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5. Herding the Ou:
The boy is not to separate himself with his whip and tether,

Lest the animal should wander away into a world of defilements;

When the ox is properly tended to, he will grow pure and docile;
Without a chain, nothing binding, he will by himself follow the oxherd.
Pu-ming, “The Ten Ozherding Pictures”
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Reminder: Plan of the previous lecture

. Elements of symplectic geometry
. Pontryagin maximum principle
. Solution to examples of optimal control problems

. Sub-Riemannian problems
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Plan of this lecture

1. Sub-Riemannian problems

2. The sub-Riemannian problem on the Heisenberg group.
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Sub-Riemannian optimal control problem

k
g=>Y ufi(q), qeM, u=(u,...,u) Rk,
i=1

q(0) =qo,  q(t1) = qu,

B 1/2
t
I = / <Z u,2> dt — min,
0 \i=1

or, which is equivalent,

1[0
J:2/0 ;u?dt%min.
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The Pontryagin maximum principle for SR problems

Introduce the linear on fibers of T*M Hamiltonians h;(A\) = (\,f;), i=1,... k.

Then the Hamiltonian of PMP for SR problem takes the form

k
R =3 uihi(A) + g 32
i=1 i

The normal case: Let v = —1.
The maximality condition fozl uih; — %Zf‘(:l u? — max yields u; = h;, then the
uie

Hamiltonian takes the form

The function H(\) is called the normal maximized Hamiltonian. Since it is
smooth, in the normal case extremals satisfy the Hamiltonian system A = H(\).
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The abnormal case

Let v =0.
The maximality condition

g u;h; — max
.7 uieR

implies that hj(A\:) =0, i=1,... k.
Thus abnormal extremals satisfy the conditions:

M»

(t)— - = h(At) = 0.

Normal length minimizers are projections of solutions to the smooth Hamiltonian
system X\ = H()), thus they are smooth. An important question is whether

abnormal length minimizers are smooth.
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Optimality of SR normal extremal trajectories

o ety =—1.
® A horizontal curve q(t) is called a SR geodesic if g(g, q) = const and short arcs of
q(t) are optimal.
Theorem 1 (Legendre)

Normal extremal trajectories are SR geodesics.

Proof.
See A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint,
A.A. Arpaues, KO. J1. Caukoe, leomeTpuyeckasi Teopusi ynpaBieHusl. L]
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Example: Geodesics on S2

Consider the standard sphere S2 C R? with the Riemannian metric induced by the
Euclidean metric of R3.

Geodesics starting from the North pole N € S? are great circles at the sphere
passing through N (meridians). Such geodesics are optimal up to the South pole
Ses

Variation of geodesics passing through N yields the fixed point S, thus S is a
conjugate point to N.

On the other hand, S is the intersection point of different geodesics of the same
length starting at N, thus S is a Maxwell point.

In this example, a conjugate point coincides with a Maxwell point due to the
one-parameter group of symmetries (rotations of S? around the line NS C R®). In
order to distinguish these points, one should destroy the rotational symmetry as in
the following example.
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Example: Geodesics on an ellipsoid

Consider a three-axes ellipsoid with the Riemannian metric induced by the
Euclidean metric of the ambient R3.

Construct the family of geodesics on the ellipsoid starting from a vertex N, and let
us look at this family from the opposite vertex S.

The family of geodesics has an envelope — an astroid centred at S. Each point of
the astroid is a conjugate point. At such points the geodesics lose their local
optimality.

On the other hand, there is a segment joining a pair of opposite vertices of the
astroid, where pairs of geodesics of the same length meet one another. This
segment (except its endpoints) consists of Maxwell points. At such points
geodesics on the ellipsoid lose their global optimality.
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Example: Geodesics on an ellipsoid

"~ conjugate locus

Figure from: Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to
sub-Riemannian Geometry from Hamiltonian viewpoint, Cambridge Studies in Advanced
Mathematics, Cambridge Univ. Press, 2019
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Sub-Riemannian exponential mapping

e Consider the normal Hamiltonian system of PMP \; = H(\;).

® The Hamiltonian H is an integral of this system. We can assume that H(\;) = %
this corresponds to the arclength parametrization of normal geodesics: ||g(t)|| = 1.

