# Krener's theorem and Optimal control problem (Lecture 4)

Yuri L. Sachkov

yusachkov@gmail.com

«Introduction to geometric control theory»
Lecture course in Dept. of Mathematics and Mechanics
Lomonosov Moscow State University

#### 3. Seeing the Ox:

On a yonder branch perches a nightingale cheerfully singing;

The sun is warm, and a soothing breeze blows, on the bank the willows are green;

The ox is there all by himself, nowhere is he to hide himself;

The splendid head decorated with stately horns what painter can reproduce him?

Pu-ming, "The Ten Oxherding Pictures"



## Reminder: Plan of the previous lecture

- 1. The Orbit theorem.
- 2. Corollaries of the Orbit theorem:
  - Rashevskii–Chow theorem,
  - Lie algebra rank controllability condition,
  - Frobenius theorem.

#### Plan of this lecture

- 1. Krener's theorem
- 2. Statement of optimal control problem
- 3. Existence of optimal controls
- 4. Elements of symplectic geometry
- 5. Statement of Pontryagin maximum principle

# Comparison of topologies of M and $M^{\mathcal{F}}$

#### Proposition

The "strong" topology of  $M^{\mathcal{F}}$  is not weaker than the manifold topology of M.

#### Proof.

Take any open subset  $S \subset M$ . We have to show that S is open in  $M^{\mathcal{F}}$ , i.e., that S is a union of elements of the "strong" topology base  $G_q(W_0)$ . Take any  $q \in S$ , let  $m = \dim \mathcal{O}_q$ . Consider the mapping  $G_q(t_1, \ldots, t_m) = e^{t_m V_m} \circ \cdots \circ e^{t_1 V_1}(q)$ ,  $\mathbb{R}^m \to M$ . Since the mappings  $t_i \mapsto e^{t_i V_i}(q)$ ,  $\mathbb{R} \to M$ , are continuous, then

$$\exists \varepsilon > 0 \ \forall t \in \mathbb{R}^m, \ |t| < \varepsilon \qquad G_q(t) \in S.$$

Let  $W_0=\{t\in\mathbb{R}^m\mid |t|<arepsilon\}$ , then  $G_q(W_0)\subset S$ . So  $S=\bigcup_{q\in S}G_q(W_0)$  is open in  $M^{\mathcal{F}}$ .

Exercises: 1) When the topology of  $M^{\mathcal{F}}$  is stronger than the topology of M? 2) When the topology of  $\mathcal{O}_q$  induced by  $M^{\mathcal{F}}$  is stronger than the topology of  $\mathcal{O}_q$  induced by M?

## Attainable sets of full-rank systems

• Let  $\mathcal{F} \subset \text{Vec}(M)$  be a full-rank system:

$$\forall q \in M$$
  $\operatorname{Lie}_q(\mathcal{F}) = T_q M$ .

The assumption of full rank is not very strong in the analytic case: if it is violated, we can consider the restriction of  $\mathcal{F}$  to its orbit, and this restriction is full-rank.

- What is the possible structure of attainable sets of  $\mathcal{F}$ ?
- It is easy to construct systems in the two-dimensional plane that have the following attainable sets:
  - a smooth full-dimensional manifold without boundary;
  - a full-dimensional manifold with smooth boundary;
  - a full-dimensional manifold with non-smooth boundary, with corner or cusp singularity.

## Possible attainable sets of full-rank systems

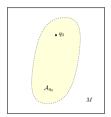


Figure: Smooth manifold without boundary

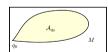


Figure: Manifold with a corner singularity of the boundary

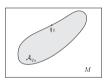


Figure: Manifold with smooth boundary



Figure: Manifold with a cusp singularity of the boundary

## Impossible attainable sets of full-rank systems

- But it is impossible to construct an attainable set that is:
  - a lower-dimensional submanifold;
  - a set whose boundary points are isolated from its interior points.

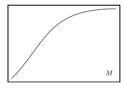


Figure: Forbidden attainable set: subset of lower dimension

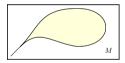


Figure: Forbidden attainable set: subset with isolated boundary points

These possibilities are forbidden respectively by the following theorem.

#### Krener's theorem

## Theorem (Krener)

Let  $\mathcal{F} \subset \text{Vec}(M)$ , and let  $\text{Lie}_q \mathcal{F} = T_q M$  for any  $q \in M$ . Then:

- (1) int  $A_q \neq \emptyset$  for any  $q \in M$ ,
- (2)  $\operatorname{cl}(\operatorname{int} \mathcal{A}_q) \supset \mathcal{A}_q$  for any  $q \in M$ .

