Pontryagin maximum principle and its applications (Lecture 5)

Yuri Sachkov

yusachkov@gmail.com

«Introduction to geometric control theory»
Lecture course in Dept. of Mathematics and Mechanics
Lomonosov Moscow State University

4. Catching the Ox:

With the energy of his whole being, the boy has at last taken hold of the ox:

But how wild his will, how ungovernable his power!

At times he struts up a plateau,

When lo! he is lost again in a misty unpenetrable mountain-pass.

Pu-ming, "The Ten Oxherding Pictures"

Reminder: Plan of the previous lecture

- 1. Krener's theorem
- 2. Statement of optimal control problem
- 3. Existence of optimal controls
- 4. Elements of symplectic geometry
- 5. Statement of Pontryagin maximum principle

Plan of this lecture

- 1. Statement of Pontryagin maximum principle
- 2. Solution to examples of optimal control problems
- 3. Sub-Riemannian problems

Hamiltonians of Pontryagin maximum principle

Optimal control problem

$$\dot{q}=f(q,u), \qquad q\in M, \quad u\in U\subset \mathbb{R}^m, \ q(0)=q_0, \qquad q(t_1)=q_1, \ J=\int_0^{t_1} \varphi(q,u)\,dt o \min, \ t_1 ext{ fixed or free.}$$

Define a family of Hamiltonians of PMP

$$h_u^{\nu}(\lambda) = \langle \lambda, f(q, u) \rangle + \nu \varphi(q, u), \qquad \nu \in \mathbb{R}, \quad u \in U, \quad \lambda \in T^*M, \quad q = \pi(\lambda).$$

Statement of Pontryagin maximum principle

Theorem (PMP)

If a control u(t) and the corresponding trajectory $q(t), t \in [0, t_1]$, are optimal in the problem with fixed t_1 , then there exist a curve $\lambda_t \in \text{Lip}([0, t_1], T^*M)$, $\lambda_t \in T^*_{q(t)}M$, and a number $\nu \leq 0$ such that the following conditions hold for almost all $t \in [0, t_1]$:

- (1) $\dot{\lambda}_t = \vec{h}^{\nu}_{u(t)}(\lambda_t),$
- (2) $h_{u(t)}^{\nu}(\lambda_t) = \max_{w \in U} h_w^{\nu}(\lambda_t),$
- (3) $(\lambda_t, \nu) \neq (0, 0)$.

If the terminal time t_1 is free, then the following condition is added to (1)–(3):

(4)
$$h_{u(t)}^{\nu}(\lambda_t) \equiv 0.$$

A curve λ_t that satisfies PMP is called an *extremal*, a curve q(t) — an *extremal* trajectory, a control u(t) — an *extremal* control.

Time-optimal problem

• Let us apply PMP to the time-optimal problem

$$egin{align} \dot q &= f(q,u), \qquad q \in M, \quad u \in U, \ q(0) &= q_0, \qquad q(t_1) = q_1, \ t_1 &= \int_0^{t_1} 1 \, dt o ext{min} \, . \end{split}$$

- The Hamiltonian of PMP has the form $h_u^{\nu}(\lambda) = \langle \lambda, f(q, u) \rangle + \nu$. Introduce the shortened Hamiltonian $g_u(\lambda) = \langle \lambda, f(q, u) \rangle$.
- Then the statement of PMP for the time-optimal problem takes the form:
 - $(1) \quad \dot{\lambda}_t = \vec{h}^{\nu}_{u(t)}(\lambda_t) = \vec{g}_{u(t)}(\lambda_t),$
 - $(2) \quad h_{u(t)}^{\nu}(\lambda_t) = \max_{w \in U} h_w^{\nu}(\lambda_t) \quad \Leftrightarrow \quad g_{u(t)}(\lambda_t) = \max_{w \in U} g_w(\lambda_t),$
 - (3) $\lambda_t \neq 0$,
 - $(4) \quad h_{u(t)}^{\nu}(\lambda_t) \equiv 0 \quad \Leftrightarrow \quad g_{u(t)}(\lambda_t) \equiv \mathsf{const} \geq 0.$

The case of smooth maximized Hamiltonian

Denote the maximized normal Hamiltonian of PMP

$$H(\lambda) = \max_{u \in U} h_u^{-1}(\lambda), \qquad \lambda \in T^*M.$$

Theorem

Let $H \in C^2(T^*M)$. Then a curve λ_t is a normal extremal iff it is a trajectory of the Hamiltonian system $\dot{\lambda}_t = \vec{H}(\lambda_t)$.

