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4. Catching the Ou:

With the energy of his whole being, the boy has at last taken hold of the
[0): ¢4

But how wild his will, how ungovernable his power!

At times he struts up a plateau,

When lo! he is lost again in a misty unpenetrable mountain-pass.

Pu-ming, “The Ten Ozherding Pictures”
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Reminder: Plan of the previous lecture

Krener's theorem

Statement of optimal control problem
Existence of optimal controls
Elements of symplectic geometry

Statement of Pontryagin maximum principle
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Plan of this lecture

1. Statement of Pontryagin maximum principle
2. Solution to examples of optimal control problems

3. Sub-Riemannian problems
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Hamiltonians of Pontryagin maximum principle

e Optimal control problem

g="f(q,u), geM, wvelUCR™,
q(0) =qo,  aq(t1) = a1,

t
J= / (g, u) dt — min,
0

t; fixed or free.
® Define a family of Hamiltonians of PMP

ho(N) = A\ f(q u)) +vp(q,u),  veER, wel, AeT'M, qg=n(}).
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Statement of Pontryagin maximum principle

Theorem (PMP)

If a control u(t) and the corresponding trajectory q(t),t € [0, t1], are optimal in the
problem with fixed t1, then there exist a curve A\¢ € Lip([0, t1], T*M), A\; € T:;(t) M,

and a number v < 0 such that the following conditions hold for almost all t € [0, t;]:

(1) ).\t = /_;Z(t)()\t)x
(2) Hiey(Ae) = max hy (Ae),
(3) (A, v) #(0,0).

If the terminal time t; is free, then the following condition is added to (1)—(3):
(4) hyn(Ae) =0.

A curve \; that satisfies PMP is called an extremal, a curve q(t) — an extremal
trajectory, a control u(t) — an extremal control.
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Time-optimal problem
® Let us apply PMP to the time-optimal problem

q = f(q,u), geM, wveU,

q(O) = qo, Q(tl) = q1,

t1
t :/ 1dt — min.
0
® The Hamiltonian of PMP has the form h%(\) = (X, f(q, u)) + v. Introduce the
shortened Hamiltonian g,(\) = (\, f(q, u)).

® Then the statement of PMP for the time-optimal problem takes the form:
(1) At-— huu)(A ) = gL()(A ),

() Ky = maxh(h) & o) = maxga(Ao).
(3) A:#0,
(4) hin(Ae) =0 & gy)(Ae) = const > 0.
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The case of smooth maximized Hamiltonian

Denote the maximized normal Hamiltonian of PMP

H()) = max ht(N),  AeT*M.
uc

Theorem
Let He C?(T*M). Then a curve A is a normal extremal iff it is a trajectory of the
Hamiltonian system Ay = H(\).

Proof.
See A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint,
A.A. Arpaues, FO. J1. Caukoe, [eomeTpuyeckasi Teopusi ynpaBieHus. L]
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Example: Stopping a train (1/4)
® We have the time-optimal problem
X1 = X2, Xo= U, x=(x;,x) € R? |u] <1,
x(0) =x°,  x(t;) = x' = (0,0), t; — min.

® The right-hand side of the control system f(x, u) = (x2, u) satisfies the bound

o) =3+ w2 <\ +1<Ix+1,
thus r = x? satisfies the differential inequality

F=2(x,x) = 2(x,f(x,u)) <2(r+1). By Gronwall's lemma
r(t) + 1 < e*(rp + 1), thus attainable sets satisfy the a priori bound

Awo(<t) C {x € R? | x| < efy/(x0)2 + 1}.

® Therefore we can assume that there exists a compact set K C R? such that the
right-hand side of the control system vanishes outside of K (one of conditions of
the Filippov theorem). 0/28



Example: Stopping a train (2/4)

® As we showed, x! = (0,0) € Ao for any x° € R?.

® The set of control parameters U is compact, and the set of admissible velocity
vectors f(x, U) is convex for any x € R?. All hypotheses of the Filippov theorem
are satisfied, thus optimal control exists.

We apply PMP using the canonical coordinates (p1, p2, x1, x2) on T*R2. We
decompose a covector A = p; dx; + p» dxo € T*R?, then the shortened
Hamiltonian of PMP reads h,(A\) = p1x2 + pau, and the Hamiltonian system

A = hy(\) reads

X1 = Xo, p1 =0,
X = u, p2 = —p1.
The maximality condition of PMP has the form

hu(X) = p1xo + pou — max,

u

and the nontriviality condition is (py(t), p2(t)) # (0,0).
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Example: Stopping a train (3/4)

