie groups. Moreover, sub-Riemannian structures on the lens
spaces were studied in the paper [9]. As far as we know, our paper is the
first one in the literature where dynamical properties of sub-Riemannian



geodesic flow on a compact homogeneous space are investigated.

1.2 The main results

The Heisenberg group is the space G = {(a,b,c)} = R3 with the group
operation (a1,b1,c1) - (az,be, c2) = (a1 + az, by +ba, c1 + c2 + a1bz). Consider
the discrete subgroup H = Z? and its quotient (the space of right cosets)
M = H\G = {Hg | g € G}. Denote by m : G — M the canonical
projection g — Hg.

Consider the sub-Riemannian structure on G with a left-invariant field
of orthonormal frames X7 = 5% — %%, Xy = 8% + %%, where a = x, b =y,
¢ = z+ 3. The geodesics of this structure, issued from the identity element
Id € G, are either straight lines in the plane {z = 0}, issued from the origin,
or spirals of variable slope

sin(@ + 6t) —sin@ cos @ — cos(6 + 6t) 6t — sin it
(50, a(0) 2(0) — (U E o con o0 00) B S0ty

hER, 6£0. (1.1)

We also consider the sub-Riemannian structure on M induced by the canon-
ical projection m. Geodesics on M have the form m(g(t)), where g(t) are
geodesics on G.

For A\ € T*N, N = G or M, we set h;j(\) = (A X;), j = 1,2,3,
X3 = % = [X1, X2]. Sub-Riemannian geodesics on a manifold N (G or
M) are projections of trajectories of the Hamiltonian flow onto T*N with
Hamiltonian function F = (h? + h3)/2, j = 1,2,3, A € T*N, which is the
normal Hamiltonian of the Pontryagin maximum principle [1]. It has first
integrals F' and hg. Their joint level set S5 := {F = %, hs = 4} is naturally
isomorphic to the product S* x N, S = Ry /277, where 6 = arccot Z—; The
restriction to S5 of the Hamiltonian system is

(0,a,b,¢) = (8,cos 0,sin 6, asin ). (1.2)
The projection G — R x R, (a,b,c) — (a,b), induces a projection p : M —
T2 = R?/72.
1.2.1 Dynamics of sub-Riemannian geodesic flow on M

We show that the projection p(I") of each geodesic-spiral I' in M is a con-
tractible closed curve v C T?; T is closed for 62> € mQ and dense on the
surface p~!() for 62 ¢ 7Q. See Theorem 6.1.



Theorem 1.1 1) The projection onto M of each geodesic line in G in the
plane z = 0, originating from Id and having an irrational (rational) tangent
of the slope in coordinates (x,vy), is dense in the manifold M (respectively,
periodic).

2) A flow (1.2) on S x M with § # 0 is conjugate to the standard §-flow
given by the field (é,d, b, ¢) = (5,0,0, %), by a diffeomorphism isotopic to
the identity.

3) The Hamiltonian flow on T*M \ {F = 0} is analytically Liouville
integrable on the complement of the hypersurface {hs = 0}, but on the entire
T*M \ {F = 0} this is not true.

1.2.2 Estimates of the cut time on M

Denote by d and d’ the sub-Riemannian distances on G and M, and by
teut(q(+)) the cut time on the geodesic ¢(-), i.e., the time after which the
geodesic arc ceases to minimize the length. Let ¢y = 7(Id) € M. Denote
the ball B; = {g € M | d'(qo,q) <t},t>0. Let t =inf{t > 0| B, = M}.
The following equalities hold:

t = sup{d'(q0,q1) | 1 € M}
= sup{teut(q(-)) | ¢(-) C M is a geodesic s.t. q(0) = qo},

see Lemma 9.1. Let g = (a,b,¢), § = (a, b, ¢) € G be such that a = b =
c = % and @ = 1, b = ¢ = 0. Then d(g,g) =~ 0.91, this follows from
the explicit expression for the sub-Riemannian distance on the Heisenberg
group, see [19], Subsec. 3.3.6. There holds the following two-side bound of
the number ¢, see Theorems 9.3 and 9.4.

Theorem 1.2 The following inequalities hold:

d(G.5) << > \/; (1 +V1+ 102471'2) ~ 3.56.

=2

In order to prove Theorem 1.2 we first obtain the following estimate
using formulas (1.1):

T 48,2 4 12 V1A I+ 64222 4 12
Vre 4+ 48z 4+ r < d(id,g) < r* 4 64méz= 4+ r ’ (1.3)
2 2
where g = (z,y,2) € G, r = \/22 + y2, see Cor. 8.8.
Let Bi(g) = {q € G | d(g,q9) < t},t >0, g € G. Denote t = sup{t >
0| Bi(h1) N By(h2) =0 Yhy # hy € H}. The number ¢ is related to the cut



time on the geodesic g(-) in G with origin Id and its projection ¢'(-) in M,
see Cor. 10.5:

(1) teut(9'() < teus(9());
(2) If teue(9(-) 2 7, then £ < teur(g'(-)) < teur(9());
(3) If teut(9(-) <7, then teu(g'(-)) = teut(9()).

The lower bound in (1.3) implies the following statement, see Th. 10.7.

Corollary 1.3 The equality t= % holds.

2 Motivating example

Geodesics in the Euclidean space R™ have trivial dynamics (they tend to
infinity) and optimality properties (they are length minimizers).

The situation changes when we pass from R" to its compact homogeneous
space — the torus T" = R"/Z". Consider the Riemannian structure on T"
obtained via the projection 7 : R™ — T"™. Then the geodesics on T" are
orbits of the linear flows

ts (29 +wit, ..., 20 + w,t)(mod 1), (2.1)
Wit WA, («9,...,2%) e T, teR.

rr'n

Kronecker’s theorem [14] (Propos. 1.5.1) states that such a geodesic is
dense in T” if and only if the frequencies wq, ... ,w, are linearly independent
over Q. In all other cases a geodesic is dense in a nontrivial k-dimensional
torus in T, 1 < k < n, see Propos. 2.1 below; in particular, a geodesic is
periodic if kK = 1. See Figs. 1, 2 for n = 2 and Figs. 3-5 for n = 3.

The following well-known statement generalizes Kronecker’s theorem.

Proposition 2.1 (see [15, section 5.1.5]). Consider a geodesic I' in T" of
the form (2.1) and the corresponding vector space

R:spanQ{r:(rl,...,rn)EQ”ani:o}, p =dimR.
i=1

Then T is dense in a smooth manifold S C T™ diffeomorphic to a torus T"°.






Figure 5: Geodesic (2.1) for n = 3, (w1,wa,w3) =

(1,/3,v2)

Moreover, each geodesic (2.1) loses optimality at an instant

€ (0, +00). (2.2)

fout = —————
T2 max |

More precisely, the cut time for a geodesic z(t), t > 0, is defined as follows:
teut(z(+)) = sup{t1 > 0 | (-) is length minimizing on [0, #1]}.

The reason for the loss of optimality is intersection with a symmetric geodesic
starting from the same initial point in T", see Fig. 6 for the case n = 2.

In this work we aim to generalize the above projection of Euclidean
structure 7 : R®™ — T"™ to a projection of a left-invariant sub-Riemannian
structure 7 : G — M from a Lie group G to its compact homogeneous
space M. The simplest nontrivial case of such a projection is the case of the
3D Heisenberg group G and the 3D Heisenberg nil-manifold M, see Sec. 3.

Indeed, recall that a subgroup H of a Lie group G is called uniform (or
cocompact) if the homogeneous space G/H is compact. The only connected
and simply connected non-Abelian 2D Lie group R x Ry does not contain
uniform subgroups (see [21], Example 1.5). On the other hand, the 3D
Heisenberg group G has a countable number of uniform subgroups, of which
the subgroup (3.1) is the simplest one, see discussion in Remark 3.2 at the
end of the next section.



Figure 6: Optimal synthesis on T2

3 Heisenberg group and 3-dimensional nil-manifold

Recall that the Heisenberg group is

1 a
G=<{10 1 | (a,b,c) €R3
0 0

= S0

Consider the following discrete subgroup and its quotient (the right cosets
space):

1 m k
H=¢(0 1 n| |(mnk)eZ;, M:=pg\G={Hg|geG}
0 0 1

(3.1)

The quotient M is a compact smooth manifold, which is called Heisenberg
3-dimensional nil-manifold.

Let m : G — M denote the canonical projection g — Hg. The functions

a = {a}, ¥ :={b}, ¢ :=={c—[a]b}

are coordinates on the homogeneous space M, and w(a,b,c) = (a',V, ).
Here and below [z] = max{n € Z | n < z} is the integer part of z € R, and
{z} = x — [2] is the fractional part of z € R.

Remark 3.1 The manifold M is not diffeomorphic to the 3-torus T3 =
R3, o+ /2%, see [8, section 5]. Indeed, the first Betti number b of the torus

T3 is equal to 3. On the other hand, b;(M) = 2. Indeed, the quotient



projection G — M is a universal covering, since G is diffeomorphic to
R3, . Therefore, m (M) = H. The first homology of a path connected
toﬁ(;logical space is isomorphic to the quotient of the fundamental group
by its commutant, by classical Poincaré Theorem [12, section 14.3, p.181].
Hence, Hi(M,Z) = H/[H, H|. The commutant [H, H| coincides with the
subgroup of integer unipotent matrices that differ from the identity just by
the upper-right corner element. Therefore, it is isomorphic to Z. The map

H v+ (Hya, Ha3) is an isomorphism H/[H, H] — Z?. Therefore, by (M) = 2.

The manifold M can be represented by a fundamental domain D =
{(a,b,¢) | 0 < a,b,c < 1} with identified facets {b = 0} « {b = 1},
{¢ = 0} <» {¢ = 1}, while the facets {a = 0} and {a = 1} are identified by
the rule (0,b,¢) ~ (1,b,c+b), see Fig. 7.

0.0
0.0

0.5

Figure 7: Heisenberg 3D nil-manifold

Remark 3.2 Any uniform subgroup of the Heisenberg group G is isomor-
phic to a subgroup

1
D(k) = 0 |a,b,ceZ
0

S = Q
—= oo

for some k € N, see [21]; in particular, H = D(1). Thus any compact 3D
nil-manifold is a homogeneous space G/D(k). Since G is simply connected,
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the fundamental group of such a space is 71 (G/D(k)) = D(k). Hence
(M) = 7 (G/D(1)) = D(1) C D(k) = m1(G/G(k)), k € N.

Consequently, the Heisenberg nil-manifold M is the simplest compact 3D
nil-manifold in the sense that it has the smallest fundamental group. This
observation motivated us to study sub-Riemannian geometry on the Heisen-
berg nil-manifold M. This work may thus be seen as the first study of
sub-Riemannian geometry of compact 3D nil-manifolds, starting from the
simplest case of the Heisenberg nil-manifold M. We believe that our meth-
ods may be useful for the study of sub-Riemannian geometry on compact
nil-manifolds of dimension 3 and greater than 3.

