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3. Seeing the Ozx:

On a yonder branch perches a nightingale cheerfully singing;

The sun is warm, and a soothing breeze blows, on the bank the willows are
green;

The ox is there all by himself, nowhere is he to hide himself;

The splendid head decorated with stately horns what painter can reproduce
him?

Pu-ming, “The Ten Ozherding Pictures”
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Reminder: Plan of the previous lecture

1. The Orbit theorem.
2. Corollaries of the Orbit theorem:

® Rashevskii—-Chow theorem,
® Lie algebra rank controllability condition,
® Frobenius theorem.
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Plan of this lecture

Krener's theorem

Statement of optimal control problem
Existence of optimal controls
Elements of symplectic geometry

Statement of Pontryagin maximum principle
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Comparison of topologies of M and M7

Proposition
The "strong” topology of M7 is not weaker than the manifold topology of M.

Proof.

Take any open subset S C M. We have to show that S is open in M7, i.e., that S is a
union of elements of the "strong” topology base G4(W,). Take any g € S, let

m = dim Og. Consider the mapping G,(t1,...,tm) = e™Vmo...0etV1(q), R™ — M.
Since the mappings t; — e%"i(q), R — M, are continuous, then

Je>0VteR™, |t|<e Gy(t) € S.

Let Wo = {t € R™ | |t| < e}, then Go(Wp) C S. So S =J,ecs Gg(Wo) is open in

M7 O
Exercises: 1) When the topology of M7 is stronger than the topology of M? 2) When
the topology of O, induced by M7 is stronger than the topology of Oy induced by M?
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Attainable sets of full-rank systems

o Let F C Vec(M) be a full-rank system:
VgeM  Lieg(F) = T4M.

The assumption of full rank is not very strong in the analytic case: if it is violated,
we can consider the restriction of F to its orbit, and this restriction is full-rank.

® What is the possible structure of attainable sets of F 7
® |t is easy to construct systems in the two-dimensional plane that have the following
attainable sets:
® a smooth full-dimensional manifold without boundary;
® 3 full-dimensional manifold with smooth boundary;
® 3 full-dimensional manifold with non-smooth boundary, with corner or cusp
singularity.
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Possible attainable sets of full-rank systems

Figure: Smooth manifold without

boundary
=)

o

Figure: Manifold with a corner
singularity of the boundary

Figure: Manifold with smooth
boundary

Figure: Manifold with a cusp
singularity of the boundary
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Impossible attainable sets of full-rank systems

® But it is impossible to construct an attainable set that is:

® a lower-dimensional submanifold;
® a set whose boundary points are isolated from its interior points.

M

Figure: Forbidden attainable set:

® These possibilities are forbidden respectively by the following theorem.

Figure: Forbidden attainable set:
subset of lower dimension subset with isolated boundary points
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Krener's theorem

Theorem (Krener)

Let F C Vec(M), and let Lieq F = TyM for any q € M. Then:
(1) int Ag # @ for any g € M,

(2) cl(int Ag) D Aq for any g € M.
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Proof of Krener's theorem: 1/2

Since item (2) implies item (1), we prove item (2): cl(int Ag) D Aj.

We argue by induction on dimension of M. If dim M = 0, then A, = {q} = M,
and the statement is obvious. Let dim M > 0.

Take any g1 € Aq, and fix any neighbourhood g1 € W(q1) C M. We show that
intAq N W(ql) + .

There exists f; € F such that fi(g1) # 0, otherwise
F(q1) = {0} = Lieg,(F) = T, M, a contradiction. Consider the following set for
asmall g1 > 0:

Ny = {etlfl(ql) |0<t < 81} C W(q1) ﬂ.Aq.

