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5. Herding the Ox:

The boy is not to separate himself with his whip and tether,

Lest the animal should wander away into a world of de�lements;

When the ox is properly tended to, he will grow pure and docile;

Without a chain, nothing binding, he will by himself follow the oxherd.

Pu-ming, �The Ten Oxherding Pictures�
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Reminder: Plan of the previous lecture

1. Elements of symplectic geometry

2. Pontryagin maximum principle

3. Solution to examples of optimal control problems

4. Sub-Riemannian problems
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Plan of this lecture

1. Sub-Riemannian problems

2. The Lie algebra rank condition for SR problems

3. The Filippov theorem for SR problems

4. The Pontryagin maximum principle for SR problems

5. Optimality of SR extremal trajectories

6. A symmetry method for construction of optimal synthesis

7. The sub-Riemannian problem on the Heisenberg group.
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Sub-Riemannian structures and minimizers
• A sub-Riemannian structure on a smooth manifold M is a pair (∆, g), where

∆ = {∆q ⊂ TqM | q ∈ M}

is a distribution on M and

g = {gq inner product in ∆q | q ∈ M}

is an inner product (nondegenerate positive de�nite quadratic form) on ∆.
• The spaces ∆q and inner products gq depend smoothly on q ∈ M, and

dim∆q ≡ const.
• A curve q ∈ Lip([0, t1],M) is called horizontal (admissible) if

q̇(t) ∈ ∆q(t) for almost all t ∈ [0, t1].

• The sub-Riemannian length of a horizontal curve q(·) is de�ned as

l(q(·)) =
∫ t1

0

√
g(q̇, q̇) dt.
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Sub-Riemannian structures and minimizers
• The sub-Riemannian (Carnot�Carath�eodory) distance between points q0, q1 ∈ M is

d(q0, q1) = inf{l(q(·)) | q(·) horizontal, q(0) = q0, q(t1) = q1}.
• A horizontal curve q(·) is called a sub-Riemannian length minimizer if

l(q(·)) = d(q(0), q(t1)).

• Thus length minimizers are solutions to a sub-Riemannian optimal control problem:

q̇(t) ∈ ∆q(t),

q(0) = q0, q(t1) = q1,

l(q(·)) → min .

• Suppose that a sub-Riemannian structure (∆, g) has a global orthonormal frame

f1, . . . , fk ∈ Vec(M):

∆q = span(f1(q), . . . , fk(q)), q ∈ M, g(fi , fj) = δij , i , j = 1, . . . , k .
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Sub-Riemannian structures and minimizers
• Then the optimal control problem for sub-Riemannian minimizers takes the

standard form:

q̇ =
k∑

i=1

ui fi (q), q ∈ M, u = (u1, . . . , uk) ∈ Rk , (1)

q(0) = q0, q(t1) = q1, (2)

l =

∫ t1

0

(
k∑

i=1

u2i

)1/2

dt → min . (3)

• The sub-Riemannian length does not depend on parametrization of a horizontal

curve q(t). Namely, if

q̃(s) = q(t(s)), t( · ) ∈ Lip([0, s1], [0, t1]), t ′(s) > 0,

is a reparametrization of a curve q(t), then l(q̃( · )) = l(q( · )).
7 / 40



Sub-Riemannian structures and minimizers

• Along with the length functional, it is convenient to consider the energy functional

J(q(·)) = 1

2

∫ t1

0

g(q̇, q̇) dt.

• Denote ∥q̇∥ =
√
g(q̇, q̇).
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Sub-Riemannian structures and minimizers

Lemma
Let the terminal time t1 be �xed. Then minimizers of energy are exactly length

minimizers of constant velocity:

J(q( · )) → min ⇔ l(q( · )) → min, ∥q̇∥ = const .

Proof.
By the Cauchy�Schwarz inequality,

(l(q( · )))2 =
(∫ t1

0

∥q̇∥ · 1 dt
)2

≤
∫ t1

0

∥q̇∥2 dt ·
∫ t1

0

12 dt = 2J(q( · )) t1,

moreover, equality is attained here only for ∥q̇∥ = const.
It is obvious that on constant velocity curves the problems l → min and J → min are

equivalent. And for ∥q̇∥ ≠ const we have l < 2t1J, i.e., J does not attain minimum.
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Sub-Riemannian optimal control problem

q̇ =
k∑

i=1

ui fi (q), q ∈ M, u = (u1, . . . , uk) ∈ Rk ,

q(0) = q0, q(t1) = q1,

l =

∫ t1

0

(
k∑

i=1

u2i

)1/2

dt → min,

or, which is equivalent,

J =

∫ t1

0

k∑
i=1

u2i dt → min .
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The Lie algebra rank condition for SR problems

• The system F =
{∑k

i=1 ui fi | ui ∈ R
}
is symmetric, thus Aq = Oq for any

q ∈ M.