4 Sub-Riemannian structure on the Heisenberg group
and its projection to the nil-manifold
4.1 Sub-Riemannian geometry

A sub-Riemannian structure [16, 1] on a smooth manifold M is a vector
subspace distribution

A={A,CTy;M|qge M} CTM, dim A, = const,
endowed with an inner product
(-,-) ={(,-)q inner product in A, | g € M}.

A Lipschitzian curve ¢ : [0,¢1] — M is called horizontal if §(t) € Ay for
almost all ¢ € [0,¢1]. The sub-Riemannian length of a horizontal curve ¢(-)
is

t1
) = [ ate)ate)* 2 e
The sub-Riemannian distance between points qg,q1 € M is

d(qo,q1) = inf{l(q(-)) | q(-) horiz. curve s.t. ¢(0) = qo, q(t1) = q1 }.

A horizontal curve is called a sub-Riemannian length minimizer if its sub-
Riemannian length is equal to the sub-Riemannian distance between its end-
points. A sub-Riemannian geodesic is a horizontal curve whose sufficiently
short arcs are length minimizers. Finally, a cut time along a sub-Riemannian
geodesic ¢(-) is

teut(q(+)) =sup{r >0 q(-)| - is a length minimizer}.

11



If a real-analytic distribution A is completely nonholonomic (completely
nonintegrable), i.e., any points in M can be connected by a horizontal curve
of A, then the sub-Riemannian distance d turns M into a metric space, and
there are naturally defined a sub-Riemannian sphere of radius R > 0 centred
at a point qo € M:

Sr(q0) = {g € M | d(q0,q) = R}

and the corresponding sub-Riemannian ball:

Br(qo) ={q € M | d(qo,q) < R}.

Let X1,... X} be vector fields on M that form an orthonormal frame of
a sub-Riemannian structure (A, (-,-)):

Ay = span(X1(q), ..., Xx(q)), (Xi(g),X;(q)) =di5,  qe M.

Then sub-Riemannian length minimizers that connect points qg,q1 € M are
solutions to the optimal control problem

qzzui(t)Xi(Q)a q€ M, u:(ula"'vuk) eRkv

q0) =qo,  q(t1) =,
" 1/2

/ <Z uf(t)) dt — min .
0 :

4.2 Sub-Riemannian structures on GG and M

The left-invariant sub-Riemannian problem on the Heisenberg group is stated
as the following optimal control problem [1, 2, 19]:

g =u1(t)X1(g) + u2(t) X2(g) g€ G, u=(u,uy) € R? (4.1)

g(0) = go = 1d, g(t1) = g1,

t1
| o)+ 0)2 dt = i, (1)
0
_ 9 yo 0 x0
Xl—aix_§$7 X2—87y+§£ (44)

The fields X7, X5 are left-invariant vector fields on G.

12



Here and below we use coordinates (z,y, z) on the Heisenberg group G

such that
Ty

a=x, b=y, c:z—i—?. (4.5)
The geodesics for this problem have the form:

x =tcosh, (4.6)

y =tsinb, (4.7)

z2=0 (4.8)

for 0 € R/(2rZ), and

x = (sin(@ + ht) —sin6)/h, (4.9)

y = (cosf — cos(0 + ht))/h, (4.10)

z = (ht — sin ht)/(2h?) (4.11)

for 0 € R/(27xZ) and h # 0.

Sub-Riemannian geodesics (4.6)—(4.8) are one-parametric subgroups in G,
they are projected to the plane (x,y) into straight lines, thus we call them
geodesics-lines in the sequel. Sub-Riemannian geodesics (4.9)—(4.11) are spi-
rals of nonconstant slope in ]R%% . ~ @G, they are projected to the plane (z,y)
into circles, and we call them geodesics-spirals in the sequel.

Sub-Riemannian problem (4.1)—(4.4) is left-invariant on the Heisenberg
group G, thus its projection to the nil-manifold M is a well-defined sub-
Riemannian problem on M:

g =u X1 (g") +ua X5(q), g €M, u=(ui,u) € R? (4.12)
g (0) =gy =n(Id), ' (t1) = g1, (4.13)
t1
/ (u? + u2)"/? dt — min, (4.14)
0
X/(¢)=m(Xilg), g =ml9), i=12 geG. (4.15)

Geodesics of the projected problem (4.12)-(4.15) have the form ¢'(t) =
m(g(t)), where g(t) are geodesics of the initial problem (4.1)—(4.4).

Remark 4.1 The projection of sub-Riemannian structure from the Heisen-
berg group to the Heisenberg nil-manifold is a particular case of the following
setting. Let G be a sub-Riemannian manifold, and let H be a discrete group
that acts on G and preserves the sub-Riemannian structure. Let the action
of H be free and proper. Then the quotient manifold M = g \G is endowed
by a sub-Riemannian structure induced by the projection 7 : G — M. We
use this general setting in Section 10, Remark 10.6.

13



5 Projections of geodesics-lines
to Heisenberg nil-manifold

For every 6 € R/(2nZ) consider a geodesic-line (4.6)—(4.8) in G and its
projection to M:

2
g(t) = (a(t),b(t),c(t)) = (t cosf, tsinb, % sin 6 cos 0) , teR.

g'(t) = mog(t) = (d'(t),V(t),d (1)),

t2
a'(t) = {tcosB}, b/'(t) = {tsind}, (t) = {2sin90056 — [t cos @]t sin 9} )

(5.1)
I:={J@#) |teR}c M.

Consider the projection p: M — T? = R?/Z? and the image p(T'):
pr(db,d) = (dV), v:i=p(T)={()V()|teR} cT.

Remark 5.1 If § = %, n € Z, then v and I' are both 1-periodic. If

tanf € Q\ {0}, then 7 is periodic, and p~!(7) is a two-dimensional torus.

Proposition 5.2 If tanf = % € Q\ {0}, then the curve ~y is periodic with

period T = —L: here (p,q) = 1. The curve T is periodic either with the

cos B’
same period, as -y, if some of the numbers p, q is even, or with twice bigger

period otherwise.

See Figs. 8, 9.
Proof One has
Tcos=qeZ, Tsinl=peclk, (5.2)

(a(t+T),b(t +T) = (a(t) + ¢, b(t) + p).
This implies T-periodicity of the curve 4. One has

dt+T)={ct+T)—[a(t+T)bt+T)}
[ +T)?
1

sinfcos® — [(t+ T)cosb|(t+T) sin@}

2 2
= {gsinecose—i-thin@cosH—i- %sianos@ —[(t+T)cosb|(t+1T) sinH}.

14
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Figure 8: The curve « for tan§ = Figure 9: The curve I for tanf =
3 3

Substituting (5.2) yields

2
dt+T)= {gsiné’cos«9+tqsin9+ % - [tcosc9+q](tsin0+p)}

2
= {2sin0c089+tqsin0+ % — ([t cos 6] —|—q)(tsin9+p)}

2
= {gsin00089+tqsin0+ % — [tcos@]tsin @ — gt sin @ — plt cos 0] pq}

2
= {];SiHQCOSQ — [tcos@]tsinh — qu}

The latter expression is equal to either ¢/(¢), if pq is even, or {c/(t) + £}
otherwise. In the latter case replacing T' by 27" and repeating the above ar-
gument with ¢, p replaced by 2¢, 2p yields ¢/ (t+2T') = ¢/(t). The proposition
is proved. O

Theorem 5.3 The curve I is dense in M for every § € R such that tan 6 ¢
QU {oo}. In this case each its half Ty = {g'(t) | t € Ry} is dense.

See Figs. 10, 11.
As it is shown below, Theorem 5.3 is implied by the following theorem.

15
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Figure 10: The curve y for tanf = Figure 11: The curve I for tan 6 =

V2 V2

Theorem 5.4 The sequence {({2rn}, {rn?}) € T? | n € N} is dense in T?
for every r € R\ Q.

Theorem 5.4 follows from a more general result due to H.Furstenberg, see
[13, lemma 2.1], which yields unique ergodicity of the torus map (5.6). Below
we present a proof of Theorem 5.4 for completeness of presentation.

Remark 5.5 It is known that for every real polynomial P(n) = aon™ +
arn™ 1 4+ 4y, with ap ¢ Q the values P(n) are equidistributed (thus,
dense) on the segment [0, 1] (Furstenberg’s theorem, see [14, exercise 4.2.7]).
This theorem also follows from the above-mentioned Furstenberg’s result on
unique ergodicity of map (5.6).

Proof of Theorem 5.3 modulo Theorem 5.4. We prove the statement
of Theorem 5.3 for the half-curve I';; the proof for I'_ is analogous.
Let us do the above calculation with

q

y .
cosf’

qEZZ():

Tcost =q € Z>p, Tsinf =qtand,
Ct+T)={ct+T)—[a(t+T)b(t+T)}

= {%Sinecose— [(t-l—T)cosO](t-l—T)sinG}

16



2 2
= {gsinﬁcosﬂ—FthinGcosH—i— T?sinﬁcosﬁ —[(t+T)cosb|(t+1T) sinﬁ}

t2 % tan 0
= {2 sinf cos 0 + tgsin 6 + ¢ n7 ([t cos O] + q)(tsinb + qtan@)}
t2 tan 0
=c(t) == {2 sin @ cos § — [t cos f)tsin @ — [t cos f]gtand — ¢° a;1 } .
(5.3)
Set
= T+ —L) [ tefo,——)} f €z
= — — or ever :
1 cos 6 " cos 0 y 4= 820
By definition, R
ryu {g’(O)} = UqEZZOFq- (5.4)
Set
tan 0
r= .
2
Each curve fq admits the coordinate representation
Ty(t) = (a (1), {V/(£) + 2q7},{c(t) — r¢°}), (5.5)
since for every ¢ € [0, ) one has

2
c(t) = {tz sinf cos @ — [t cos O]t sinf — qzta;ﬁ} = {d(t) — ¢’} :
[tcosf] = 0, whenever t € [0,—L;). For every ¢ the sequence ({b/(t) +
2qr}, {c/(t) —rq*}) is dense in [0, 1) x [0,1). To prove this, it suffices to show
that the sequence ({2¢7}, {—7¢?}) is dense in [0,1) x [0,1). Or equivalently,
density of the projection to T? = R?/Z? of the sequence (2qr, —rq?). In-
deed, the projection to T? of the sequence (2¢r,rq?) is dense, by Theorem
5.4. The sequence (2gr,—rq?) is obtained from the latter sequence with
dense projection by the symmetry (z,y) — (x,—y), which is the lifting to
R? of torus automorphism given by the same formula. Every torus automor-
phism sends any dense subset to a dense subset. The latter symmetry sends
the projection of the sequence (2¢r,7¢?) to the projection of the sequence
(2qr, —rq?). Therefore, the latter projection is dense. Hence, the sequence
({v'(t) + 2¢r}, {¢(t) — rq?}) is dense in [0,1) x [0,1) for every t € [0, ).