® The maximality condition yields:

p2(t) >0 = u(t)=1, p2(t) <0 = wu(t)=-1
® Thus extremal trajectories are the parabolas
2
X1 = :E% + C,

and the number of switchings (discontinuities) of control is not greater than 1.
® Let us construct such trajectories backward in time, starting from x! = (0,0):

® the controls u = 1 and u = —1 generate two half-parabolas terminating at x!:
2 2
X X
X1:?2, x2 <0 and X1:*?2, x; >0,

® denote the union of these half-parabolas as ',
® after one switching, parabolic arcs with v = 1 terminating at the half-parabola

2
x1 =—22, x>0, fill the part of the plane R? below the curve T,
® similarly, after one switching, parabolic arcs with v = —1 fill the part of the plane

over the curve . 11/28



Example: Stopping a train (4/4)
® So through each point of the plane R? passes a unique extremal trajectory. In view
of existence of optimal controls, the extremal trajectories are optimal.
® The optimal control found has explicit dependence on the current point of the
plane: if x; = %, xp < 0, or if the point (x1,x2) lies below the curve I, then
u(x1,x2) = 1, otherwise, u(x1,x) = —1.
Y

® Such a dependence u(x) of optimal control on the current point x of the state
space is called an optimal synthesis, it is the best possible form of solution to an
optimal control problem. 12/28



Example: The Markov-Dubins car (1/4)

® \We have a time-optimal problem

X = cos 0, q=(X,y79)€R>2<,yX591:M’

y=sing, ul<1,

0=u,

q(O) =qo = (07070)7 CI(tl) =dq1,
t; — min.

® The system is completely controllable.

¢ All conditions of the Filippov theorem are satisfied: U is compact, f(q, U) are
convex, the bound |f(q, u)| < 2 implies a priori bound of the attainable set. Thus
optimal control exists.

® We apply PMP.
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Example: The Markov-Dubins car (2/4)

® The vector fields

fo = cos 92 + sin Gé,

ox dy
0
= 2
1 697
0 0
h = [f =sinf— — =
2 = [, 1] smHaX cosHay

form a frame in T,M.
® Define the corresponding linear on fibers of T*M Hamiltonians:

hi(A) = (A, i), i=0,1,2.
® The shortened Hamiltonian of PMP is
hy(X) = (\, fo + ufy) = ho + uhy.
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Example: The Markov-Dubins car (3/4)

® The functions hg, hy, h, form a coordinate system on TaM, and we write the
Hamiltonian system of PMP in the non-canonical parametrization (hg, h1, h2, q) of
T*M:

ho = huho = {ho + uh1, ho} = u(\,[f, fo]) = u(\, —fh) = —uhy, (1)
hy = {ho + ubi, i} = (A, [fo, A]) = (\, o) = ha, (2)
hy = {ho + uhy, by} = u(\, [f, R]) = u(\, f) = uhg, (3)
q = fo + uf.

® The maximality condition h,(\) = hg + uh; — \m|i)i implies that if hy(\¢) # 0,

then u(t) = sgn h1(\t).

¢ Consider the case where the control is not determined by PMP: h;(\;) = 0 (this
case is called singular). Then (2) gives ha(A;) =0, thus ho(\¢) # 0 by the
nontriviality condition of PMP, so u(t) = 0 by (3). The corresponding extremal

trajectory (x(t), y(t)) is a straight line.
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Example: The Markov-Dubins car (4/4)

If u(t) = +£1, then the extremal trajectory (x(t), y(t)) is an arc of a unit circle.
One can show that optimal trajectories have one of the following two types:
1. arc of unit circle + line segment + arc of unit circle
2. concatenation of three arcs of unit circles; in this case, if a, b, ¢ are the times along
the first, second, and third arc respectively, then = < b < 27, min{a, ¢} < b, and
max{a, c} < b.
If boundary conditions are far one from another, then the optimal trajectory has
type 1 and can explicitly be constructed as shown below.
The optimal synthesis for the Markov-Dubins car is known, but it is rather

complicated.
a(ty)
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Example: Control of linear oscillator

e Optimal trajectories are concatenations of circular arcs.
® The optimal synthesis (exercise):
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Sub-Riemannian structures and minimizers
A sub-Riemannian structure on a smooth manifold M is a pair (A, g), where

A={A; CT4M|qe M},
is a distribution on M and
g = {gq inner product in A, | g € M}

is an inner product (nondegenerate positive definite quadratic form) on A.

The vector subspaces Ag and inner products g, depend smoothly on g € M, and
dim A4 = const.

A curve g € Lip([0, t1], M) is called horizontal (admissible) if

g(t) € Ag(y) for almost all t € [0, t].