® Denote the cylinder C = Ty MN{H = 3} and define the sub-Riemannian
exponential mapping

Exp: C xRy — M,
Exp(Mo, ) = 7 0 et (X) = q(1).
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Conjugate points
® A point Exp(\o, t1) is called a conjugate point along the geodesic
q(t) = Exp(Ao, t) if it is a critical value of Exp, i.e., Exp,(y, 4) is degenerate.
® A point Exp(\o, t1) is conjugate iff the Jacobian of the exponential mapping

0 Exp -0
6(/\0,1’) t=t; .

® At a conjugate point g(t) a geodesic g(-) is tangent to the envelope of the family
of geodesics starting from the initial point qo.

vanishes: det (
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Local optimality of SR geodesics

A trajectory G(t) of a control system with a control {(t) and given boundary conditions
qo. g1 is called Jocally (strongly) optimal if J[d] < J[u] for any admissible control u(t)
such that the corresponding trajectory q,(t) satisfies the boundary conditions and is
contained in some neighbourhood of g;(t) in the uniform topology of CO(M).

Theorem 2 (Jacobi)
Let a normal geodesic q(t) does not contain abnormal segments. Then q(t) loses its

local optimality at the first conjugate point.

Proof.

A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to sub-Riemannian
Geometry from Hamiltonian viewpoint, Cambridge Studies in Advanced Mathematics,
Cambridge Univ. Press, 2019 ]
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Maxwell points
® A point g(t), t > 0, is called a Maxwell point along a geodesic q(s) = Exp(Xo, s)
if there exists another geodesic g(s) = Exp(Xo, s) # q(s) such that g(t) = q(t).
® See figure: there exists a geodesic g(s) coming to the point g1 = q(t1) earlier
than q(s).

q(s)

q = q(t1) = q(t2)

w0 g(t) = ()
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Maxwell points and optimality

Lemma 3
If M and H are real-analytic, then a normal geodesic cannot be optimal after a Maxwell

point.

Proof.

Let g1 = q(t1) be a Maxwell point along a geodesic g(t) = Exp(Ao, t), and let
G(t) = Exp(Ao, t) # q(t) be another geodesic with G(t1) = q1. If

q(t), t €[0,t; +¢], € >0, is optimal, then the following curve is optimal as well:

5(t) = {a(t), te [0 ul,

q(t), te€[t,t+e]

The geodesics g(t) and g(t) coincide at the segment t € [ty, t1 + €]. Since they are
analytic, they should coincide at the whole domain t € [0, t; 4+ ¢]. Thus
q(t) = qg(t), t € [0, t1], a contradiction. O
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Global optimality of SR geodesics

Theorem 4
® Let M be a complete sub-Riemannian manifold (i.e., the topology on M defined by
the sub-Riemannian distance, is complete).
o et q(t) be a normal geodesic that does not contain abnormal arcs.

Then q(t) loses its global optimality either at the first Maxwell point or at the first
conjugate point (at the first one of these two points).

Proof.

A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to sub-Riemannian
Geometry from Hamiltonian viewpoint, Cambridge Studies in Advanced Mathematics,
Cambridge Univ. Press, 2019 ]
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A symmetry method for construction of optimal synthesis

A general method for construction of optimal synthesis for sub-Riemannian
problems with a big group of symmetries (e.g. for left-invariant SR problems on
Lie groups)

Assume that M is a complete sub-Riemannian manifold. Then for any ¢ € M
there exists a length minimizer g(t) that connects gg and g;.

Moreover, suppose for simplicity that all abnormal geodesics are simultaneously
normal. Thus all geodesics are parametrised by the normal exponential mapping
1

Exp: N— M, N=CxR., C:T;;OMm{H:Q}.

If this mapping is bijective onto M \ {qo}, then any point g1 € M is connected
with go by a unique geodesic g(t), and by virtue of existence of length minimizers
this geodesic is optimal.
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A symmetry method for construction of optimal synthesis

® But typically the exponential mapping is not bijective due to Maxwell points.
® Denote by t},_ ()\) € (0,400] the first Maxwell time along a geodesic Exp(A, t),
A € C. Consider the Maxwell set in the image of the exponential mapping

Max = {Exp(], tiygax(A)) | A € C}.

Introduce the restricted exponential mapping

Exp : N — M,
N={(\t)eN|t<thu(},
M = M\ cl(Max).

This mapping may well be bijective, and if this is the case, then any point g; € M
is connected with gg by a unique candidate optimal geodesic; by virtue of
existence, this geodesic is optimal.