) cos b

This together with (5.5) and (5.4) implies density of the curve I'y in M. O

For the proof of Theorem 5.4 let us introduce the torus map

T:T% -T2, T(x,y) = (x+ o,y +z+0). (5.6)
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Proposition 5.6 Set o = 2r, f =r. Then
({2rn}, {rn®}) = T™(0,0). (5.7)

Proof Induction in n.
Induction base: for n = 1 one has T(0,0) = (2r,7)(mod Z?).
Induction step. Let 77(0,0) = (2rn, rn?)(mod Z?). Then modulo Z2,

T10,0) = (2r(n+1),mn + 2rn +7) = (2r(n + 1),7(n + 1)%).

The induction step is done. The proposition is proved. O

Theorem 5.7 For every a € R\ Q and every € R the map T given by
(5.6) is minimal: each its forward orbit is dense.

Proof Suppose the contrary: there exists a point (zg, o) with non-dense
forward orbit. Let M denote the set of limit points of its orbit. (The orbit
is non-periodic, as is the rotation z — x + «a.) The set M is a non-empty
closed subset in T? with a non-empty open complement

V:=T*\ M.
Remark 5.8 The set M is T- and T~ '-invariant, hence so is V.

Proposition 5.9 The set V contains no fiber z x S'.

Proof Suppose the contrary: V contains such a fiber. Then there exists
an interval neighborhood U = U(z) C S such that U x S' € V. But the
successive images T™(U x S1) cover all of T?: the images of the interval U
by translations z — = 4+ ma cover all of S, since « is irrational. Therefore,
V = T2. The contradiction thus obtained proves the proposition. O

Fix a,b,¢c,d € [0,1), a < b, ¢ < d, such that
IT:=[a,b] X [e,d] C V.

Set
h:=d-c.

Proposition 5.10 For every k € Z>¢ there exists a fiber S,i = 2. x St such

that S,i NV contains an arc of length greater than 2*h. In the case, when
2kh > 1, this means that the whole fiber S,i lies in V.
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Proof The proof is based on area-preserving property of the map 1" and the
fact that for every N € N the iterate TV lifted to R? transforms horizontal
lines to lines with the slope (the tangent of angle with the horizontal axis)
equal to N. Thus, as N — oo, the images of horizontal lines tend to vertical
lines. Therefore, the images of a rectangle become very long strips spiralling
in nearly vertical direction.

Induction in k.

Induction base for k = 0. Each fiber z x S!, z € [a, ], intersects V by
an arc strictly containing the arc z x [c,d] of length h, and thus, having a
bigger length.

Induction step. Let there exist a z, € S! such that the intersection
(zx x S1) NV contains a segment 2z x [cx, dy] of length ¢, — dj, > 2¥h. Let
us show that V' contains a vertical circle arc of twice bigger length. To do
this, fix an € > 0 such that

Iy = [z — 3¢, 2 + 3¢] X [ex, di] C V.
Fix a 6 € (0,¢) such that 2§ < h. For every N € N there exists a point
(xn,yn) € is o= [z — €, 25 + €] X [cg, cp + 0] C TLy,

such that
pn=T"(xN,yn) € II; s for some n > N,

by area-preserving property and the Poincaré Recurrence Theorem [14, the-
orem 4.1.19].

Claim 1. Let us choose N > W. Let (zn,yn) and n be as above.
Then the T™-image of the lower horizontal side L := [z — 3¢, z, + 3¢] X ¢k
of the rectangle Il intersects its upper side at some point qi. See Fig.12.
Proof The point (zn,ck) lies in the lower side L, |zty — 2| < &, and
0 < yny — cx < 0. The y-coordinate of its image, y, = y(T™(zn,ck)) also
differs from ¢ by a quantity no greater than ¢, since it is no greater than
that y;, == y(T"(zN,yn)) € [cksck + 0], Yy, — Yn = YN — ¢k € [0,0]: the map
T preserves the lengths of arcs of vertical fibers. The z-coordinate of the
same image T"(zn, ¢ ) lies in the segment [z —e, z;, +¢]. This together with
the inequality on N and the fact that the T"-image of a horizontal segment
has slope n > N implies that 7™ (L) crosses the upper side of the rectangle
I1,. a

Let gx = (2x+1,dr) = T"(px) be a point of the above crossing, py =
(sg,ck) € L. Then s, X [cg,di] € Iy C V, by assumption. Therefore,
21 X [dgg, di + (di, — c)] = T" (s X [k, di]) C V, by invariance of the set V.
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Figure 12: The rectangle IIj, its image 7™ (1)) and the intersection point
qk-

Finally, the vertical circle arc 241 X [cx, 2dg —c] of length 2(dy —cz) > 2F1h
lies in V. The induction step is done. Proposition 5.10 is proved. a

Proposition 5.10 applied to k large enough implies that V' contains a
vertical fiber z x S'. This contradicts Proposition 5.9. Theorem 5.7 is
proved. a

Theorem 5.7 implies Theorem 5.4, and hence, Theorem 5.3.

6 Projections of geodesics-spirals
to Heisenberg nil-manifold

For every 6 € R/(2nZ), h # 0 consider a geodesic-spiral (4.9)—(4.11) in G
and its projection to M:

a(t) = (sin(f + ht) —sinf)/h,
b(t) = (cos @ — cos(0 + ht))/h,
c(t) = (ht —sin ht)/(2h*) + a(t)b(t) /2,

9(t) = (a(t), b(t), c(t)), t€R.
g'(t) =mog(t) = (a'(t),b'(t), (1)),
I':={4'(t) | t e R} C M.

The projection G — R x R, (a,b,c) — (a,b) passes to the quotient and
induces the projection

p:M—-T?=5"'x8' S'=R/Z
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Theorem 6.1 1) The projection p sends each geodesic-spiral T', see (4.9)—
(4.11), to a contractible closed curve v C T? that may have self-intersections.
2) The geodesic-spiral T is
- either closed, which holds if and only if h? € 7Q \ {0};
- or dense in the preimage p~1(v) C M, if h* ¢ 7Q.

See Figs. 13-16.

0.8
0.6
04

02

0.2 0.4 0.6 0.8 1.0

Figure 13: The curve v for h = Figure 14: The curve I' for h =
/2 /2

Proof Consider a spiral geodesic I" given by (4.9)—(4.11) as a geodesic on
the Heisenberg group G =~ R%’yyz. Its projection to the (z,y)-plane is closed,
being 2%-periodic in ¢, see (4.9) and (4.10). It is clearly contractible in ]R%y,
as is every closed planar curve. Therefore, its projection p(I') to T? is also
closed and contractible. Statement 1) is proved.

The coordinate ¢’ = {¢ — [a]b} of a point of the geodesic I is equal to

‘0={5 -G+ P wono ) e

where x(t), y(t) are given by (4.9) and (4.10) respectively. All the terms in
the right-hand side in (6.1) except for the first one are 2T’T—periodic functions
in t. Adding 27” to t results in adding 75 to the first term ﬁ Therefore,
closeness of the geodesic I' is equivalent to commensurability of the numbers

h? and 7. If they are incommensurable, then the sequence of the numbers
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Figure 15: The curve « for h =1 Figure 16: The curve I' for h =1

{72} with n € N is dense in [0,
implies that I'" is dense in p‘l(fy

1]. This together with the above discussion
). The theorem is proved. O

7 Dynamics of the normal Hamiltonian flow
on 1M

Let T*M be the cotangent bundle of the Heisenberg nil-manifold M. In-
troduce linear on fibers of T*M Hamiltonians h;(\) = (A, X]), i = 1,2,3,
where X} = [X{, X}] = 2.

Let H(\) = (h¥(\) + h3(\))/2 be the normal Hamiltonian of the Pon-
tryagin maximum principle [1, 19] for the sub-Riemannian problem (4.12)—
(4.15), and let H be the corresponding Hamiltonian vector field on T*M.
Sub-Riemannian geodesics on M are projections of trajectories of the normal
Hamiltonian system

A=H(), AXeT*M, (7.1)

in coordinates

hy = —hahs, hg=hihs, h3=0, § =hiX]+haX), (7.2)

this follows from the classical coordinate expression of the Hamiltonian sys-
tem for sub-Riemannian geodesics on the Heisenberg group [1, 19].
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Each level surface
Sp={AeT*M | H(\) =1/2, h3(\) =p}, pER,

is invariant for the field H. Denote on this level surface hi1 = cosf, hy =
sin . Denote also the restriction V, = H| . The ODE

P

A=V,(\), €S, (7.3)
reads in coordinates as )
0 = p,
&' = cosf
. ’ 7.4
b =sind, (7.4)

¢ =a'sin,
this follows immediately from ODEs (7.2) via the transformation formu-
las (4.5).
Set
Sl.=R,/Z forv=a,bc; Sj=Ry/2n7Z.

v

Let us introduce yet another flow on S, = 5'91 x M.

Definition 7.1 The p-standard flow sz on S(} X M is given in the coordi-
nates by the equation

0 =p,

d =0,

o (7.5)
¢ = i

Remark 7.2 The projection of the vector field given by (7.5) to the 2-torus
Tg » is the linear vector field 6 = p, ¢ = %. Its flow map in time %’T fixes

each circle {6} x S. and acts on it by translation (rotation)
/ /
c —c +p, pi=—.
p
The number p is its rotation number, see the definition of rotation number
in [3, p. 104].

Theorem 7.3 Flow (7.3) is conjugated to the p-standard flow by a diffeo-
morphism of S, = 5’91 X M preserving the 0-coordinate and isotopic to the
identity in the class of diffeomorphisms preserving the 8-coordinate.
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Remark 7.4 Let m: G — M denote the quotient projection. Consider the
pullbacks to Sj x G of vector fields (7.4), (7.5) under the induced projection
St x G — S'x M. The pullbacks are written by the same formulas, as (7.4),
(7.5), but in the coordinates (6, a, b, c).

For the proof of Theorem 7.3 we first solve equations (7.4) and show

that their solutions are all 2?’T—periodic, except for the function ¢(t), which
is equal to ﬁ plus a 2f—periodic function. Using formulas for solutions, we
construct an explicit analytic family of diffeomorphisms F}, : Se1 xXG — 591 xG
preserving the f-coordinate, depending on the parameter v € [0, 1], Fy = Id,
such that F; transforms the lifted vector field (7.4) to the lifted field (7.5),
see the above remark. We show that each F), is I'-equivariant and thus, the
family F, induces a family of diffeomorphisms S x M — S x M with F}
sending (7.4) to (7.5). This will prove Theorem 7.3.

Set )
Si={H =} CT"M.

Theorem 7.5 1) The Hamiltonian flow on T*M° :=T*M \ {H = 0} with
Hamiltonian function H is integrable on the invariant domain T* Mo =
T*M° \ {hs = 0}: it has an additional integral I(X\, a,b,c) analytic on
T*MO"3 that is in involution with the integrals H and hs for the canon-
ical symplectic structure on T*M . The latter integral I can be chosen to be
any of the following functions:

cos(2r(a—S10)), sin(2r(a—TE0)), cos(2n(b+ S50), sin(zr(v+ S20),
hs hs hs h%
7.6)

2) For every integral I from (7.6) and v € (—1,1), p # 0, the manifold
1
Spo = (H = )0 {hy =p} N{I =1} = 5,0 {T =1}

s a transversal intersection, a disjoint union of two invariant 3-tori.