Proof.

See A.A. Agrachev, Yu.L. Sachkov, *Control theory from the geometric viewpoint*, A.A. Аграчев, Ю. Л. Сачков, *Геометрическая теория управления*.

Example: Stopping a train (1/4)

• We have the time-optimal problem

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = u, \qquad x = (x_1, x_2) \in \mathbb{R}^2, \quad |u| \le 1,$$

 $x(0) = x^0, \quad x(t_1) = x^1 = (0, 0), \quad t_1 \to \min.$

• The right-hand side of the control system $f(x, u) = (x_2, u)$ satisfies the bound

$$|f(x,u)| = \sqrt{x_2^2 + u^2} \le \sqrt{x_2^2 + 1} \le |x| + 1,$$

thus $r = x^2$ satisfies the differential inequality $\dot{x} = \frac{2}{x} \dot{x} \dot{y} = \frac{2}{x} \dot{x} \cdot \frac{f(x, y)}{x} = \frac{2}{x} \dot{x$

 $\dot{r}=2\langle x,\dot{x}\rangle=2\langle x,f(x,u)\rangle\leq 2(r+1)$. By Gronwall's lemma $r(t)+1\leq e^{2t}(r_0+1)$, thus attainable sets satisfy the a priori bound

$$\mathcal{A}_{x^0}(\leq t) \subset \left\{x \in \mathbb{R}^2 \mid |x| \leq e^t \sqrt{(x^0)^2 + 1} \right\}.$$

• Therefore we can assume that there exists a compact set $K \subset \mathbb{R}^2$ such that the right-hand side of the control system vanishes outside of K (one of conditions of the Filippov theorem).

9/28

Example: Stopping a train (2/4)

- As we showed, $x^1 = (0,0) \in \mathcal{A}_{x^0}$ for any $x^0 \in \mathbb{R}^2$.
- The set of control parameters U is compact, and the set of admissible velocity vectors f(x, U) is convex for any $x \in \mathbb{R}^2$. All hypotheses of the Filippov theorem are satisfied, thus optimal control exists.
- We apply PMP using the canonical coordinates (p_1, p_2, x_1, x_2) on $T^*\mathbb{R}^2$. We decompose a covector $\lambda = p_1 \, dx_1 + p_2 \, dx_2 \in T^*\mathbb{R}^2$, then the shortened Hamiltonian of PMP reads $h_u(\lambda) = p_1 x_2 + p_2 u$, and the Hamiltonian system $\dot{\lambda} = \vec{h}_u(\lambda)$ reads

$$\dot{x}_1 = x_2,$$
 $\dot{p}_1 = 0,$ $\dot{x}_2 = u,$ $\dot{p}_2 = -p_1.$

• The maximality condition of PMP has the form

$$h_u(\lambda) = p_1 x_2 + p_2 u \rightarrow \max_{|u| \le 1},$$

and the nontriviality condition is $(p_1(t), p_2(t)) \neq (0, 0)$.

Example: Stopping a train (3/4)

• The maximality condition yields:

$$p_2(t) > 0 \quad \Rightarrow \quad u(t) = 1, \qquad \qquad p_2(t) < 0 \quad \Rightarrow \quad u(t) = -1.$$

• Thus extremal trajectories are the parabolas

$$x_1 = \pm \frac{x_2^2}{2} + C,$$

and the number of switchings (discontinuities) of control is not greater than 1.

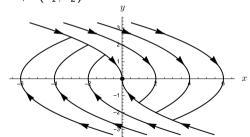
- Let us construct such trajectories backward in time, starting from $x^1 = (0,0)$:
 - the controls u=1 and u=-1 generate two half-parabolas terminating at x^1 :

$$x_1 = \frac{x_2^2}{2}, \quad x_2 \le 0 \quad \text{ and } \quad x_1 = -\frac{x_2^2}{2}, \quad x_2 \ge 0,$$

- denote the union of these half-parabolas as Γ,
- after one switching, parabolic arcs with u=1 terminating at the half-parabola $x_1=-\frac{x_2^2}{2}$, $x_2>0$, fill the part of the plane \mathbb{R}^2 below the curve Γ ,
- ullet similarly, after one switching, parabolic arcs with u=-1 fill the part of the plane over the curve Γ

Example: Stopping a train (4/4)

- So through each point of the plane \mathbb{R}^2 passes a unique extremal trajectory. In view of existence of optimal controls, the extremal trajectories are optimal.
- The optimal control found has explicit dependence on the current point of the plane: if $x_1 = \frac{x_2^2}{2}$, $x_2 \le 0$, or if the point (x_1, x_2) lies below the curve Γ , then $u(x_1, x_2) = 1$, otherwise, $u(x_1, x_2) = -1$.