Ny is a smooth 1-dimensional manifold. If dim M =1, then Nj is open, thus
N; C int Ag, so int Ag N W(q1) # @. Since the neighbourhood W(qy) is
arbitrary, g1 € cl(int Ag).
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Proof of Krener's theorem: 2/2

® |et dimM > 1. There exist g» = etllfl(ql) € Ny N W(q1) and f, € F such that
f(q2) & Tg, N1. Otherwise dim F(g2) = dim Lieg, (F) = dim Ty, M =1 for any
g€ NoNW, and dimM = 1.

e Consider the following set for a small e, > 0:
Ny = {e2oeltfi(q) |t} <ty <t +e3, 0<ty <er} C W(q)NAg

e N, is a smooth 2-dimensional manifold.

e If dim M = 2, then N, is open, thus N> C int. A, N W(q1) # @ and

q1 € cl(int Ag).

e |f dim M > 2, we proceed by induction. O
A control system F C Vec(M) is called accessible at a point g € M if int Ay # 0. In
the analytic case the accessibility property is equivalent to the full-rank condition
(exercise).
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Example: Stopping a train (1/2)
The control system has the form

x = f1(x) + ufr(x), x = (x1,x2) € R?, lul <1,
0 0

fi = xp—— fr=—.
1 Xzaxl, 2 9%

We have [f, ] = —%, whence the system F = {fi + uf | u € [-1,1]} is
full-rank: Liex(F) = span (8%1, %) (x) = T.R>  vxeR2
Thus
O,=R?* VxeR2
In order to find the attainable sets, we compute trajectories of the system with a

constant control u # 0: they are the parabolas

2
X5
- = .
> ux; + C
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Example: Stopping a train (1/2)

Figure: Reaching the origin from an arbitrary
initial point

® Now it is visually obvious that the system is controllable.
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Example: Markov-Dubins car (1/2)

The control system has the form

g="h(q)+uh(q), q=(xy,0)e M=R>xS" |u <1,
ﬂ:c050§<+sin966y, fz:;g'
We have 9 5
[fi, 2] = sin H& - COSQ@ =: f3.

Thus the system F = {fi + ufy | u € [-1,1]} is full-rank:
Lieq(F) = span(fi(q), 2(q), 5(q)) = T4M Vg € M,

consequently,
Og=M Vg e M.

In order to describe the attainable sets, we replace the initial system F by a

restricted system F1 = {f4 = f,} C F and prove that F; is controllable (then F is

controllable as well).
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Example: Markov-Dubins car (2/2)
Trajectories of the restricted system x = cosf, y = sin, 6 = +1, have the form
0=0ptt, x = xp = (sin(0p £ t) —sinbp), y = yo £ (cosbp — cos(fp £ t)).

These trajectories are periodic: e(tt2mm(ith) — ot(fith) teR, neZ. So
a shift along the fields f; & £, in the negative time can be obtained as a shift in the
positive time.

Consequently, if we introduce the system F, = {ff = f,, —fi = fo}, then we get
Ag(F2) = Ag(F1), g€ M.

But the system F; is symmetric and full-rank, thus A4 (F2) = Oq4(F2) = M,
whence
Ag(F) = Ag(F1) = M for all g € M.

That is, the Markov—Dubins car is completely controllable in the space R? x S!.
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Statement of optimal control problem
We consider the following optimal control problem:

g="f(q,u), geM, wvelUCR™, (1)
q(0) = qo, q(t1) = qu, (2)
J[u] :/Olgo(q7 u) dt — min, (3)

t; fixed or free.

A solution q(t), t € [0, t1], to this problem is said to be (globally) optimal.
The following assumptions are made for the dynamics f(q, u):
® the mapping g — f(gq, u) is smooth for any u € U,
® the mapping (g, u) — f(q, u) is continuous for any g € M, u € cl(V),
® the mapping (q, u) — g—g(q, u) is continuous for any g € M, u € cl(U).
The same assumptions are made for the function (g, u) that determines the cost
functional J.