The sub-Riemannian length of a horizontal curve g(-) is defined as

a()) = /0 ' V/2(6,4) dt.
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Sub-Riemannian structures and minimizers

The sub-Riemannian (Carnot—Carathéodory) distance between points qo, g1 € M is
d(qo, q1) = inf{/(q(-)) | q(-) horizontal, q(0) = qo, q(t1) = a1}
A horizontal curve q(+) is called a sub-Riemannian length minimizer if
I(q(-)) = d(q(0), q(ta))-
Thus length minimizers are solutions to a sub-Riemannian optimal control problem:
q(t) € Dg(e),
q(O) = qo, Q(tl) = q1,
I(q(-)) = min.

Suppose that a sub-Riemannian structure (A, g) has a global orthonormal frame
fi,..., fx € Vec(M):

AqZSPan(ﬂ(Q)7-~7fk(Q))a qEMv g(flvfj):(slp 1712177,(
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Sub-Riemannian structures and minimizers

® Then the optimal control problem for sub-Riemannian minimizers takes the
standard form:

k

1= ufi(q), geM, u=(u,...,u)€RK, (4)
i=1

q(0) = qo, q(t1) = qi, (5)

0 [k 1/2
| = / (Z u?) dt — min. (6)
0 \i=1

® The sub-Riemannian length does not depend on parametrization of a horizontal
curve q(t). Namely, if

ds) = q(t(s)),  t(-)€lip([0,s1],[0,ta]),  t(s) >0,

is a reparametrization of a curve g(t), then /(g(-)) = I(q(-)) (exercise).
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Sub-Riemannian structures and minimizers

® Along with the length functional, it is convenient to consider the energy functional

o) = [ sta.e

* Denote [[g]| = \/&(q; 9)-
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Sub-Riemannian structures and minimizers

Lemma
Let the terminal time t; be fixed. Then minimizers of energy are exactly length
minimizers of constant velocity:

J(g(-)) > min < I(q(-)) = min, ||g]| = const.

Proof.
By the Cauchy-Schwarz inequality,

a7 = ([l 1dt)2 < [Mharzar [ 1o =206 )a

moreover, equality is attained here only for ||g|| = const.
It is obvious that on constant velocity curves the problems / — min and J — min are

equivalent. And for ||g|| # const we have | < 2t J, i.e., J does not attain minimum. [
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Sub-Riemannian optimal control problem

k
g=>Y ufi(q), qeM, u=(u,...,u) Rk,
i=1

q(0) =qo,  q(t1) = qu,

B 1/2
t
I = / <Z u,2> dt — min,
0 \i=1

or, which is equivalent,

1[0
J:2/0 ;u?dt%min.
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The Lie algebra rank condition for SR problems

® The system F = {Zle uifi | u; € R} is symmetric, thus A, = Oy for any
qge M.
® Assume that M and F are real-analytic, and M is connected.

e Then for any point go € M, by Lie algebra rank condition,

Aqo = M =4 OqO — M
& Lieg(F) = Lieg(f,....fi) = T4M Vg e M.
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The Filippov theorem for SR problems

We can equivalently rewrite the optimal control problem for SR minimizers as the
following time-optimal problem:

k
g=> uifi(q), Y <1, qeM,
i=1 i

q(O) = qo, C,’(tl) = q1,
t1 — min.

Let us check hypotheses of the Filippov theorem for this problem.

The set of control parameters U = {u € R¥ | 3K | u? <1} is compact, and the
sets of admissible velocities {Zf‘zl uifi(q) | u e U} C TgM are convex.

If we prove an a priori estimate for the attainable sets A, (< t1), then the Filippov
theorem guarantees existence of length minimizers.
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The Pontryagin maximum principle for SR problems

Introduce the linear on fibers of T*M Hamiltonians h;(A\) = (\,f;), i=1,... k.

Then the Hamiltonian of PMP for SR problem takes the form

k
R =3 uihi(A) + g 32
i=1 i

The normal case: Let v = —1.
The maximality condition fozl uih; — %Zf‘(:l u? — max yields u; = h;, then the
uie

Hamiltonian takes the form

The function H(\) is called the normal maximized Hamiltonian. Since it is
smooth, in the normal case extremals satisfy the Hamiltonian system A = H(\).

26 /28



The abnormal case

Let v =0.
The maximality condition

g u;h; — max
.7 uieR

implies that hj(A\:) =0, i=1,... k.
Thus abnormal extremals satisfy the conditions:

M»

(t)— - = h(At) = 0.

Normal length minimizers are projections of solutions to the smooth Hamiltonian
system X\ = H()), thus they are smooth. An important question is whether

abnormal length minimizers are smooth.
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Exercises

1. Infer PMP for time-optimal problem (slide 7) from the general statement of PMP.

2. Construct the optimal synthesis for the linear oscillator.

3. Prove that the sub-Riemannian length does not depend on parametrization of a

horizontal curve.
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