• Assume that M and F are real-analytic, and M is connected.

• Then for any point q0 ∈ M, by Lie algebra rank condition,

Aq0 = M ⇔ Oq0 = M

⇔ Lieq(F ) = Lieq(f1, . . . , fk) = TqM ∀q ∈ M.
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The Filippov theorem for SR problems

• We can equivalently rewrite the optimal control problem for SR minimizers as the

following time-optimal problem:

q̇ =
k∑

i=1

ui fi (q),
k∑

i=1

u2i ≤ 1, q ∈ M,

q(0) = q0, q(t1) = q1,

t1 → min .

• Let us check hypotheses of the Filippov theorem for this problem.

• The set of control parameters U = {u ∈ Rk |
∑k

i=1 u
2
i ≤ 1} is compact, and the

sets of admissible velocities
{∑k

i=1 ui fi (q) | u ∈ U
}
⊂ TqM are convex.

• If we prove an a priori estimate for the attainable sets Aq0(≤ t1), then the Filippov

theorem guarantees existence of length minimizers.
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The Pontryagin maximum principle for SR problems
• Introduce the linear on �bers of T ∗M Hamiltonians hi (λ) = ⟨λ, fi ⟩, i = 1, . . . , k .
Then the Hamiltonian of PMP for SR problem takes the form

hνu(λ) =
k∑

i=1

uihi (λ) +
ν

2

k∑
i=1

u2i .

• The normal case: Let ν = −1.

• The maximality condition
∑k

i=1 uihi −
1
2

∑k
i=1 u

2
i → max

ui∈R
yields ui = hi , then the

Hamiltonian takes the form

h−1
u (λ) =

1

2

k∑
i=1

h2i (λ) =: H(λ).

• The function H(λ) is called the normal maximized Hamiltonian. Since it is

smooth, in the normal case extremals satisfy the Hamiltonian system λ̇ = H⃗(λ).
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The abnormal case
• Let ν = 0.

• The maximality condition
k∑

i=1

uihi → max
ui∈R

implies that hi (λt) ≡ 0, i = 1, . . . , k .

• Thus abnormal extremals satisfy the conditions:

λ̇t =
k∑

i=1

ui (t)h⃗i (λt),

h1(λt) = · · · = hk(λt) ≡ 0.

• Normal length minimizers are projections of solutions to the smooth Hamiltonian

system λ̇ = H⃗(λ), thus they are smooth. An important open question of

sub-Riemannian geometry is whether abnormal length minimizers are smooth.
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Optimality of SR extremal trajectories

A horizontal curve q(t) is called a SR geodesic if g(q̇, q̇) ≡ const and short arcs of q(t)
are optimal.

Theorem (Legendre)

Normal extremal trajectories are SR geodesics.
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Example: Geodesics on S2

• Consider the standard sphere S2 ⊂ R3 with the Riemannian metric induced by the

Euclidean metric of R3.

• Geodesics starting from the North pole N ∈ S2 are great circles at the sphere

passing through N (meridians). Such geodesics are optimal up to the South pole

S ∈ S2.

• Variation of geodesics passing through N yields the �xed point S , thus S is a

conjugate point to N.

• On the other hand, S is the intersection point of di�erent geodesics of the same

length starting at N, thus S is a Maxwell point.

• In this example, a conjugate point coincides with a Maxwell point due to the

one-parameter group of symmetries (rotations of S2 around the line NS ⊂ R3). In

order to distinguish these points, one should destroy the rotational symmetry as in

the following example.
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Example: Geodesics on an ellipsoid

• Consider a three-axes ellipsoid with the Riemannian metric induced by the

Euclidean metric of the ambient R3.

• Construct the family of geodesics on the ellipsoid starting from a vertex N, and let

us look at this family from the opposite vertex S .

• The family of geodesics has an envelope � an astroid centred at S . Each point of

the astroid is a conjugate point. At such points the geodesics lose their local

optimality.

• On the other hand, there is a segment joining a pair of opposite vertices of the

astroid, where pairs of geodesics of the same length meet one another. This

segment (except its endpoints) consists of Maxwell points. At such points

geodesics on the ellipsoid lose their global optimality.
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Sub-Riemannian exponential mapping

• Consider the normal Hamiltonian system of PMP λ̇t = H⃗(λt).