Admissible control is u € L*(][0, t;], U).
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Reduction to the study of attainable sets

® |n order to include the functional J into dynamics of the system, introduce a new
variable equal to the running value of the cost functional along a trajectory q,(t):

ym=A}mww

® Respectively, we introduce an extended state ¢ = ( }C; ) € R x M that satisfies

an extended control system

w(5)=(70)=ran

® The boundary conditions for this system are

ao-(g) aw-=(_)
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Reduction to the study of attainable sets

e A trajectory q;(t) is optimal for the optimal control problem with fixed time t; if
and only if the corresponding trajectory gi(t) of the extended system comes to a
point (y1,q1) of the attainable set A(g 40)(t1) such that

A,a0)(t1) N {(y.q1) |y <y} = 0.
y

Y1 +

0

® For the problem with free terminal time an analogous condition is written for the

attainable set A(g 44)- 18/30



Filippov's theorem

Corollary
If the attainable set .Z(quo)(tl) is compact and q1 € Agy(t1), then the optimal control
problem (1)—(3) with fixed time t; has a solution.

Theorem (Filippov)

Suppose that control system (1) satisfies the hypotheses:

(1) the set U is compact,

(2) the set f(q, U) is convex for all g € M,

(3) there exists a compact set K C M such that for all g € M\K, u € U there holds
the equality f(q,u) = 0.

Then the attainable sets Ag,(t), Aqgy(< t) are compact for any qo € M, t > 0.

Proof.

See A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint,

A.A. Arpaues, KO. J1. Caukos, leomeTpudeckas Teopus ynpasiaeHus.
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Existence of optimal controls in optimal control problem

Corollary
Let the optimal control problem (1)—(3) satisfy the hypotheses:
(1) the set U is compact,

(2) the set { ( f((g’:l)) > lue U } is convex for all g € M,

(3) there exists a compact set K C R x M such that /T(o,qo)(tl) C K,

(4) @1 € Ag(t1).
Then the problem (1)—(3) with fixed time t; has a solution.
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Proof of the existence conditions for optimal control problem

Proof. There exists a compact set K’ C R x M such that K C int K'. Take a
function a € C*°(R x M) such that

ak =1, almxmyk’ = 0.
Consider a new extended control system:

dq N~ .
d—;’ = a(q)f(q,u), GeR XM, uel.

This system has compact attainable sets for time t; , which coincide with the
corresponding attainable sets of the extended system.

Then optimal control problem (1)—(3) has a solution (by Filippov’s theorem).

O
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Existence of solutions to time-optimal problem
Now consider a time-optimal problem
g = f(q,u), geM, uvelUCR™,

q(0) = qo, q(t1) = q1,
t1 — min.

Corollary

Let the following conditions hold:

(1) the set U is compact,

(2) the set f(q, U) is convex for all g € M,

(3) there exist t; > 0 and a compact set K C M such that

g1 € Ag (£ t1) C K.

Then time-optimal problem (4)—(6) has a solution.
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Elements of symplectic geometry

Let M be an n-dimensional smooth manifold. Then the disjoint union of its
tangent spaces TM = || T{M ={(q,v) | g€ M, v € TqM} is called its

qeM
tangent bundle.
If (g1,-..,qn) are local coordinates on M, then any tangent vector v € TyM has a
decomposition v =1, v; aq So (g1,.--,Qn; Vi,...,Vy) are local coordinates

on TM, which is thus a 2n-dimensional smooth manifold.

For any point g € M, the dual space (T;M)* = T;M is called the cotangent

space to M at q. Thus T;M consists of linear forms on T, M. The disjoint union

T*M = |€_| TaM = {(q, p)| g€ M, pe T;M} is called the cotangent bundle.
q

If (g1,...,qn) are local coordinates on M, then any covector A € T*M has a

decomposition A = >""_; p;dq;. Thus (q1,...,qn; p1,---,pn) are local

coordinates on T*M called the canonical coordinates. So T*M is a smooth

2n-dimensional manifold.

The canonical projection is the mapping 7: T*"M — M, T;M > X+~ q€ M.
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Elements of symplectic geometry

The Liouville (tautological) differential 1-form s € AY(T*M) is defined as follows:

(sx, w) = (A, mew), AeT*M, we T\(T"M).

In the canonical coordinates on T*M, s = pdgq.
The canonical symplectic structure on T*M is the differential 2-form

o =ds € N(T*M). In the canonical coordinates o = dp A dg = >_"_, dp; A dg;.