• Such a dependence u(x) of optimal control on the current point x of the state space is called an *optimal synthesis*, it is the best possible form of solution to an optimal control problem.

Example: The Markov-Dubins car (1/4)

• We have a time-optimal problem

$$egin{aligned} \dot{x} &= \cos heta, & q &= (x,y, heta) \in \mathbb{R}^2_{x,y} imes S^1_{ heta} &= M, \ \dot{y} &= \sin heta, & |u| \leq 1, \ \dot{ heta} &= u, \ q(0) &= q_0 &= (0,0,0), & q(t_1) &= q_1, \ t_1 &\to \min. \end{aligned}$$

- The system is completely controllable.
- All conditions of the Filippov theorem are satisfied: U is compact, f(q, U) are convex, the bound $|f(q, u)| \le 2$ implies a priori bound of the attainable set. Thus optimal control exists.
- We apply PMP.

Example: The Markov-Dubins car (2/4)

The vector fields

$$f_0 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y},$$

$$f_1 = \frac{\partial}{\partial \theta},$$

$$f_2 = [f_0, f_1] = \sin \theta \frac{\partial}{\partial x} - \cos \theta \frac{\partial}{\partial y}$$

form a frame in T_aM .

• Define the corresponding linear on fibers of T^*M Hamiltonians:

$$h_i(\lambda) = \langle \lambda, f_i \rangle, \qquad i = 0, 1, 2.$$

• The shortened Hamiltonian of PMP is

$$h_u(\lambda) = \langle \lambda, f_0 + uf_1 \rangle = h_0 + uh_1.$$

Example: The Markov-Dubins car (3/4)

• The functions h_0 , h_1 , h_2 form a coordinate system on T_q^*M , and we write the Hamiltonian system of PMP in the non-canonical parametrization (h_0, h_1, h_2, q) of T^*M :

$$\dot{h}_0 = \vec{h}_u h_0 = \{h_0 + u h_1, h_0\} = u \langle \lambda, [f_1, f_0] \rangle = u \langle \lambda, -f_2 \rangle = -u h_2,$$
 (1)

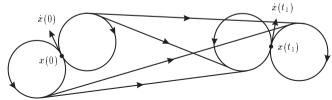
$$\dot{h}_1 = \{h_0 + uh_1, h_1\} = \langle \lambda, [f_0, f_1] \rangle = \langle \lambda, f_2 \rangle = h_2,$$
 (2)

$$\dot{h}_2 = \{h_0 + uh_1, h_2\} = u\langle\lambda, [f_1, f_2]\rangle = u\langle\lambda, f_0\rangle = uh_0,
\dot{a} = f_0 + uf_1.$$
(3)

- The maximality condition $h_u(\lambda) = h_0 + uh_1 \to \max_{|u| \le 1}$ implies that if $h_1(\lambda_t) \ne 0$, then $u(t) = \operatorname{sgn} h_1(\lambda_t)$.
- Consider the case where the control is not determined by PMP: $h_1(\lambda_t) \equiv 0$ (this case is called *singular*). Then (2) gives $h_2(\lambda_t) \equiv 0$, thus $h_0(\lambda_t) \neq 0$ by the nontriviality condition of PMP, so $u(t) \equiv 0$ by (3). The corresponding extremal trajectory (x(t), y(t)) is a straight line.

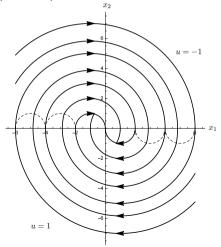
Example: The Markov-Dubins car (4/4)

- If $u(t) = \pm 1$, then the extremal trajectory (x(t), y(t)) is an arc of a unit circle.
- One can show that optimal trajectories have one of the following two types:
 - 1. arc of unit circle + line segment + arc of unit circle
 - 2. concatenation of three arcs of unit circles; in this case, if a, b, c are the times along the first, second, and third arc respectively, then $\pi < b < 2\pi$, $\min\{a,c\} < b$, and $\max\{a,c\} < b$.
- If boundary conditions are far one from another, then the optimal trajectory has type 1 and can explicitly be constructed as shown below.
- The optimal synthesis for the Markov-Dubins car is known, but it is rather complicated.