• The Hamiltonian H is an integral of this system. We can assume that H(λt) ≡ 1
2 ,

this corresponds to the arclength parametrization of normal geodesics: ∥q̇(t)∥ ≡ 1.

• Denote the cylinder C = T ∗
q0M ∩ {H = 1

2} and de�ne the sub-Riemannian

exponential mapping

Exp : C × R+ → M,

Exp(λ0, t) = π ◦ etH⃗(λ0) = q(t).
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Conjugate points

• A point Exp(λ0, t1) is called a conjugate point along the geodesic

q(t) = Exp(λ0, t) if it is a critical value of Exp, i.e., Exp∗(λ0,t1) is degenerate.

• A point Exp(λ0, t1) is conjugate i� the Jacobian of the exponential mapping

vanishes: det
(

∂ Exp
∂(λ0,t)

)∣∣∣
t=t1

= 0.

• At a conjugate point a geodesic is tangent to the envelope of the family of

geodesics starting from the initial point q0.
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Local optimality of SR geodesics

A trajectory q(t) of a control system with a control u(t) and given boundary conditions

is called locally (strongly) optimal if there is ε > 0 such that

J[u] ≤ J[ũ]

for any admissible control ũ(t) such that the corresponding trajectory q̃(t) = qũ(t)
satis�es the boundary conditions and the inequality

max
t∈[0,t1]

|q(t)− q̃(t)| < ε

in local coordinates on M.

Theorem (Jacobi)

Let a normal geodesic q(t) be a projection of a unique, up to a scalar multiple,

extremal. Then q(t) loses its local optimality at the �rst conjugate point.
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Maxwell points
• A point qt is called a Maxwell point along a geodesic qs = Exp(λ0, s) if there
exists another geodesic q̃s = Exp(λ̃0, s) ̸≡ qs such that qt = q̃t .

• See �gure: there exists a geodesic q̂s coming to the point q1 = qt1 earlier than qs .

q0

q(s)

q̃(s)

q̂(s)

q(t) = q̃(t)

q1 = q(t1) = q̂(t2)
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Maxwell points and optimality

Lemma
If M and H are real-analytic, then a normal geodesic cannot be optimal after a Maxwell

point.

Proof.
Let q1 = q(t1) be a Maxwell point along a geodesic q(t) = Exp(λ0, t), and let

q̃(t) = Exp(λ̃0, t) ̸≡ q(t) be another geodesic with q̃(t1) = q1. If
q(t), t ∈ [0, t1 + ε], ε > 0, is optimal, then the following curve is optimal as well:

q̄(t) =

{
q̃(t), t ∈ [0, t1],

q(t), t ∈ [t1, t1 + ε].

The geodesics q(t) and q̄(t) coincide at the segment t ∈ [t1, t1 + ε]. Since they are

analytic, they should coincide at the whole domain t ∈ [0, t1 + ε]. Thus
q(t) ≡ q̃(t), t ∈ [0, t1], a contradiction.
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Global optimality of SR geodesics

Theorem
Let q(t) be a normal geodesic that is a projection of a unique, up to a scalar multiple,

extremal. Then q(t) loses its global optimality either at the �rst Maxwell point or at

the �rst conjugate point (at the �rst one of these two points).
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A symmetry method for construction of optimal synthesis

• A general method for construction of optimal synthesis for sub-Riemannian

problems with a big group of symmetries (e.g. for left-invariant SR problems on

Lie groups)

• Assume that for any q1 ∈ M there exists a length minimizer q(t) that connects q0
and q1.

• Moreover, suppose for simplicity that all abnormal geodesics are simultaneously

normal. Thus all geodesics are parametrised by the normal exponential mapping

Exp : N → M, N = C × R+, C = T ∗
q0M ∩

{
H =

1

2

}
.

• If this mapping is bijective onto M \ {q0}, then any point q1 ∈ M is connected

with q0 by a unique geodesic q(t), and by virtue of existence of length minimizers

this geodesic is optimal.
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A symmetry method for construction of optimal synthesis
• But typically the exponential mapping is not bijective due to Maxwell points.
• Denote by t1Max(λ) ∈ (0,+∞] the �rst Maxwell time along a geodesic Exp(λ, t),
λ ∈ C . Consider the Maxwell set in the image of the exponential mapping

Max =
{
Exp(λ, t1Max(λ)) | λ ∈ C

}
.