3) For v = =1 (i.e., when v is an extremum of the integral I) the latter
tori coincide and the above intersection is one 3-torus.

4) The restriction of the Hamiltonian flow to any of the two latter tori is
conjugated to a constant vector field on the standard 3-torus R3 /2773 with
closed orbits for p*> € 71Q\ {0} and each orbit dense in a 2-torus for p* ¢ TQ.

5) The flow restricted to the hypersurface © = {H = %} has no non-
trivial analytic integral: each analytic integral is a function of hs.

Theorems 7.3, 7.5 are proved in Subsections 7.1 and 7.2 respectively.
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7.1 Conjugacy with p-standard flow. Proof of Theorem 7.3

Proposition 7.6 Fach solution of the differential equation defined by the
lifted vector field (7.4) (thus, written in the coordinates (0, a,b,c)) with ini-
tial condition (6y, ag,bo,co) at t =0 takes the form

(0(t) = 0y + pt
a(t) = %(sm(ﬂo + pt) —sinfy) + agp
b(t) = I%(cos 00 — cos(6y + pt)) + bo
c(t) = ip (Sln 2(0p + pt) + sin260y) + (sin(290 + pt) — sinpt)
— 2 (cos(bo +pt) —cosbhp) + co.

(7.7)

Proof The three first equations in (7.4) are solved by direct integration.
The fourth equation is solved by taking the primitive:

c(t) =co+ /Ot a(t)sin 0(t)dt

t
1
=cp+ / (];(sin(é?o + pt) —sinby) + ag) sin(Oy + pt)dt. (7.8)
0

The latter subintegral expression is equal to

1
%(1 — cos 2(bp + pt) + cos(260y + pt) — cos pt) + agsin(fy + pt).

Therefore, the integral is equal to

t 1
o 4—2(sin 2(6p + pt) — sin 20p + 2sin 26y — 2sin(260y + pt) + 2 sin pt)
p P
ao
+—(cos Oy — cos(6y + pt)).
p

This together with (7.8) yields (7.7). O

Proposition 7.7 The phase curves of the lifted vector field (7.4) are graphs
of vector functions (a(0),b(0),c(0)), where

(0) sm9 + ag
b(0) = (1 —cos ) + by (7.9)
c(0) = % — p2 sin20 — % (cos 6 — 1) + co,

ap = a(0),by = b(0), cg = ¢(0).
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Proof Each phase curve intersects the fiber {§ = 0}. Hence, it is the graph
of a solution (7.7) with 6y = 0. Substituting 6y = 0 to (7.7) yields

0(t) = pt

a(t) — 51n49 +ag

b(t) = (1 —cosf) + by

c(t) = p 2 sin 26 — <2 (cos 6 — 1) + co,

which implies (7.9). O
Consider the following family of diffeomorphisms Fj, : 591 x G — S; x G:

F,(0,a,b,¢) = (0, a— Zsind, b— 2(1—cosh), &),
p p

sin 0

~ 1
Cyi=cHv <42 sin 26 + p( » )(cos O — 1)) , velo,1.  (7.10)

The action of the group I on G by left multiplication lifts to its action on
591 x G:
v(0,9) := (0,vg) forevery v€T, ge€QG.

Proposition 7.8 1) For everyv € R the map F), is a diffeomorphism equiv-
ariant under left multiplications by elements of the group I':

Fy(0,v9) =~vF,(0,9) for everyy €T, g €G. (7.11)

2) One has Fy = id, and Fy transforms the lifting to S' x G of flow (7.4)
to the lifting of the p-standard flow (7.5).

Proof Statement 2) follows from (7.10) and (7.9). Let us prove Statement
1). The group I" has two generators:

110 100
A=10 10|, B==|0 1 1
00 1 00 1

Let us represent each g € G by its coordinates (a, b, c). The multiplication
by A from the left acting on G lifts to the action on 591 x G by the formula
(0,a,b,¢) — (0,a+ 1,b,c +b). Therefore,

AF,(0,a,b,¢) = (0,a+1— Zsin,b— 2 (1 — cosh), &),
p p
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1 1 sin 6 v
Cy1 1= C+V <s1n20+ a— cosf — 1 >+b+ cosf—1), (7.12
yve p( ) ) ) p( ), (7.12)
F,0A(0,a,b,c) = F,(0,a+1,b,c+b) = (9,a+1—zsin9, b—z(l—cos 6),¢2),
p p

sin

Cyoi=c+v (4; sin 260 + ;(a—i- 1-— ) )(cos 6 — 1)> +b.
This together with (7.12) implies that ¢, 1 = ¢, 2 and proves (7.11) for
v = A. Statement (7.11) for v = B follows from (7.10) and the relation
B(0,a,b,c) = (0,a,b+ 1,c). Proposition 7.8 is proved. a

The quotient of the diffeomorphism F; under the projection 7 : 591 X
G — Sel x M is a well-defined diffeomorphism of the manifold S, = S; X
M preserving the coordinate 6 and isotopic to the identity in the class of
diffeomorphisms preserving the coordinate 6. It transforms flow (7.4) to
(7.5) by construction. This proves Theorem 7.3.

7.2 Integrability. Proof of Theorem 7.5

Let us prove Statement 1) of Theorem 7.5. The function f = a — % is

defined on the cotangent bundle T*G to the group G with the hypersurface
{hs = 0} deleted. It is a first integral of flow (7.4) lifted to T*G. This
follows immediately from the first and second equation in (7.4), since hs is a
first integral. Similarly the function g = b+ % is an integral. Each one of
the two latter functions is automatically in involution with the Hamiltonian

H, being an integral. Let us show that f is in involution with hg, i.e.,
w(f, h3) =0, w is the standard symplectic form on T*G. (7.13)

Here by 2; we denote the skew gradient of a function 1, which means by
definition that w(y,v) = (d¢)(v) for every v € TM. Indeed, consider the
coordinates (z,y,z) on G and the associated coordinates (z,y, z, A1, A2, A3)
on T*G: A, Ao, A3 is the basis in T(*Ly’z)G dual to the basis 8%’ 8%7 % in
T(2,y,-)G- The standard symplectic form on T*G is

w=dr ANd\ +dy ANdio + dz N d)s.

One has . .
hs = X3 =(0,0,1,0,0,0). (7.14)

To calculate f, recall that

= X0 =M~ D, ho= (0, Xo) = Xt Shs, 0= arctan 2,
1
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The sixth, that is, Ag-component of the skew gradient f is zero, since f is
z-independent. Therefore, w vanishes on the pair of vectors f_ig, f, by (7.14).
This proves (7.13). Analogously, the function g is in involution with hs.
This implies that each one of integrals in (7.6) is in involution with h3 on
T*M?° and proves Statement 1).

Let us prove Statement 2). The submanifold S, = {H = 3, hy = p} =
St x M c T*M lifts to T*G as a submanifold §p = S x G covering S,
via the canonical projection §p — Sp induced by the quotient projection

G — M. The function f = a — % =a— % is well-defined on §p for

p # 0. The surface §p has natural coordinates (6,a,b,c). The function
fl g, has nowhere vanishing differential, since it has unit partial derivative

in a. Therefore, the function I = cos(27(a — Sihrff)) from (7.6) restricted to
Sy, C T*M?° also has nowhere vanishing differential, except for the points
where the |cos| takes its maximal value 1. Hence, its level hypersurfaces
{I =v} with v € (—1,1) are transversal to S,. Writing

v =cos2ra, «c€ (0, §)a

we get that
sin 6
{I=v}inS,=Us{(0,a,b,¢c) | a= ) + a(modZ)}. (7.15)

The latter intersection is a union of two compact invariant 3-manifolds, each
being the subset in the right-hand side with a given sign choice . They are
tori: this follows from Arnold-Liouville Theorem on integrable systems [4,
chapter 10, section 49] and can be also proved directly. This together with
analogous statements for the other integrals from (7.6) (proved similarly)
proves Statement 2).

As v = +1, one has o € {0, 5}, and the two 3-tori in the union in (7.15)
coincide, since in this case & = —a(mod Z). This proves Statement 3).

Statement 4) follows from Theorem 6.1 and Arnold-Liouville Theorem.

In the proof of Statement 5) we use the following obvious corollaries of
Theorem 5.3 on density of orbits in Sy = X N {hg = 0}. To state them, let
us introduce the following notations. For every 0y € R, p € R, set

My, p:=2N0{0 =0}y N{hs=p}={0} x M CS,=5"x M.

Recall.that for every 0 the fiber My, o is an invariant manifold for the flow,
since 6 = 0.
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Proposition 7.9 1) For every 6 with tan ¢ QU {oo} the flow on My is
minimal: each orbit is dense.

2) For every 6 as above and € > 0 there ezists a T =T, g > 0 such that
each finite orbit of the flow on Myg in times t € [0,T] is F-dense in Mgy:
this means that it intersects the §-neighborhood of each point in My .

Proof Theorem 5.3 immediately implies density, which in its turn together
with compactness implies Statement 2). O

Proposition 7.10 For every ¢ > 0 there exists a § > 0 such that for every
p € (0,9) each orbit of the restriction of the flow to S, is e-dense in Sp.

Proof Choose a finite collection of numbers 61, ...,0y € S = R/27Z with
tanf; ¢ QU {oo} that is §-dense on S'. There exists a T > 0 such that
for every j = 1,..., N each finite orbit of the flow on My, o is 7-dense in
My, 0. The vector fields defining the flows on Sy and S, with p € (0,9)
(both identified with the same product S} x M) are d-close to each other.
Therefore, as § is small enough (depending on € and T'), for every p € (0, 0)
the finite orbit of the flow on S, = S x M in times t € [0, T] starting at each
point (6;,z), x € M, has §-dense projection to M so that 0(t) € [0;,0; + §]
for every ¢t € [0,T]. Along each full orbit in S, the coordinate 6 takes all
values, including the above 6;’s. This together with the latter statement
implies that it is e-dense in S,. The proposition is proved. O

Let us now prove Statement 5). Let the restriction of the Hamiltonian
flow to ¥ have a non-constant analytic integral I. Let us show that [ is
constant on each level hypersurface S, = ¥ N {hs = p} of the function hs|s.
This will imply that I is a function of hs and prove Statement 5).

The function I, := I s, achieves its minimum on a compact invariant
set for the flow in S, = S! x M, which will be denoted by O, C S* x M
(compactness). For arbitrarily small € > 0 there exists a § > 0 such that for
every p € (0,8) the invariant set O, is e-dense in S! x M, since it consists
of full orbits and by Proposition 7.10. Thus, it accumulates to all of Sy, as
p — 0. One has dI, = 0 at all points in O, thus, at all points of an e-dense
subset accumulating to the whole hypersurface Sy C X. This implies that
I = const on Sy.