Example: Control of linear oscillator

- Optimal trajectories are concatenations of circular arcs.
- The optimal synthesis (exercise):



• A sub-Riemannian structure on a smooth manifold M is a pair (Δ, g) , where

$$\Delta = \{ \Delta_q \subset T_q M \mid q \in M \},$$

is a distribution on M and

$$g = \{g_q \text{ inner product in } \Delta_q \mid q \in M\}$$

is an inner product (nondegenerate positive definite quadratic form) on Δ .

- The vector subspaces Δ_q and inner products g_q depend smoothly on $q \in M$, and $\dim \Delta_q \equiv \mathrm{const.}$
- A curve $q \in \text{Lip}([0, t_1], M)$ is called horizontal (admissible) if

$$\dot{q}(t) \in \Delta_{q(t)}$$
 for almost all $t \in [0, t_1]$.

• The sub-Riemannian length of a horizontal curve $q(\cdot)$ is defined as

$$I(q(\cdot)) = \int_0^{t_1} \sqrt{g(\dot{q}, \dot{q})} dt.$$

ullet The sub-Riemannian (Carnot-Carath'eodory) distance between points $q_0,q_1\in M$ is

$$d(q_0, q_1) = \inf\{I(q(\cdot)) \mid q(\cdot) \text{ horizontal}, \ q(0) = q_0, \ q(t_1) = q_1\}.$$

• A horizontal curve $q(\cdot)$ is called a sub-Riemannian length minimizer if

$$I(q(\cdot))=d(q(0),q(t_1)).$$

• Thus length minimizers are solutions to a sub-Riemannian optimal control problem:

$$egin{aligned} \dot{q}(t) \in \Delta_{q(t)}, \ q(0) = q_0, \qquad q(t_1) = q_1, \ l(q(\cdot)) &
ightarrow ext{min} \,. \end{aligned}$$

• Suppose that a sub-Riemannian structure (Δ, g) has a *global orthonormal frame* $f_1, \ldots, f_k \in \text{Vec}(M)$:

$$\Delta_q = \operatorname{span}(f_1(q), \dots, f_k(q)), \quad q \in M, \quad g(f_i, f_i) = \delta_{ii}, \quad i, j = 1, \dots, k.$$

• Then the optimal control problem for sub-Riemannian minimizers takes the standard form:

$$\dot{q} = \sum_{i=1}^k u_i f_i(q), \qquad q \in M, \quad u = (u_1, \dots, u_k) \in \mathbb{R}^k, \tag{4}$$

$$q(0) = q_0, \qquad q(t_1) = q_1,$$
 (5)

$$I = \int_0^{t_1} \left(\sum_{i=1}^k u_i^2 \right)^{1/2} dt \to \min.$$
 (6)

• The sub-Riemannian length does not depend on parametrization of a horizontal curve q(t). Namely, if

$$\widetilde{q}(s) = q(t(s)), \qquad t(\cdot) \in \text{Lip}([0, s_1], [0, t_1]), \qquad t'(s) > 0,$$

is a reparametrization of a curve q(t), then $I(\widetilde{q}(\,\cdot\,))=I(q(\,\cdot\,))$ (exercise).

• Along with the length functional, it is convenient to consider the *energy* functional

$$J(q(\cdot))=rac{1}{2}\int_0^{t_1}g(\dot{q},\dot{q})\,dt.$$

• Denote $\|\dot{q}\| = \sqrt{g(\dot{q},\dot{q})}$.

Lemma

Let the terminal time t_1 be fixed. Then minimizers of energy are exactly length minimizers of constant velocity:

$$J(q(\,\cdot\,)) o \min \quad \Leftrightarrow \quad I(q(\,\cdot\,)) o \min, \qquad \|\dot{q}\| = \mathrm{const}\,.$$

Proof.