• Introduce the restricted exponential mapping

Exp : Ñ → M̃,

Ñ =
{
(λ, t) ∈ N | t < t1Max(λ)

}
,

M̃ = M\ cl(Max).

• This mapping may well be bijective, and if this is the case, then any point q1 ∈ M̃
is connected with q0 by a unique candidate optimal geodesic; by virtue of

existence, this geodesic is optimal.
• The bijective property of the restricted exponential mapping can often be proved

via the following classic theorem due to Hadamard.
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A symmetry method for construction of optimal synthesis

Theorem (Hadamard)

Let F : X → Y be a smooth mapping between smooth manifolds for which the

following conditions hold:

(1) dimX = dimY

(2) X , Y are connected, and Y is simply connected

(3) F is nondegenerate

(4) F is proper (preimage of a compact set is compact).

Then F is a di�eomorphism, thus a bijection.
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A symmetry method for construction of optimal synthesis
• Usually it is di�cult to describe all Maxwell points (and respectively to describe

the �rst of them), but one can often do this for a group of symmetries G of the

exponential mapping.
• Suppose that we have a mapping ε acting both in the preimage and image of the

exponential mapping: ε : N → N, ε : M → M. This mapping is called a

symmetry of the exponential mapping if it commutes with this mapping:

ε ◦ Exp = Exp ◦ε and if it preserves time: ε(λ, t) = ( ∗ , t), (λ, t) ∈ N.
• Suppose that there is a group G of symmetries of the exponential mapping. If

ε(λ, t) ̸= (λ, t) and Exp ◦ε(λ, t) = Exp(λ, t) = q1, ε ∈ G , (λ, t) ∈ N,

then q1 is a Maxwell point.
• In such a way, one can describe the Maxwell points corresponding to the group of

symmetries G , and consequently describe the �rst Maxwell time corresponding to

the group G : tGMax : C → (0,+∞].
• Then one can apply the above procedure with the restricted exponential mapping.

Thus one can often construct optimal synthesis.
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Examples of successful application of the symmetry method
• Dido's problem (the sub-Riemannian problem on the Heisenberg group)
• the sub-Riemannian problem in the �at Martinet case
• axisymmetric sub-Riemannian problems on the Lie groups SO(3), SU(2), SL(2)
• a general left-invariant sub-Riemannian problem on the Lie group SO(3)
• the sub-Riemannian problem with the growth vector (3, 6)
• the two-step sub-Riemannian problems of coranks 1 and 2
• the sub-Riemannian problem on the group of Euclidean motions of the plane
• the sub-Riemannian problem on the group of hyperbolic motions of the plane
• Euler's elastic problem
• the problem on optimal rolling of a sphere on a plane without slipping, with

twisting
• the plate-ball problem
• sub-Riemannian problem on the Engel group
• sub-Riemannian problem on the Cartan group
• axisymmetric Riemannian problems on the Lie groups SO(3), SU(2), SL(2),

PSL(2). 28 / 40



The sub-Riemannian problem on the Heisenberg group
Dido's problem is stated as the following optimal control problem:

q̇ = u1f1(q) + u2f2(q), q ∈ M = R3
x ,y ,z , u = (u1, u2) ∈ R2,

q(0) = q0 = (0, 0, 0), q(t1) = q1,

J =
1

2

∫ t1

0

(u21 + u22) dt → min,

f1 =
∂

∂x
− y

2

∂

∂z
, f2 =

∂

∂y
+

x

2

∂

∂z
.

• Existence of solutions.
• We have [f1, f2] = f3 =

∂
∂z . The system is symmetric and full-rank, thus it is

completely controllable.
• The right-hand side satis�es the bound

|u1f1(q) + u2f2(q)| ≤ C (1+ |q|), q ∈ M, u21 + u22 ≤ 1.

Thus the Filippov theorem gives existence of optimal controls.
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The sub-Riemannian problem on the Heisenberg group
• Geodesics.
• Introduce linear on �bers of T ∗M Hamiltonians:

hi (λ) = ⟨λ, fi ⟩, i = 1, 2, 3, λ ∈ T ∗M.

• Abnormal extremals satisfy the Hamiltonian system λ̇ = u1h⃗1(λ) + u2h⃗2(λ), in
coordinates:

ḣ1 = −u2h3,

ḣ2 = u1h3,

ḣ3 = 0,

q̇ = u1f1 + u2f2,

plus the identities

h1(λt) = h2(λt) ≡ 0.