The manifold ¥ is identified with the product 5’5 X M x Ry,. Suppose
the contrary: there exists a p € R such that [ is non-constant along the
hypersurface S, = S U'x M x {p} € ¥. Then some its first order partial
derivative in local coordinates of the product S x M is not identically zero.
Let us denote the latter derivative by g. Fix a point y € Sg = S x M x {0}
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and consider the analytic extension of the function g to some its complex
neighborhood U = U(y) in the complexified manifold ¥. Then g # 0 on
U, by uniqueness of analytic extension and connectivity. On one hand, the
zero locus {g = 0} contains the sets O, x {p} C {dI, = 0}. The latter sets,
and hence, the intersections {g = 0} N {hs = p} accumulate to all of SyNU,
as do Oy,

On the other hand, the zero locus of a non-identically-zero analytic func-
tion g on U vanishing on Sy (where I = const) is the union of the intersection
SoNU and another complex hypersurface that is a closed subset in U inter-
secting the complexified hypersurface Sy by an analytic subset of complex
codimension two. This follows from basic analytic set theory, see [11], which
also implies that the latter codimension two analytic subset cannot contain
all of the real part of the intersection Sy N U. Thus, the set {g = 0} \ Sy
cannot accumulate to the real hypersurface Sy N U. The contradiction thus
obtained proves that I, = const for every p € R and finishes the proof of
Statement 5) and hence, Theorem 7.5.

8 Two-sided bounds of the Heisenberg
sub-Riemannian balls and distance

The sub-Riemannian sphere of radius R > 0 on the Heisenberg group G
centred at the origin go = Id is parameterized as follows [1, 20]:

si si 2p —sin 2
z=R"P cosT, y=R P sin 7, p= R2ELONED ;n p’
p p 8p

p € |-mmn|, T€R/(2rZ),

denote it as Si. Each sphere is a rotation surface around the z-axis, and
spheres of different radii are transferred one into another by dilations

ou(z,y, 2) = (kz, ky, k*2), k>0, (x,y,2)€@,
as follows:
0k(SRr) = Skr- (8.1)
The unit sphere S := 57 is a rotation surface around the z-axis of the curve
i 2p — sin 2
7“:%, z:%, p € [—m, 7], (8.2)

where r = y/x? + y2, see this curve in Fig. 17. The curve (8.2) intersects
the z-axis at the points (r,z) = (0,44 ). The unit sphere S is shown below
in coordinates (z,y, z) (Fig. 18) and in coordinates (a,b,c) (Fig. 19).
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Figure 17: Section of the Heisenberg unit sphere

Figure 18: Sphere S in coordi- Figure 19: Sphere S in coordi-
nates (z,y, z) nates (a, b, c)

Consider the following domains bounded by ellipses in the plane R?ﬂ’z:

er : rr4+16m%22 <1, (8.3)
ey r?+1222 < 1.

Lemma 8.1 The ellipse Oey passes through the points (r,z) = (1,0) and
(r,z) = (0,£4). The intersection e; N {r > 0} is contained inside the

curve (8.2), see Fig. 20. Moreover, the curves dey N {r > 0} and (8.2)
intersect only at the points (r,z) = (0,£4) and (r,2) = (1,0).

Proof First of all, it is obvious from (8.2) and (8.3) that the curves de;
and (8.2) intersect at the points (r,z) = (0,4+4) and (r, z) = (1,0).

Further, the ellipse de; is the zero level curve of the function fi(r,z) =
r?2+16722% — 1. Evaluation of this function on the curve (8.2) is the function
e1(p) = Sh;# +4”—;;(2p—sin 2p)?2—1. A standard calculus shows that ¢1(0) =
p1(£m) =0, and ¢1(p) > 0 for 0 < |p| < 7, see Fig. 22.

sin? s
Indeed, we have 1(p) = f1(p)+ f2(p) 1, f1(p) = 222, fo(p) = (20—

sin 2p)2. Notice that f}(p) = cos p(pcosp — sinp)(sin 2p — 2p).



If p € (w/2,7), then f5(p) < 0, thus fao(p) decreases. Since fao(m) = 1,
then fo(p) > 1, thus ¢pi(p) > 0 for p € (7/2, 7).
If p € (0,7/2), then fj(p) > 0, thus fo(p) increases. Since fao(m/6) =

324 (1 _ ¥8)" £ 1.08 > 1, then fo(p) > 1 and 1(p) > 0 6,7/2
= 5 ~ 1. , 2(p and ¢1(p) > 0 for p € [7/6,7/2].

In the proof below and in next lemmas we prove bounds of the form
g1(p) <0, g1(0) = 0, by comparing g;(p) with appropriate and more simple
function g2 (p), such that (g1(p)/g2(p)) g3(p) > 0. We described this method
and called it “divide et impera” in [18].

We have the following equalities:

pcosp —sinp
80,1(]9) = p—5f3(p)a
f3(p) = 2(p* + 7% + 7% cos 2p) sinp — 4pm® cos p,

!/
falp) = <f3(p)> sin? p = 2p(1 + 27% — cos 2p) + w2 (sin4p — 4 sin 2p),
sin p

< fa(p)

cos2p — 212 — 1

/
) (cos2p — 2m% — 1)% = 4 f5(p) sin® p,

f5(p) = =1 — 7% + (1 + 272 + 87%) cos 2p — 72 cos 4p,
f5(p) = 4cos psinpfo(p),
fo(p) = —1 — 212 — 87t + 4x? cos 2p.

One has fg(p) < —1 + 272 — 87% < 0 for all p, since cos2p < 1. Therefore
the restriction to the semi-interval (0,7 /6] of the function f5(p) decreases,
and hence, achieves its minimum at p = /6. Its value there is equal to

—1— 7% + (1 + 2% + 8% /2 + 72 /2 = —1/2 — 5.57% + 47* > 0.
Therefore, f5(p) > 0 on the above semi-interval. Hence, the function

fa(p)

falp) = cos2p — 212 — 1

increases there and thus, achieves there its minimum at p = 0. But ]A‘;;(O) =
f4(0) = 0. Therefore, f4(p) > 0, hence f4(p) < 0 for p € (0,7/6]. Thus, the
function

i f3(p)

f3(p) ===+~

sin p
decreases on the same semi-interval. Hence, it achieves its supremum there
at p = 0. But f3(0) = 0. Therefore, f3(p) < 0, hence f3(p) < 0 on the
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semi-interval (0,7/6]. Thus, ¢; increases there, by the above formula for its
derivative and since pcosp—sinp < 0, i.e., p < tanp, whenever p € (0,7/2).
But ¢1(0) = 0. Hence, ¢1 > 0 there.

Summing up, if p € (0,7) then ¢i(p) > 0. Since p1(p) is even, this
inequality holds for 0 < |p| < 7. O

Figure 20: Ellipse Oe; inside of Figure 21: Ellipse Jes outside of
section of sphere S section of sphere S

Figure 22: Plot of ¢1(p) Figure 23: Plot of y2(p)

Remark 8.2 The ellipse Oe; is the only ellipse in the plane (7, z), symmetric
with respect to the z-axis, with the properties given in Lemma 8.1.

Lemma 8.3 The curve Oeg is tangent to the curve (8.2) with contact of or-
der 4. The intersection deaN{r > 0} is contained outside of the curve (8.2),
see Fig. 21. Moreover, the curves dea N {r > 0} and (8.2) intersect only at
the point (r,z) = (1,0).

Proof The first statement is obtained by explicit differentiation. Indeed,
for the ellipse ey we have r = V1 — 1222 = 1 — 622 + O(z*), z — 0. And
for the curve (8.2) we have r(0) = 1, 2(0) = 0. In a neighbourhood of the
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point (r,z) = (1,0), the curves in question are graphs of even functions r(z).
Thus, it is sufficient to prove coincidence of their second derivatives at z = 0.
One has

dr dr/dp 2
dz dz/dp  cosp’

d(__2p
d*r _ i (—osp) _ 4p3(1 + ptanp) 12 poo,
dz? dz/dp cos3 p(p — tanp)

thus r = 1 — 622 + O(2*%), z — 0.

The second statement follows since the function 72 + 1222 — 1 whose zero
level curve is the ellipse Oes, when restricted to the curve (8.2), gives the
function p9(p) = Si;zp 4 3@ Ig;i 20 _ 1. A standard calculus shows that
wa(p) < 0 for 0 < |p| <, see Fig. 23.

Indeed, we have ¢s(p) = fi(p) + fo(p) — 1, filp) = 252, fo(p) =
3(2p—sin 2p)2

T6p7 . Further,
f3(p) = (16ppa(p)) = 40p — 64p® — 40p cos 2p + 4(4p® — 3) sin 2p + 6sin 4p,
f1(p) = fi(p) = 8(5 — 24p* + 4(p* — 2) cos 2p + 3 cos 4p + 14psin 2p),
f5(p) = f1(p) = —16(—18pcos 2p + (4p® — 15) sin 2p + 6(4p + sin 4p)),
fo(p) = fi(p) = —64(6 + 2(p* — 6) cos 2p + 6 cos 4p + 11psin 2p),
fr(p) = ( f6(];) ) cos? 2p = 32(—48p — 4p cos 4dp 4 12sin 2p — 11 sin4p + 12sin 6p),
cos 2p

S
fs(p) = fi(p) = 512f9(p) fro(p),
fo(p) = sinp — sin 3p, fio(p) = —2pcosp + 3sinp + 9sin 3p,

/
fii(p) = <f10( >> cos?p =2+ 17cos2p + 9 cos 4p.
cos p

Let p € (0, 5], then fi1(p) > 0, thus fw(p) = ]2278(? increases. Since
flo(O) =0, then flo(p) > 0, so fl()(p) > 0.

Let p € (5,%). Then —2pcosp > —Fcos§ ~ —1.11 > —2, 3sinp >
3sing ~ 1.15 > 1, 9sin3p > QSin‘%’r ~ 6.36 > 6, thus fio(p) > —2+14+6 >
0.

Now let p € (0,7/4), we have proved that fi9(p) > 0. Since fy(p) <
0, then fs(p) < 0, thus f7(p) decreases. Since f7(0) = 0, then fr(p) <
0, thus fs(p) = gss(g) decreases. Since fg(0) = 0 then f(p) < 0, thus
fe(p) < 0. Thus f5( fdecreases and since f5(0) = 0 then f5(p) < 0. Thus
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fa(p) decreases, and since f4(0) = 0 then f4(p) < 0. Thus f3(p) decreases,
and since f3(0) = 0 then f3(p) < 0. Thus p*pa2(p) decreases, and since
lim,—0 pip2(p) = 0 then p2(p) < 0 for p € (0,7/4].

If p € (7/4,37/8), then —48p < —127 < —37.6, |[4pcosdp| < 37/2 <
4.72, |12sin6p| < 12. One has |12sin2p — 11sindp| < 20.3, since this is
true at the endpoints p = 7/4,37/8 and at the extremum point of the
function under modulus in the interval in question. Indeed, its derivative in
x = 2p € (7/2,37/4) is equal to 12cosx — 22cos 2z = 12u — 22(2u? — 1),
u = cosz. The latter derivative vanishes, if and only if 22u? — 6u — 11 = 0.
Solving the latter quadratic equation in negative u = cos z (which is indeed
negative in the given interval) yields

3—v251
U= COST = o —0.58377, sinx = /1 — u? ~ v0.65921 ~ 0.811,

|12sin2p — 11sin4p| = 2sinx(6 — 11 cosx) ~ 20.169 < 20.3.