The bijective property of the restricted exponential mapping can often be proved

via the following classic theorem due to Hadamard.
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A symmetry method for construction of optimal synthesis

Theorem 5 (Hadamard)

Let F: X — Y be a smooth mapping between smooth manifolds for which the
following conditions hold:

(1) dimX=dimY

(2) X, Y are connected, and Y is simply connected

(3) F is nondegenerate

(4) F is proper (preimage of a compact set is compact).
Then F is a diffeomorphism, thus a bijection.
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A symmetry method for construction of optimal synthesis

Usually it is difficult to describe all Maxwell points (and respectively to describe
the first of them), but one can often do this for a group of symmetries G of the
exponential mapping.

Suppose that we have a mapping € acting both in the preimage and image of the
exponential mapping: ¢ : N — N, € : M — M. This mapping is called a
symmetry of the exponential mapping if it commutes with this mapping:

e o Exp = Expoe and if it preserves time: (A, t) = (x,t), (A, t) € N.
Suppose that there is a group G of symmetries of the exponential mapping. If

g(A, t) # (A, t) and Expoe(A,t) = Exp(A, t) = qi, eeG, (ANt)eN,

then g1 is a Maxwell point.

In such a way, one can describe the Maxwell points corresponding to the group of
symmetries G, and consequently describe the first Maxwell time corresponding to
the group G: t5,.: C — (0, +0o0].

Then one can apply the above procedure with the restricted exponential mapping.

Thus one can often construct optimal synthesis. 21736



Examples of successful application of the symmetry method

Dido’s problem (the sub-Riemannian problem on the Heisenberg group)

the sub-Riemannian problem in the flat Martinet case

axisymmetric sub-Riemannian problems on the Lie groups SO(3), SU(2), SL(2)
a general left-invariant sub-Riemannian problem on the Lie group SO(3)

the sub-Riemannian problem with the growth vector (3,6)

the two-step sub-Riemannian problems of coranks 1 and 2

the sub-Riemannian problem on the group of Euclidean motions of the plane
the sub-Riemannian problem on the group of hyperbolic motions of the plane
Euler’s elastic problem

the problem on optimal rolling of a sphere on a plane without slipping, with
twisting

the plate-ball problem

sub-Riemannian problem on the Engel group

sub-Riemannian problem on the Cartan group

axisymmetric Riemannian problems on the Lie groups SO(3), SU(2), SL(2),
PSL(Z). 22/36



The sub-Riemannian problem on the Heisenberg group
Dido’s problem is stated as the following optimal control problem:

é]:ulﬂ(q)—i-quz(q), qc M = R3 u:(ul,uz)ERz,

X,y,Z?
q(O) =4qo = (anao)a q(tl) =4aqi,
1 [0
J:2/ (8 + u3) dt — min,
0
g yo 0 x0
=022 f=
Y7 ox 20727 2

e Fxijstence of solutions.

8y+ 20z

® We have [fi,h]| = = %. The system is symmetric and full-rank, thus it is
completely controllable.

® The right-hand side satisfies the bound

lnfi(q) + wh(q) < C(1+]q]), qgeM, wv+u3<Ll

Thus the Filippov theorem gives existence of optimal controls.
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The sub-Riemannian problem on the Heisenberg group

® [xtremals.
® |ntroduce linear on fibers of T*M Hamiltonians:

h(A) = (\f), i=1,23 XeT*M.

e Abnormal extremals satisfy the Hamiltonian system A = u1H1(A) + UQHQ(A), in
coordinates:

hy = —uphs,
hy = u1hs,
h3 = 07

g = uwuify + u2fs,
plus the identities
h]_ ()\t) = h2()\t) =0.

Thus h3(A¢) # 0, and the first two equations of the Hamiltonian system yield

ur(t) = uz(t) = 0. So abnormal trajectories are constant.
24/36



The sub-Riemannian problem on the Heisenberg group

* Normal extremals satisfy the Hamiltonian system A = H(\) with the Hamiltonian
H = (h? + h2), in coordinates:

h = —hyhs, (1)
ho = hihs, (2)
hs =0, (3)
g = hifi + hofo. (4)

® The subsystem of the Hamiltonian system for the adjoint variables hy, hy, hs (the
vertical subsystem) (1)—(3) has integrals H and h3. Moreover, in the plane
{hs = 0} the vertical subsystem stays fixed. Thus at the level surface {H = 1/2}
it has the flow shown in the next slide: rotations in the circles
{H =1/2, h3 = const # 0} and fixed points in the circle {H =1/2, h; = 0}.
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The sub-Riemannian problem on the Heisenberg group:
The flow of the vertical subsystem of the Hamiltonian system of PMP
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The sub-Riemannian problem on the Heisenberg group
® On the level surface {H = %}, we introduce the polar coordinate :
hy = cosf, hy =sinf.