# Proof of Krener's theorem: 1/2

- Since item (2) implies item (1), we prove item (2):  $\operatorname{cl}(\operatorname{int} \mathcal{A}_q) \supset \mathcal{A}_q$ .
- We argue by induction on dimension of M. If dim M=0, then  $\mathcal{A}_q=\{q\}=M$ , and the statement is obvious. Let dim M>0.
- Take any  $q_1 \in \mathcal{A}_q$ , and fix any neighbourhood  $q_1 \in W(q_1) \subset M$ . We show that int  $\mathcal{A}_q \cap W(q_1) \neq \emptyset$ .
- There exists  $f_1 \in \mathcal{F}$  such that  $f_1(q_1) \neq 0$ , otherwise  $\mathcal{F}(q_1) = \{0\} = \operatorname{Lie}_{q_1}(\mathcal{F}) = T_{q_1}M$ , a contradiction. Consider the following set for a small  $\varepsilon_1 > 0$ :

$$N_1 = \{e^{t_1 f_1}(q_1) \mid 0 < t_1 < \varepsilon_1\} \subset W(q_1) \cap A_q.$$

•  $N_1$  is a smooth 1-dimensional manifold. If dim M=1, then  $N_1$  is open, thus  $N_1\subset\operatorname{int}\mathcal{A}_q$ , so  $\operatorname{int}\mathcal{A}_q\cap W(q_1)\neq\varnothing$ . Since the neighbourhood  $W(q_1)$  is arbitrary,  $q_1\in\operatorname{cl}(\operatorname{int}\mathcal{A}_q)$ .

# Proof of Krener's theorem: 2/2

- Let dim M>1. There exist  $q_2=e^{t_1^1f_1}(q_1)\in \mathcal{N}_1\cap W(q_1)$  and  $f_2\in \mathcal{F}$  such that  $f_2(q_2)\not\in T_{q_2}\mathcal{N}_1$ . Otherwise dim  $\mathcal{F}(q_2)=\dim \operatorname{Lie}_{q_2}(\mathcal{F})=\dim T_{q_2}\mathcal{M}=1$  for any  $q_2\in \mathcal{N}_2\cap \mathcal{W}$ , and dim M=1.
- Consider the following set for a small  $\varepsilon_2 > 0$ :

$$\mathcal{N}_2 = \{e^{t_2 f_2} \circ e^{t_1 f_1}(q_1) \mid t_1^1 < t_1 < t_1^1 + \varepsilon_2, \ 0 < t_2 < \varepsilon_2\} \subset W(q_1) \cap \mathcal{A}_q.$$

- $N_2$  is a smooth 2-dimensional manifold.
- If dim M=2, then  $N_2$  is open, thus  $N_2\subset\operatorname{int}\mathcal{A}_q\cap W(q_1)\neq\varnothing$  and  $q_1\in\operatorname{cl}(\operatorname{int}\mathcal{A}_q)$ .
- If dim M > 2, we proceed by induction.

A control system  $\mathcal{F} \subset \text{Vec}(M)$  is called *accessible* at a point  $q \in M$  if int  $\mathcal{A}_q \neq \emptyset$ . In the analytic case the accessibility property is equivalent to the full-rank condition (exercise).

## Example: Stopping a train (1/2)

• The control system has the form

$$\dot{x} = f_1(x) + uf_2(x), \qquad x = (x_1, x_2) \in \mathbb{R}^2, \quad |u| \le 1,$$
 $f_1 = x_2 \frac{\partial}{\partial x_1}, \qquad f_2 = \frac{\partial}{\partial x_2}.$ 

- We have  $[f_1, f_2] = -\frac{\partial}{\partial x_1}$ , whence the system  $\mathcal{F} = \{f_1 + uf_2 \mid u \in [-1, 1]\}$  is full-rank:  $\operatorname{Lie}_x(\mathcal{F}) = \operatorname{span}\left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right)(x) = T_x \mathbb{R}^2 \quad \forall x \in \mathbb{R}^2$ .
- Thus

$$\mathcal{O}_x = \mathbb{R}^2 \qquad \forall x \in \mathbb{R}^2.$$

• In order to find the attainable sets, we compute trajectories of the system with a constant control  $u \neq 0$ : they are the parabolas

$$\frac{x_2^2}{2}=ux_1+C.$$

# Example: Stopping a train (1/2)

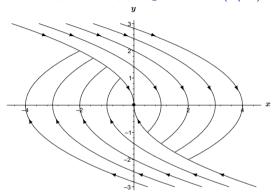


Figure: Reaching the origin from an arbitrary initial point

• Now it is visually obvious that the system is controllable.

## Example: Markov-Dubins car (1/2)

• The control system has the form

$$\dot{q} = f_1(q) + uf_2(q), \qquad q = (x, y, \theta) \in M = \mathbb{R}^2 \times S^1, \quad |u| \le 1,$$
 $f_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \qquad f_2 = \frac{\partial}{\partial \theta}.$ 

• We have

$$[f_1, f_2] = \sin \theta \frac{\partial}{\partial x} - \cos \theta \frac{\partial}{\partial y} =: f_3.$$

• Thus the system  $\mathcal{F} = \{f_1 + uf_2 \mid u \in [-1, 1]\}$  is full-rank:

$$\operatorname{Lie}_q(\mathcal{F}) = \operatorname{span}(f_1(q), f_2(q), f_3(q)) = T_q M \qquad \forall q \in M,$$

consequently,

$$\mathcal{O}_q = M \qquad \forall q \in M.$$

• In order to describe the attainable sets, we replace the initial system  $\mathcal{F}$  by a restricted system  $\mathcal{F}_1 = \{f_1 \pm f_2\} \subset \mathcal{F}$  and prove that  $\mathcal{F}_1$  is controllable (then  $\mathcal{F}$  is controllable as well).