By the Cauchy-Schwarz inequality,

$$(I(q(\cdot)))^2 = \left(\int_0^{t_1} \|\dot{q}\| \cdot 1 \, dt\right)^2 \leq \int_0^{t_1} \|\dot{q}\|^2 \, dt \cdot \int_0^{t_1} 1^2 \, dt = 2J(q(\cdot)) \, t_1,$$

moreover, equality is attained here only for $||\dot{q}|| \equiv \text{const.}$

It is obvious that on constant velocity curves the problems $I \to \min$ and $J \to \min$ are equivalent. And for $||\dot{q}|| \not\equiv \text{const}$ we have $I < 2t_1J$, i.e., J does not attain minimum. \square

Sub-Riemannian optimal control problem

$$egin{align} \dot{q} &= \sum_{i=1}^k u_i f_i(q), \qquad q \in M, \quad u = (u_1, \dots, u_k) \in \mathbb{R}^k, \ q(0) &= q_0, \qquad q(t_1) = q_1, \ I &= \int_0^{t_1} \left(\sum_{i=1}^k u_i^2
ight)^{1/2} dt o \min, \ \end{split}$$

or, which is equivalent,

$$J = \frac{1}{2} \int_0^{t_1} \sum_{i=1}^k u_i^2 dt \to \min.$$

The Lie algebra rank condition for SR problems

- The system $\mathcal{F} = \left\{ \sum_{i=1}^k u_i f_i \mid u_i \in \mathbb{R} \right\}$ is symmetric, thus $\mathcal{A}_q = \mathcal{O}_q$ for any $q \in M$.
- Assume that M and \mathcal{F} are real-analytic, and M is connected.
- Then for any point $q_0 \in M$, by Lie algebra rank condition,

$$\mathcal{A}_{q_0} = M \Leftrightarrow \mathcal{O}_{q_0} = M$$

 $\Leftrightarrow \operatorname{Lie}_q(\mathcal{F}) = \operatorname{Lie}_q(f_1, \dots, f_k) = T_q M \qquad \forall q \in M.$

The Filippov theorem for SR problems

 We can equivalently rewrite the optimal control problem for SR minimizers as the following time-optimal problem:

$$egin{align} \dot{q} &= \sum_{i=1}^k u_i f_i(q), \qquad \sum_{i=1}^k u_i^2 \leq 1, \quad q \in M, \ q(0) &= q_0, \qquad q(t_1) = q_1, \ t_1 & o \min. \end{array}$$

- Let us check hypotheses of the Filippov theorem for this problem.
- The set of control parameters $U=\{u\in\mathbb{R}^k\mid \sum_{i=1}^k u_i^2\leq 1\}$ is compact, and the sets of admissible velocities $\left\{\sum_{i=1}^k u_i f_i(q)\mid u\in U\right\}\subset T_qM$ are convex.
- If we prove an a priori estimate for the attainable sets $A_{q_0} (\leq t_1)$, then the Filippov theorem guarantees existence of length minimizers.

The Pontryagin maximum principle for SR problems

• Introduce the linear on fibers of T^*M Hamiltonians $h_i(\lambda) = \langle \lambda, f_i \rangle$, i = 1, ..., k. Then the Hamiltonian of PMP for SR problem takes the form

$$h_u^{\nu}(\lambda) = \sum_{i=1}^k u_i h_i(\lambda) + \frac{\nu}{2} \sum_{i=1}^k u_i^2.$$

- The normal case: Let $\nu = -1$.
- The maximality condition $\sum_{i=1}^k u_i h_i \frac{1}{2} \sum_{i=1}^k u_i^2 o \max_{u_i \in \mathbb{R}}$ yields $u_i = h_i$, then the Hamiltonian takes the form

$$h_u^{-1}(\lambda) = \frac{1}{2} \sum_{i=1}^k h_i^2(\lambda) =: H(\lambda).$$

• The function $H(\lambda)$ is called the *normal maximized Hamiltonian*. Since it is smooth, in the normal case extremals satisfy the Hamiltonian system $\dot{\lambda} = \vec{H}(\lambda)$.

The abnormal case

- Let $\nu = 0$.
- The maximality condition

$$\sum_{i=1}^k u_i h_i \to \max_{u_i \in \mathbb{R}}$$

implies that $h_i(\lambda_t) \equiv 0$, $i = 1, \ldots, k$.

• Thus abnormal extremals satisfy the conditions:

$$\dot{\lambda}_t = \sum_{i=1}^k u_i(t) \vec{h}_i(\lambda_t),$$
 $h_1(\lambda_t) = \cdots = h_k(\lambda_t) \equiv 0.$

• Normal length minimizers are projections of solutions to the smooth Hamiltonian system $\dot{\lambda} = \vec{H}(\lambda)$, thus they are smooth. An important question is whether abnormal length minimizers are smooth.

Exercises

- 1. Infer PMP for time-optimal problem (slide 7) from the general statement of PMP.
- 2. Construct the optimal synthesis for the linear oscillator.
- 3. Prove that the sub-Riemannian length does not depend on parametrization of a horizontal curve.