Thus, £28) < —37.6 + 4.72 + 203 + 12 < 0. If p € [37/8,7/2), then
—48p < —50, —4pcosdp < 0, |[12sin2p — 11sindp + 12sin6p| < 35, thus
) < 50435 < 0.
Thus for p € (7/4,7/2) we have f7(p) < 0, so repeating the argument
used two paragraphs above we get f;(p) < 0fori = 3,...,6, hence ps(p) < 0.
Finally, if p € [7/2,7), then fi(p) < % < 3. Since

3
f3(p) = = cos p(pcosp — sinp)(p — cospsinp) < 0,
p

then fo(p) decreases, and since fo(5) = % ~ 0.3 then fy(p) < 3. Thus
pa(p) < 0.

If p =7 then pa(p) = 317%?2 < 0.

We proved that ¢a2(p) < 0 for p € (0,7]. Since w2(p) is even, this
inequality holds for 0 < |p| < 7. O

Remark 8.4 The ellipse des is the smallest ellipse in the plane (r, z) among
ellipses symmetric with respect to the z-axis, tangent to the curve (8.2) at
the point (7, z) = (1,0) and encircling this curve.

Consider the projection

P:R3 ~—{(rz) cR*|r>0},

z7y)z

P(:):,y,z):(T,z):(vx2+y2,z)
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and the corresponding ellipsoids E; = P~1(e;), i = 1,2. Lemmas 8.1 and 8.3
plus equality (8.1) imply obviously the following two-sided ellipsoidal bounds
of sub-Riemannian balls

Br:={g€ G|d(ld,g) < R}
on the Heisenberg group.
Corollary 8.5 For any R > 0 we have
0r(E1) C Br C 0g(Es9). (8.5)

Remark 8.6 Estimates (8.5) are sharp in the sense that the ellipsoids
0r(E1) and dr(Es2) are tangent to the sub-Riemannian ball Bp at its points
in the plane {z = 0}. Moreover, the ellipsoid dr(E;) intersects the sub-
Riemannian ball Bg at its points in the line {x = y = 0}, see Figs. 20,
21.

Remark 8.7 In order to estimate precision of bounds (8.5), take the Eu-
clidean volume V = dx A dy A dz (in fact, Popp’s volume [1]). Then

sinzx

V(Er) = i <V(B1) = 1 (1—1—271'/027r

12 d:c) ~ 0.83

x

< V(EQ) = 1.

s
—=~0.9
2v/3

The above integral formula for the volume V' (B;) was proved in [17], P. 587.

Corollary 8.8 Let g = (x,y,2) € G, and let r = \/x% + y%. Then

=:d(g).
(8.6)

Z 2 2 Vi F 647222 2 B
d(g) :_\/\/7’ —|—4282 +r Sd(Id,g)g\/ T +642772 +7r

Proof Since the statement holds trivially for ¢ = Id = (0,0,0), we can
assume that g # Id, then R := d(Id,g) > 0. Denote ¢’ = 6%(9), then
d(Id,¢") = 1, and inclusions (8.5) imply that the functions fi(x,y,2) =
r?2 4167222 and fo(x,y,2) = r2+122%, r = \/22 + 2, satisfy the inequalities

z

W) =1 (G g g2) 2 1= 0490 2 1o (0 o z) = Fol9).

R’ R R?
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Thus 25 + 167224 > 1> 2 + 1227, ie.

- R2 R )
1
16722202 + r?a > 1 > 122202 + ra, o= o (8.7)
The second inequality in (8.7) solves to 0 < o < g := m, whence
R > \/%—2 = 7%&2'”2, which gives the first inequality in (8.6). Simi-
larly, the first inequality in (8.7) solves to a > «a; = W, whence

R< L = —”4+642”222+"2, which gives the second inequality in (8.6). O

ST

Remark 8.9 Estimates (8.6) are functional expressions of bounds (8.5):
{9€Gld(g) <R} =0r(E2), {g€G|dlg) <R} =0r(En)

Remark 8.10 Estimates (8.6) are sharp in the following sense:

(1) in the case z = 0 these inequalities turn into equalities,

(2) in the case r = 0 the second inequality turns into equality correspond-
ing to ej.

In the case rz # 0 the both inequalities (8.6) are strict.

The second inclusion in (8.5) obviously implies the following inclusions.

Corollary 8.11 For any R > 0 we have

BRC{gz(:r’y,Z)GG\ \/w2+y2§R},

R2
Brc {g=<x,y,z>ea| ¥ gm},

or, which is equivalent,

d(Id, g) > /22 + 32, (8.8)

d(1d, g) > V1222. (8.9)

Notice that inequalities (8.8), (8.9) follow also from the first inequality
in (8.6).
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9 Bounds of cut time via lower bounds
of sub-Riemannian balls

Fix a point ¢y = g € M. Denote the ball B; = {¢ € M | d'(q0,q) < t},
t > 0, where d’ is the sub-Riemannian distance on M. Denote also

t=1inf{t > 0| By = M}.

The following lemmas show the relevance of the number ¢ for the sub-
Riemannian manifold M.

Lemma 9.1 We have the following:
(1) t =sup{d'(qo,q1) | @ € M}.
(2) t =sup{teut(q(:)) | ¢(-) € M a geodesic s.t. q(0) = qo}.

Proof (1) Denote t; = sup{d'(qo,q1) | 1 € M} and assume by contradic-
tion that ¢ # 1.

Let t; < t. Then for every ¢t € (t1,t) and every ¢ € M we have
d'(qo,q1) < t, i.e., ¢ € Bj. Since t < t, this contradicts to definition
of t.

Let t; > t. Then for every t € (¢,t1) there exists ¢ € M such that
d'(qo,q1) > t, i.e., ¢ ¢ Bj. Since t > t, this contradicts to definition of ¢

once more.

(2) Denote to = sup{teut(q(:)) | ¢() C M a geodesic s.t. q(0) = go} and
assume by contradiction that ¢ # ts.

Let to < t, take any t € (to,t). Then B; # M, thus there exists a point
@1 € M such that d'(qo,q1) > t. Take a sub-Riemannian length minimizer
q(-) connecting go and g;. We have tcu(q(-)) > t > t2, which contradicts the
definition of ts.

Let t < t9, take any t € (¢,t2). We have B] = M, thus for every ¢1 € M
one has the inequality d’'(go,q1) < t. Then for every geodesic ¢(-) C M
starting at qo we have teu(q(+)) < t < to, which contradicts the definition
of to. O

Remark 9.2 Consider the diameter of the sub-Riemannian manifold M:

diam(M) = sup{d'(q1,q2) | 91,2 € M}.

By the triangle inequality, we have a bound diam (M) < 2¢.
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Theorem 9.3 We have £ < t. := ;\/; (14 VI+102472) ~ 3.56.

Proof We show that B; = M. By Corollary 8.5, we have By, D &, (E1) =:
Fy4,, where the ellipsoid Fy;, C G is defined by the inequality %—l— 16%2 2 <1,
Thus B;, D EY, :=n(E,). We show that Ej, = M.

The homogeneous space M can be represented by a fundamental domain
D = {(a,b,c) € G| 0 < a,b,c < 1}, so that m(D) = M. We have D C
U?ZlKi, where the cubes K; are defined as follows:

K1:0§a,b,c§%, Ko Oga,cgégbgl,
K3:0§a§%§b,c§1, Ky O<a,b§%§c§1,
Ks Ogb,cgégagl, K 0§c§%§a,b§1,
K7:%§a,b,c§1, ngogbgéga,c<1

We show that E}, D w(K;),i=1,...,8, which implies that E{, = M. To
this end we define the following points g; € H in the coordinates (a,b,c):
g1 = (070)0)7 g2 = (07170)7 g3 = (071)1)5 g4 = (07071)7 gs = (17070); gde =

(1,1,0), g7 = (1,1,1), gs = (1,0,1), and prove that Ey;, O K; := g; 'K,
i=1,...,8.

Let L C R"™ be a convex compact set. We call a continuous function
f : L = R quasiconvez if maxy, f = maxgy, f. Since a convex function on a
convex compact set attains maximum at points of the boundary of this set or
at all points of this set, then a convex function on such a set is quasiconvex.

Now let II C R? be a parallelepiped whose all faces and edges are par-
allel to coordinate planes and axes, and let dimIl € {1,2,3}, i.e., Il is a
3D parallelepiped, a 2D rectangle, or a 1D segment. Let us study quasi-
convexity of the function f;(a,b, c) = t?(a® + b?) 4 47%(2c — ab)? — t* whose
zero level is the ellipsoid 0E1, t > 0. We have % = 2t%a — 872b(2c — ab),
% = 2t2b—87%a(2c —ab), % = 1672 (2c—ab), thus f; has only one critical
point (a,b,c) = (0,0,0), which is the minimum point. Thus if dimIl = 3
then fi|; is quasiconvex.

If IT C {a = const} or Il C {b = const}, then fi| is convex, thus it
is quasiconvex. Thus if dimIT = 3 and the restriction of f; to faces of II
parallel to the plane {¢ = 0} is quasiconvex, then fi|; attains maximum at
vertices of II.

1) We prove that Fj;, > K; = Kj. Since % .- 2a(472b? + 12),
c=
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which is nonnegative and vanishes only for a = 0, then the function
feol g, n {c=0} increases in a, thus fi|p,n {c=0} IS quasiconvex.

We have p := (aaf;* + BgZ*) P = 2(a + b)(t2 — 4(1 — ab)n?).

Since in K7 we have ab < % <1- % =~ 0.68, then p is nonpositive and
vanishes only at (a,b) = (0,0), then f, | ~.—1/9) is quasiconvex.

Thus fi, |, attains maximum at vertices of K1. We have f;,(0,0,0) ~
—161, f;,(0,0,1/2) ~ —122, f,,(0,1/2,0) = f;.(1/2,0,0) ~ —158,
£.(0,1/2,1/2) = £,.(1/2,0,1/2) ~ —118, f,.(1/2,1/2,0) ~ —152,
f1.(1/2,1/2,1/2) ~ —133, whence fi, |, <0, thus Ey,, D K1 = Ki.

2) We prove that Ey;, D f(g = g;lKg. Notice that for any elements
(a, B8,7), (a,b,¢c) of G

(a7677)_1 '(a7bvc) - (a—a,b—ﬁ,c—fy+a(ﬂ—b)).

Thus Ko = {a,c € [0,1/2], b € [-1/2,0]}. By the argument of item 1), the
function f;, Ran{e=0} increases in a, thus f| Ran{e=0} is quasiconvex.

af
‘We have 8—;

N = 8b(ab— 1)72 + 2at?, which is nonnegative and
Kon{c=1/2}

vanishes only for a = b = 0, thus f| Ran{e=1/2} is quasiconvex.

So fi.|j, attains maximum at vertices of Kj. In item 1) we showed that
ft. < 0 at vertices of the square [0,1/2], x {b = 0} x [0,1/2].. Further, we
have f,, (0,—1/2,0) ~ —158, f,.(0,—1/2,1/2) ~ —118, f,.(1/2,—1/2,0) ~
—152, f,.(1/2,-1/2,1/2) ~ —93, then f; |z <0, thus Ey, D Ko.