Arclength parametrized minimizers satisfy the normal Hamiltonian system

0 = hs,
hs =0,
x = cos®f,
y =sind,

z= —gc050+gsin0,

(x,y,2)(0) = (0,0,0).
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The sub-Riemannian problem on the Heisenberg group:

Geodesics
1. If h3 =0, then lines in the plane {z = 0}:
0 =0y,
X = tcos by,
y = tsinfy,
z=0.

2. If h3 # 0, then helices of nonconstant slope:
0 = 6y + hst,
x = (sin(6p + hzt) —sinbp)/hs,
y = (cos by — cos(bp + hst))/hs,
z = (hst — sin h3t)/(2h3).
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The sub-Riemannian problem on the Heisenberg group:
Geodesics

z
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The sub-Riemannian problem on the Heisenberg group:
Optimality of geodesics

Straight lines (case h3 = 0) minimize the Euclidean distance in Ri,y, thus they are
optimal on any segment t € [0, t;], t; > 0.
Helices (case hs # 0) are not optimal after the first intersection with the z-axis at
t= ﬁ]—:' since these intersections are Maxwell points.
If t; = % then there is a continuum of helices g(t), t € [0, t;], coming to the
same point g(t;) at the z-axis; they are obtained one from another by rotations
around this axis, thus they all are optimal.
A part of an optimal arc is optimal, thus the helices are optimal also for ¢ € [0, t1],
ty € (O,fﬁﬁ).
Summing up, the cut time along a geodesic Exp(), t) is

(V) = {ﬁg' for h3 # 0, (5)

+o0o0  for h3 = 0.
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The sub-Riemannian problem on the Heisenberg group:
Optimal geodesics

z
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The sub-Riemannian problem on the Heisenberg group:

Cut locus and caustic

In Dido’s problem the cut locus
Cut = {Exp(\, teut(N)) | A € C}

and the first caustic
Conj' = {Exp(\, tionj(N)) | A € C}

» “conj

coincide one with another:

Cut = Conj! = {(0,0,2) € R®| z # 0}.
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The sub-Riemannian problem on the Heisenberg group:
Sub-Riemannian distance

Let us describe the SR distance do(q) = d(qo,q), g = (x,y,z) € R®:

e if z=0, then do(q) = %)ﬁy2
e if z£0, x? +y? =0, then do(q) = \/m
o if z#0, x> + y? # 0, then the distance is determined by the conditions
do(q) = ﬁvﬂ +y2
2p —sin2p z
4sin? p ~ X2 +y%
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The sub-Riemannian problem on the Heisenberg group:
Sub-Riemannian spheres

® The unit sub-Riemannian sphere S = {q € R3 | do(q) = 1} is a surface of

revolution around the axis z in the form of an apple, see figures at the next slide.
® |t has two singular conical points z = j:%, x? 4 y? =0.
® The remaining spheres Sg = {g € R3 | dy(q) = R} are obtained from S by virtue

of dilations:

65 : (Xa}/7z) = (esXa esy, e2sz)’ sE Ra
Sr = 05(5), s=InR.
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The sub-Riemannian problem on the Heisenberg group:

Sub-Riemannian spheres
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Exercises

. Prove that the product

(x1,y1,21) - (X2, ¥2,22) = (X1 + X2, y1 + y2, 21 + 22 + (X1)y2 — X2¥1)/2),
(xi,vi,zi) € R3, i=1,2,

turns R3 into a Lie group called the Heisenberg group. Show that Dido’s problem
is left-invariant on this Lie group.

2. Find all conjugate points in Dido’s problem.
3. Show that in Dido’s problem dy € C(R?), but do ¢ C*(q) for any g = (0,0, 2),

z € R.

. Prove that the sub-Riemannian spheres in Dido’s problem are semianalytic (thus
subanalytic).
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