A Hamiltonian (Hamiltonian function) is an arbitrary function h € C>®(T*M).

The Hamiltonian vector field h € Vec(T*M) with the Hamiltonian function h is
defined by the equality dh = o( -, h). In the canonical coordinates:

h:h(q’p)v
H_@g_@g_z": dh & 0h 9
~ Opdq 0Oqop opi 0q;  0qiOpi)

i=1
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Elements of symplectic geometry

® The corresponding Hamiltonian system of ODEs is
A=h()\), AeT'M.

® |n the canonical coordinates:

o O )

B o P
) — ——— I:_ 3 .:1,..., .
p 8q) p aql ! n

® The Poisson bracket of Hamiltonians h, g € C*>°(T*M) is the Hamiltonian
{h,g} € C>°(T*M) defined by the equalities
{h.g} = hg = o(h.g).
® |n the canonical coordinates:

_0hdg Ohdg <~ (0hdg 0h g
the} = opdq 0qop 2 <3p/ dq;  Oq; 8p;> '

i=1
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Elements of symplectic geometry

Lemma
Let a,b,c € C>®°(T*M) and o, B € R. Then:

(1) {a b} =—{ba},

(2) {37 a} =0,

(3) {{a,b},c} +{{b,c},a} +{{c,a}, b} =0,
(4) {aa+Bb,c} =afa,c}+ p{b,c},

(5) {ab,c}={a,c}b+ a{b,c},

(6) [4b]=d, d={ab}.

Theorem (Noether)
Let a,h € C®°(T*M). Then

a(et"(\)) = const < {h,a} =0.
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Elements of symplectic geometry

Now we describe the last construction of symplectic geometry necessary for us — linear
on fibers of T*M Hamiltonians. Let X € Vec(M). The corresponding linear on fibers
of T*M Hamiltonian is defined as follows: hx(\) = (\, X(q)), g = m(N).

In the canonical coordinates:

Xzzlxlaaqlv hX(qvp):leIX/

Lemma
Let X, Y € Vec(M). Then:

(1) {hx,hy} = hix,v)s
(2) [hx, hy]l = hx.v),
(3) mhx = X.

The vector field hy € Vec(T*M) is called the Hamiltonian lift of the vector field
X € Vec(M).
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Hamiltonians of Pontryagin maximum principle

® Return to the optimal control problem

g="f(q,u), geM, wvelUCR™,
q(0) =qo,  aq(t1) = a1,

t
J= / (g, u) dt — min,
0

t; fixed.
® Define a family of Hamiltonians of PMP

ho(N) = A\ f(q u)) +vp(q,u),  veER, wel, AeT'M, qg=n(}).

28/30



Statement of Pontryagin maximum principle

Theorem (PMP)

If a control u(t) and the corresponding trajectory q(t),t € [0, t1], are optimal, then
there exist a curve A+ € Lip([0, t1], T*M), A+ € ToyM. and a number v < 0 such that
the following conditions hold for almost all t € [0, t;]:

(1) Ae=Ayy(Ae),

(2) B = ma e (A0),

3) (A, v) #(0,0).

If the terminal time t; is free, then the following condition is added to (1)—(3):
(4)  hyy(Ae) = 0.

A curve \; that satisfies PMP is called an extremal, a curve q(t) — an extremal
trajectory, a control u(t) — an extremal control.

20/30



Exercises

1. When the topology of M7 is stronger than the topology of M?

. When the topology of O, induced by M7 is stronger than the topology of O,
induced by M?

. Construct examples of control systems having an attainable set of the following
structure:

a smooth manifold without boundary,

a manifold with a smooth boundary,

a manifold with boundary having an angle singularity,
a manifold with boundary having a cusp singularity.

4. Prove in detail the induction step in Krener's theorem.

5. Prove that in the analytic case the accessibility property is equivalent to the

full-rank condition.

. Infer existence of time-optimal trajectories from Filippov’s theorem.
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