Thus h3(λt) ̸= 0, and the �rst two equations of the Hamiltonian system yield

u1(t) = u2(t) ≡ 0. So abnormal trajectories are constant.
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The sub-Riemannian problem on the Heisenberg group

• Normal extremals satisfy the Hamiltonian system λ̇ = H⃗(λ) with the Hamiltonian

H = 1
2(h

2
1 + h22), in coordinates:

ḣ1 = −h2h3, (4)

ḣ2 = h1h3, (5)

ḣ3 = 0, (6)

q̇ = h1f1 + h2f2. (7)

• The subsystem of the Hamiltonian system for the adjoint variables h1, h2, h3 (the

vertical subsystem) (4)�(6) has integrals H and h3. Moreover, in the plane

{h3 = 0} the vertical subsystem stays �xed. Thus at the level surface {H = 1/2}
it has the �ow shown in the next slide: rotations in the circles

{H = 1/2, h3 = const ̸= 0} and �xed points in the circle {H = 1/2, h3 = 0}.
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The sub-Riemannian problem on the Heisenberg group:

The �ow of the vertical subsystem of the Hamiltonian system of PMP

32 / 40



The sub-Riemannian problem on the Heisenberg group

• On the level surface {H = 1
2}, we introduce the polar coordinate θ:

h1 = cos θ, h2 = sin θ.

Arclength parametrized minimizers satisfy the normal Hamiltonian system

θ̇ = h3,

ḣ3 = 0,

ẋ = cos θ,

ẏ = sin θ,

ż = −y

2
cos θ +

x

2
sin θ,

(x , y , z)(0) = (0, 0, 0).
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The sub-Riemannian problem on the Heisenberg group:

Geodesics

x

y

z
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The sub-Riemannian problem on the Heisenberg group:

Optimality of geodesics
• Straight lines (case h3 = 0) minimize the Euclidean distance in R2

x ,y , thus they are

optimal on any segment t ∈ [0, t1], t1 > 0.
• Helices (case h3 ̸= 0) are not optimal after the �rst intersection with the z-axis at
t = 2π

|h3| since these intersections are Maxwell points.

• If t1 =
2π
|h3| , then there is a continuum of helices q(t), t ∈ [0, t1], coming to the

same point q(t1) at the z-axis; they are obtained one from another by rotations

around this axis, thus they all are optimal.
• A part of an optimal arc is optimal, thus the helices are optimal also for t ∈ [0, t1],
t1 ∈ (0, 2π

|h3|).

• Summing up, the cut time along a geodesic Exp(λ, t) is

tcut(λ) =

{
2π
|h3| for h3 ̸= 0,

+∞ for h3 = 0.
(8)
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The sub-Riemannian problem on the Heisenberg group:

Optimal geodesics

x

y

z
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The sub-Riemannian problem on the Heisenberg group:

Cut locus and caustic

In Dido's problem the cut locus

Cut = {Exp(λ, tcut(λ)) | λ ∈ C}

and the �rst caustic

Conj1 =
{
Exp(λ, t1conj(λ)) | λ ∈ C

}
coincide one with another:

Cut = Conj1 = {(0, 0, z) ∈ R3 | z ̸= 0}.
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The sub-Riemannian problem on the Heisenberg group:

Sub-Riemannian distance

Let us describe the SR distance d0(q) = d(q0, q), q = (x , y , z) ∈ R3:

• if z = 0, then d0(q) =
√

x2 + y2,

• if z ̸= 0, x2 + y2 = 0, then d0(q) =
√
2π|z |,

• if z ̸= 0, x2 + y2 ̸= 0, then the distance is determined by the conditions

d0(q) =
p

sin p

√
x2 + y2,

2p − sin 2p

4 sin2 p
=

z

x2 + y2
.
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The sub-Riemannian problem on the Heisenberg group:

Sub-Riemannian spheres

• The unit sub-Riemannian sphere S = {q ∈ R3 | d0(q) = 1} is a surface of

revolution around the axis z in the form of an apple, see �gures at the next slide.

• It has two singular conical points z = ± 1
4π , x

2 + y2 = 0.

• The remaining spheres SR = {q ∈ R3 | d0(q) = R} are obtained from S by virtue

of dilations:

δs : (x , y , z) 7→ (esx , esy , e2sz), s ∈ R,
SR = δs(S), s = lnR.
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The sub-Riemannian problem on the Heisenberg group:

Sub-Riemannian spheres
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