3) We prove that Ey;, D K3 = g3 ' K3 = {a €[0,1/2], b,c € [~1/2,0]}.
Consider the involution i : (a,b,c) — (a,—b, —c). Then i(K;) = K3 and
frot = fi, thus fi [, <0 since fi, oz'|1~(1 = f.lg, <0. Thus Eyg, D K.

4) We prove that By, D Ky = g; 'K4 = {a,b € [0,1/2], ¢ € [-1/2,0]}.
Consider the involution i : (a,b,¢) — (a,—b, —c). Then i(K) = K4 and
froi= fi, thus fi |z, <0 by virtue of fi [z <0 similarly to item 3).

5) We prove that Ey;, D K5 = gg1K5. We have K5 C K5 = {a €

[~1/2,0], b€ [0,1/2], c € [~1/2,1/2]}. Notice that %Lt T 2a(t? +
472b%) + 872b =0 only if a = @ := _ﬁ%’ and

O fr. _2bt2(16mt (bt — 1) + 8b w22 + t1)

Ob o=z, bef0,1/2], c=—1/2 (46?72 4 12)2 7

which is nonpositive (since the quartic polynomial in brackets in numerator
is negative for b € [0,1/2]) and vanishes only for b = 0. Thus f;, |f<5m{c=—1/2}
has no interior critical points, so this function is quasiconvex.
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We have % = 2a(t? + 47%b%) — 87%b = 0 only if a = @ :=

Asm{0:1/2} 2 414 2,212 4
2 2bt2 (167 (b1 -1 A
AT and 2fe = 2EUOT b DTt which is
t2+4m=b Ob Ja=a, be[0,1/2], c=1/2 (4b*m=+£5)

nonpositive and vanishes only for b = 0 by the previous paragraph. Thus
ft. Rsnfe=1/2} has no interior critical points, so this function is quasiconvex.

So ft.|, attains maximum at vertices of K. Since f, (—1/2,0,-1/2) =
Fi(=1/2,0,1/2) = £1.(1/2,0,1/2) = £.(0,1/2,1/2) = fi.(0,1/2,-1/2) ~
—118, f,.(—1/2,1/2,—-1/2) = f,.(1/2,1/2,1/2) ~ —133, f;,(—1/2,1/2,1/2) =
£ (1/2,-1/2,1/2) ~ —93, £,.(0,0,—1/2) = £,.(0,0,1/2) ~ —121, see items
1)-3) above, then f;, [z <0, thus fi, |z <0, and Ey, D Ks.

6) We prove that Ey, D K¢ = gﬁ_lKﬁ. We have K¢ C Kg = {a,b €

[—1/2,0], ¢ € [0,1]}. Since %‘f( = 2a(4b?72 + t2), which is nonpos-
60{0—0}

itive and vanishes only for a = 0, then f;

We have § := (%_,_%))

| ko {c=0} 1§ quasiconvex.

=2 2 _ 4 2 9 _ G
Ken{c=1} (a+0)(t (2 — ab)). Since

2
;ﬁ ~ 0.32 < Z < 2 — ab, then § is nonnegative and vanishes only for
a=>b=0. Thus fi Renfe=1} is quasiconvex. So f, &, attains maximum at

vertices of Kg.
Since fi,(—1/2,—-1/2,0) = f.(1/2,1/2,0) ~ —152, see item 1),
fr.(=1/2,-1/2,1) = —34,

Fo(=1/2,0,0) = f.(0,—1/2,0) ~ —158, see item 1), fy.(—1/2,0,1) =
f1.(0,=1/2,1) = 0, f,.(0,0,0) ~ —161, see item 1), f,,(0,0,1) ~ —3, then
fr.lgs <0, thus fi,|z6 <0, and Eyy, O K.

7) We prove that Ey, D K7 = g;1K7. We have K7 C K7 = {a,b €
[—1/2,0], ¢ € [-1/2,1/2]}. Consider the involutions : (a,b,c) — (a,—b, —c).
Then Z(K5) = K7 and f; 04 = f;. Since felgs <0, then fi |zr <0, and
Fyu, D R}.

8) Finally, we prove that Fq;, D Ky = gglKg. We have Kg C Ky = {a €
[—1/2,0], b€ [0,1/2], ¢ € [-1,0]}. Consider the involution i : (a,b,c) —
(a,—b,—c). Then i(Kg) = Kg and f; 07 = f;. Since Jt.lge < 0, then
ft*‘f(g <0, and Eyn, D f{g.

Summing up, we proved that Fy;, D U?Zlgi_lKi. Thus

EY,, DU m(g; (K;)) D (D) = M,

so the required inclusion Bj = M follows. O

We plot a union of sub-Riemannian balls By, (h) for some h € H covering
the fundamental domain D in Fig. 24.
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Figure 24: Union of sub-Riemannian Heisenberg balls
By (h) covering the fundamental domain D

Now we provide a lower bound of the number t. Denote the points
g=(a,b,¢),§=(a,b¢) €Gsuchthata=b=c=3anda=1b=¢=0.

Theorem 9.4 We have t > d(g, 7).

Proof By left-invariance of the metric d, for any ¢1,92 € G we have

d(g1,92) = d(1d,90), go = g7 'g2. The distance d(Id, o), go = (2,y,2),
is computed explicitly [20]: if (z,y) # (0,0) then

p
d(Id, go) = sinpV x? 432, (9.1)

2p —sin2p |z
8sin?p %+ y?’

and if (z,y) = (0,0) then d(Id, gg) = 2+/7|z|.

Now we show that d(g,g) < 1. We have d(g,g) = d(Id, g), where g =
G5 = (z,y,2) = (—1/2,1/2,1/8). The function (p) := 21;——;151’ that
appears in (9.2) increases as p € (0,7) from 0 to +oo. Indeed, changing p
to u = 2p, we get

dip

4(1 — cosu)Qd— = (1 —cosu)? — (u—sinu)sinu = 2(1 — cosu) — usinu
u

p € [0, 7], (9.2)
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= 4sinp(sinp — pcosp) >0 for p e (0,).
Since 1(1.25) &~ 0.26 then ¢(1.25) > 1. Let p. € (0,7) be the root of the

equation (ps) = % = z;ﬂy, Then p, = 1[1_1(%) < 1.25, thus by equalities
(9.1), (9.2)
1\? /1\* 125 1
d1d, 57g) = -2/ = ) o« ~093< 1
(1d,979) = G <2> * <2> BT IR R

Here we use increasing of the function

smp in p € (0,7). Indeed, its deriva-
tive multiplied by sin?p is equal to sinp — pcosp > 0. So d(g,9) < 1.

Take any number ¢ € (0,d(j,g)). We show that B # M. To this end
we show that 7(g) ¢ Bj, i.e., that g ¢ HDB;.

We take any h = (a b,c) € H and show that g ¢ hB;. The following
cases are possible:

1)0<a,bc<1,

2)(a<-=1) VvV (a>2) VvV (b<-1)

3) (0<a,b<1) AN ((c<-1) V (c>

1) Let 0 < a,b,c < 1.

1.1) Let h = (0,0,0) in coordinates a, b, ¢, we denote this as h = (0,0, 0) gpe-
Then go = h'g = g = (1/2,1/2,1/2)ape = (1/2,1/2,3/8)4,2, ic., the
point g has coordinates (z,y,z) = (1/2,1/2,3/8). Thus by Corollary 8.8
d(Id, go) > d(g0) = /3 (3 +V7) = 1.25 > 1 > d(j,9) > 1.

1.2) Let h = (0,0,1)ape. Then go = h™lg = (1/2,1/2,~1/2)ape =
(1/2,1/2,—5/8) 4y, thus by Corollary 8.8
d(Id, go) > d(g0) = /3 (3 + V19) ~ 1.56 > 1 > d(g,g) > L.

1.3) Let h = (0,1,0)ape.

Then go = h=1g = (1/2,-1/2,1/2)ape = (1/2,—1/2,5/8) 2y, thus by Corol-
lary 8.8
d(Id, go) > d(g0) = /5 (5 + V19) = 1.56 > 1 > d(g,9) > t.

1.4) Let h = (0,1,1)4pe. Then go = h7'g = (1/2,-1/2,-1/2)gpe =
(1/2,—-1/2,—-3/8)4y=, thus by Corollary 8.8
d(Id, go) > d(g0) = /3 (3 +V7) =~ 1.25 > 1 > d(j,g) > 1.

1.5) Let h = (1,0,0)4pc- Then h = g, thus d(h,g) = d(g,g) > .

1.6) Let h = (1,0,1)gpe. Then go = h~ 1g = (- /2 1/2, 1) gpe =
(—1/2,1/2,—7/8)4y=, thus by Corollary 8.8

d(Id, go) > d(go) = \/5 (5 + V37) = 1.81 > 1 > d(3,7) > 1.

v (b>2),
2)).
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1.7) Let h = (1,1,0)qpe. Then go = hlg = (=1/2,-1/2,1)qpe =
(—1/2,—-1/2,7/8)4y-, thus by Corollary 8.8
d(Id, go) > d(g0) = /3 (3 + V37) = 1.81 > 1 > d(§,9) > L.

1.8) Let h = (1,1,1)qp.. Then go = h7'g = (=1/2,-1/2,0)qpc =
(—1/2,-1/2,—-1/8)4y.. Consider the involution ¢ : (z,y,2) = (z, -y, —2),
then d(Id,i(g)) = d(Id, g). Sincei(go) = §~'g, then d(Id, go) = d(Id, 5 'g) >

v (b < -1) Vv (b>2). Since
a,% b, %), then by inequality (8.8)

d(h,mW;_a)x(;_b)z¢(;>Z(;>:@M_5&
Thus d(h, g) > ( ,9) >t

3) Let (0<a,b<1 ) A ((e<=1) VvV (c>2)). Wehave d(h,g) =
d(1d, go),

2)
1
2

—~

1 1 b b—
gozh192(370,?10,20):(2—&72— @3 a—0>.

If ¢ > 2, then |2z9| > %. And if ¢ < —1, then |z| > 3. In both cases inequal-

ity (8.9) implies that d(h, g) = d(Id, h~1g) > /1222 ol = VA > 1> 1.
20|=%g

Summing up, we proved that g ¢ H B;, and the statement of this theorem
follows. 0

Remark 9.5 Numerical computations on the basis of equalities (9.1), (9.2)
imply that d(g, g) € (0.91,0.92).

Remark 9.6 For comparison, consider the standard Euclidean metric on R?
and its quotient on the torus T2 = R3/Z3 (see Sec. 2). Then formula (2.2)

yields
sup{teus(q(-)) | ¢(*) geodesic on T3} = \ég ~ 0.87.

