E. Bekkers, R. Duits, A. Mashtakov, Yu. Sachkov. Vessel Tracking via Sub-Riemannian Geodesics on the Projective Line Bundle.

Авторы: E. Bekkers, R. Duits, A. Mashtakov, Yu. Sachkov
Название: Vessel Tracking via Sub-Riemannian Geodesics on the Projective Line Bundle
Аннотация:

We study a data-driven sub-Riemannian (SR) curve optimization model for connecting local orientations in orientation lifts of images. Our model lives on the projective line bundle R2 × P1, with P1 = S1/∼ with identification of antipodal points. It extends previous cortical models for contour perception on R2×P1 to the data-driven case. We provide a complete (mainly numerical) analysis of the dynamics of the 1st Maxwell-set with growing radii of SR-spheres, revealing the cut locus. Furthermore, a comparison of the cusp-surface in R2 × P1 to its counterpart in R2 ×S1 of a previous model, reveals a general and strong reduction of cusps in spatial projections of geodesics. Numerical solutions of the model are obtained by a single wavefront propagation method relying on a simple extension of existing anisotropic fast-marching or iterative morphological scale space methods. Experiments show that the projective line bundle structure greatly reduces the presence of cusps. Another advantage of including R2 ×P1 instead of R2 ×S1 in the wavefront propagation is reduction of computational time.

Образец цитирования: Bekkers E.J., Duits R., Mashtakov A., Sachkov Y. (2017) Vessel Tracking via Sub-Riemannian Geodesics on the Projective Line Bundle. In: Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science, vol 10589. Springer, Cham
Конференция: GSI 2017: Geometric Science of Information
Место:

Paris, France

Год: 2017
Страницы: 773-781
ArXiv ID: 1704.04192v1