Alexey Mashtakov, Extremal Controls for the Duits Car

Авторы: Alexey Mashtakov
Название: Extremal Controls for the Duits Car
Аннотация:

We study a time minimization problem for a model of a car that can move forward on a plane and turn in place. Trajectories of this system are used in image processing for the detection of salient lines. The problem is a modification of a well-known sub-Riemannian problem in the roto-translation group, where one of the controls is restricted to be non-negative. The problem is of interest in geometric control theory as a model example in which the set of admissible controls contains zero on the boundary. We apply a necessary optimality condition—Pontryagin maximum principle to obtain a Hamiltonian system for normal extremals. By analyzing the Hamiltonian system we show a technique to obtain a single explicit formula for extremal controls. We derive the extremal controls and express the extremal trajectories in quadratures.

Образец цитирования: Mashtakov A. (2021) Extremal Controls for the Duits Car. In: Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science, vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_9
Конференция: International Conference on Geometric Science of Information
Место:

Paris, France

Год: 2021
Страницы: 73-81
Файл: http://control.botik.ru/wp-content/files_mf/1628246635MashtakovGSI21.pdf