This value is essentially less than our bound ¢ < ¢, ~ 3.56 since in the
Heisenberg group the sub-Riemannian distance grows slowly near the origin
in the direction of the vector field X3, see Fig. 24 and estimates (8.6).
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10 Bounds of cut time via upper bounds
of sub-Riemannian balls

Recall that Bi(g) C G is the closed sub-Riemannian ball of radius ¢ > 0
centred at a point g € G, and By := By(Id). Denote

t=sup{t > 0| By(h1) N Bi(ha) =0 Yhy #hy € H}.
Since By(h;) = h; By, then
t=sup{t>0|B;NBy(h)=0 Yh#1de H}.

Recall that go = Id € G, and for an element g € G we denote its projection
to M as ¢’ :=7(g).

Lemma 10.1 If d(go,g1) < t for an element g1 € G, then d'(g),q,) =
d(g0, 91)-

Proof Let d(go, 1) < t. Notice that
d'(go, 91) = min{d(go, 51) | 7(g:) = g;} = d(Go, G1) (10.1)

for some g; € 7 1(g!). We have g; = h;g;, h; € H.

If ho = hi, then d'(g,91) = d(hogo, hogi) = d(go,91), and the claim
follows.

Let hg # hl. Then d(§0, @'1) = d(hogo, hlgl) ( hlgl) Moreover,
ho'higi € ho'hiBy = By(hy'hy), t = d(go,q1) < Slnce hy'hy # 1d,
then B; N By(hy'h1) = 0, thus hg'higr ¢ By So d(go, by 'hig1) > t, i.e.,
d(go, hy Yhig1) > d(go, g1), which contradicts to (10.1). Thus hg = hi, and
the claim follows by the previous paragraph. O

90,0
t.

Lemma 10.2 Let g(-) be a sub-Riemannian geodeszc in G starting at go =
Id such that teg(g(-)) > t. Then tew (g’ (1) > 1 as well.
) =

Proof Let tcut(g(-) t. Take any t € (0,). The geodesic g(- )\[
optimal, thus d(go,g(t)) =t < t. By Lemma 10 1 we have d'(go, !

Lemma 10.3 Let g(-) be a sub-Riemannian geodesic in G starting at go =
Id such that teut(g()) <t. Then tewt(g'(+)) = teut(g(+)).

45



Proof Let tey(g(-)) <t. Take any t € (0, teut(g(+))). The geodesic 904
is optimal, thus d(go, g(t)) = t < t. By Lemma 10.1 we have d'(g},¢'(t)) =
d(go, 9(t)) = t, i.e., the geodesic ¢'(-)| , is optimal, so teut(g'(+)) = t. Tak-
ing ¢ arbitrarily close to teut(g(+)), we get teut(9'(+)) > teut(g(+)).

Take any 7 € (teut(9(+)),?). The geodesic 9(')‘[0;] is not optimal, so
d(go,9()) < 7, thus d(go, g(7)) < t. By Lemma 10.1 we have d' (g}, ¢' (1))
d(go, 9(7)) < 7, i.e., the geodesic g'(-)|jo 1 is not optimal. Thus teut(g'(+))

teut(9(+))-

o

Lemma 10.4 Let g(-) be a sub-Riemannian geodesic in G starting at gy =
Id. Then tewt(g'(+)) < teut(g(+)).

Proof By contradiction, assume that teu(¢'(1)) > teut(g(-)). Take any
t € (teut(9(")) teus(9'(+))). Then the geodesic ¢'()[jp4 is optimal, thus its

length is equal to ¢: [ <g’(-)\[07ﬂ> =t. Butl (g(-)|[07t]> =1 (g’(-)|[o’t]>, and

the geodesic g(+)[jp4 is not optimal, since ¢ > teut(g(-)). Therefore, there
exists another geodesic from ¢(0) to g(t) of length less than ¢. Its projection
to M is a geodesic connecting ¢'(0) and ¢'(¢) of the same length less than ¢.
Therefore, the geodesic ¢'(*)|(, is not optimal, while ¢ < tcu(g'(-)). The
contradiction thus obtained proves the lemma. O

Summing up, we have the following bounds of the cut time in M.

Corollary 10.5 Let g(-) be a sub-Riemannian geodesic in G starting at
go = Id. Then the following bounds hold:

(1) tent(9'()) < teut(g(-))-
(2) If tew(g(-)) 2 £, then < teue(9/ () < teur(9(-))-
(3) If teut(9(-)) <7, then teut(g'(-)) = teut(9(-))-
Remark 10.6 Corollary 10.5 holds in the general setting of Remark 4.1.

Now we compute the number .

Theorem 10.7 We have t = %

Proof In this proof we compute in coordinates (a,b,c). Denote the in-

tersection S% = By N By(h), h € H, ¢ > 0. Then S{{3 ) = {(+3,0,0)},
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= {(0,1%,0)}, and all the rest of the sets S}IL/2 are empty. Thus

S(lo/il,o) =
t<i.
Take any t € (0,3), then for any h € H \ {Id} we have d(Id, S}) > 3,
+3,0) are on

b)
t=1. O

We plot the balls By /5(h) C G for h € {(0,0,0),(£1,0,0),(0,+1,0)} in
Fig. 25, and the ball Bi/2 C M in Fig. 26.
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Figure 25: Sub-Riemannian balls By /5(h) C G touch-

ing one another

Remark 10.8 For the quotient of the Euclidean metric from R"™ to T"
R"/Z™ (see Sec. 2) we have t = 3 as well.

Theorem 10.9 We have
1
sup{t > 0| §;(E2) Nhé(Ey) =0 Vh #£1d € H} = 3

Proof Similarly to Theorem 10.7 since the ellipsoid d;(F3) is tangent to

the sub-Riemannian sphere By along the equator By N {z = 0}.
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Figure 26: Sub-Riemannian ball B} /2 C M touching
itself

Figure 27: Sets hd;/2(E2) touching one another
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We plot the sets hdyjp(E2) for h € {(0,0,0),(%1,0,0),(0,£1,0)} in
Fig. 27.

Remark 10.10 Let ¢(t) be a periodic sub-Riemannian geodesic in M of
period T. Then it is obvious that teu(g(*)) < % since ¢(7/2) is a Maxwell
point [19], i.e., an intersection point of two symmetric geodesics.

In a special case this bound turns into equality. Consider a geodesic ¢(t)
(;f the form (5.1) with § = 7%, n € Z. Then it is easy to see that tcut(q(-)) =
2

3+

11 Conclusion

This work seems to be the first study of a projection of a left-invariant sub-
Riemannian structure on a Lie group to a compact homogeneous space. It
reveals essential difference between the initial structure and its projection
despite their local isometry.

For example, dynamical behaviour of sub-Riemannian geodesics on the
Heisenberg group G is trivial: all geodesics tend to infinity. Dynamics of
sub-Riemannian geodesics on the Heisenberg 3D nil-manifold M includes
closed geodesics, dense in M geodesics, and geodesics dense in a 2D torus.

Further, optimality of sub-Riemannian geodesics in G is very well un-
derstood; the corresponding cut time arises due to continuous symmetries
of the sub-Riemannian structure on G. Description of optimality and cut
time on M is much delicate since there are no continuous symmetries; and
discrete symmetries which seem to generate the cut locus are hidden since
they do not respect the projection mapping « : G — M. Although, some
two-sided bounds of the cut time in M are possible due to two-sided bounds
of sub-Riemannian balls and distance in G, which may be of independent
interest.

Acknowledgement

The authors thank V.M. Buchstaber, I.A. Taimanov, and A.V. Podobryaev
for helpful discussions of certain aspects of this work.

49



References

[1] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to
sub-Riemannian Geometry from Hamiltonian viewpoint, Cambridge Stud-
ies in Advanced Mathematics, Cambridge Univ. Press, 2019

[2] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric view-
point, Springer, 2004.

[3] Arnold, V. I. Geometrical Methods in the Theory of Ordinary Dif-
ferential Equations. Second edition. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences|, 250.
Springer-Verlag, New York, 1988.

[4] Arnold V.I. Mathematical methods of classical mechanics. 2nd ed. Grad-
uate texts in mathematics, 60. Springer-Verlag, New York, 1989.

[5] Berestovskii, V.N., Zubareva, I.A. Shapes of Spheres of Special Non-
holonomic Left-Invariant Intrinsic Metrics on Some Lie Groups. Siberian
Mathematical Journal 42, 613-628 (2001)

[6] Berestovskii, V.N., Zubareva, I.A. Geodesics and shortest arcs of a spe-
cial sub-Riemannian metric on the Lie group SO(3). Sib Math J 56,
601-611 (2015).

[7] Berestovskii, V.N., Zubareva, I.A. Sub-Riemannian distance in the Lie
groups SU(2) and SO(3). Sib. Adv. Math. 26, 77-89 (2016).

[8] Bock, C. On low-dimensional solvmanifolds. Asian J. Math. 20 (2016),
No. 2, 199-262.

[9] U. Boscain, F. Rossi. “Invariant Carnot—Caratheodory metrics on S3,
SO(3), SL(2) and lens spaces”, SIAM J. Control Optim., 47 (2008), pp.
1851-1878

[10] D.Ch. Chang, I. Markina, A. Vasiliev, Sub-riemannian geodesics on the
3-sphere, Compl. anal. oper. theory, 3 (2009), 361-377.

[11] Chirka, E.M., Complezx analytic sets, Moscow, Nauka, 1985.

[12] Fomenko, A.; Fuchs, D. Homotopical topology. Second edition. Gradu-
ate Texts in Mathematics 273, Springer, 2016.

[13] Furstenberg, H. Strict Ergodicity and Transformation of the Torus.
Amer. J. Math. 83 (1961), No. 4, 573-601.

50



[14] Katok, A.; Hasselblatt, B. Introduction to the modern theory of dynam-
ical systems. Cambridge University Press, 1995.

[15] Katok, A.; Hasselblatt, B. A first course in dynamics. Cambridge Uni-
versity Press, 2003.

[16] R. Montgomery, A tour of subriemannnian geometries, their geodesics
and applications, Amer. Math. Soc., 2002

[17] E. F. Sachkova, Sub-Riemannian balls on the Heisenberg group: an
invariant volume, Journal of Mathematical Sciences, 199:5 (2014), 583—
587

[18] Yu.Sachkov, Conjugate Time in the Sub-Riemannian Problem on the
Cartan Group. J Dyn Control Syst 27, 709-751 (2021).

[19] Yu.Sachkov, Introduction to geometric control, Springer, 2022.

[20] Yu.Sachkov, Left-invariant optimal control problems on Lie groups:
classifications and problems integrable by elementary functions, Russian
math. surveys, 77:1 (463) (2022), 109-176

[21] Vinberg, E. B.; Gorbatsevich, V. V.; Shvartsman, O. V. Discrete sub-
groups of Lie groups. Current problems in mathematics. Fundamental
directions, Vol. 21 (Russian), 5-120, 215 Itogi Nauki i Tekhniki [Progress
in Science and Technology] Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i
Tekhn. Inform., Moscow, 1988

[22] Vershik, A.M., Gershkovich, V.Y. Nonholonomic problems and the the-
ory of distributions. Acta Appl Math 12, 181-209 (1988)

[23] Montgomery, R. Singular extremals on Lie groups, Math. Control Sig-
nals Systems, Mathematics of Control, Signals, and Systems, 7, 1994, 3,
217-234

o1