# Example: Markov-Dubins car (2/2)

• Trajectories of the restricted system  $\dot{x} = \cos \theta$ ,  $\dot{y} = \sin \theta$ ,  $\dot{\theta} = \pm 1$ , have the form

$$\theta = \theta_0 \pm t,$$
  $x = x_0 \pm (\sin(\theta_0 \pm t) - \sin \theta_0),$   $y = y_0 \pm (\cos \theta_0 - \cos(\theta_0 \pm t)).$ 

- These trajectories are periodic:  $e^{(t+2\pi n)(f_1\pm f_2)}=e^{t(f_1\pm f_2)}, \qquad t\in\mathbb{R}, \quad n\in\mathbb{Z}.$  So a shift along the fields  $f_1\pm f_2$  in the negative time can be obtained as a shift in the positive time.
- Consequently, if we introduce the system  $\mathcal{F}_2 = \{f_1 \pm f_2, -f_1 \pm f_2\}$ , then we get

$$A_a(\mathcal{F}_2) = A_a(\mathcal{F}_1), \quad q \in M.$$

• But the system  $\mathcal{F}_2$  is symmetric and full-rank, thus  $\mathcal{A}_q(\mathcal{F}_2)=\mathcal{O}_q(\mathcal{F}_2)=M,$  whence

$$\mathcal{A}_q(\mathcal{F}) = \mathcal{A}_q(\mathcal{F}_1) = M$$
 for all  $q \in M$ .

That is, the Markov–Dubins car is completely controllable in the space  $\mathbb{R}^2 \times S^1$ .

## Statement of optimal control problem

• We consider the following optimal control problem:

$$\dot{q} = f(q, u), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,$$
 (1)

$$q(0) = q_0, q(t_1) = q_1,$$
 (2)

$$J[u] = \int_0^{t_1} \varphi(q, u) dt \to \min, \tag{3}$$

 $t_1$  fixed or free.

- A solution q(t),  $t \in [0, t_1]$ , to this problem is said to be (globally) optimal.
- The following assumptions are made for the dynamics f(q, u):
  - the mapping  $q \mapsto f(q, u)$  is smooth for any  $u \in U$ ,
  - the mapping  $(q, u) \mapsto f(q, u)$  is continuous for any  $q \in M$ ,  $u \in cl(U)$ ,
  - the mapping  $(q, u) \mapsto \frac{\partial f}{\partial q}(q, u)$  is continuous for any  $q \in M$ ,  $u \in cl(U)$ .
- The same assumptions are made for the function  $\varphi(q, u)$  that determines the cost functional J.
- Admissible control is  $u \in L^{\infty}([0, t_1], U)$ .

## Reduction to the study of attainable sets

• In order to include the functional J into dynamics of the system, introduce a new variable equal to the running value of the cost functional along a trajectory  $q_u(t)$ :

$$y(t) = \int_0^t \varphi(q, u) dt.$$

• Respectively, we introduce an extended state  $\widehat{q}=\left(egin{array}{c} y \\ q \end{array}
ight)\in\mathbb{R} imes M$  that satisfies an  $extended\ control\ system$ 

$$\frac{d\widehat{q}}{dt} = \begin{pmatrix} \dot{y} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} \varphi(q, u) \\ f(q, u) \end{pmatrix} =: \widehat{f}(\widehat{q}, u).$$

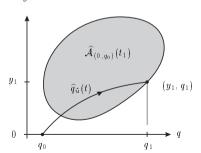
• The boundary conditions for this system are

$$\widehat{q}(0) = \left(egin{array}{c} 0 \ q_0 \end{array}
ight), \qquad \widehat{q}(t_1) = \left(egin{array}{c} J \ q_1 \end{array}
ight).$$

## Reduction to the study of attainable sets

• A trajectory  $q_{\tilde{u}}(t)$  is optimal for the optimal control problem with fixed time  $t_1$  if and only if the corresponding trajectory  $\widehat{q}_{\tilde{u}}(t)$  of the extended system comes to a point  $(y_1, q_1)$  of the attainable set  $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)$  such that

$$\widehat{\mathcal{A}}_{(0,q_0)}(t_1) \cap \{(y,q_1) \mid y < y_1\} = \emptyset.$$



• For the problem with free terminal time an analogous condition is written for the attainable set  $\widehat{\mathcal{A}}_{(0,q_0)}$ .

## Filippov's theorem

#### Corollary

If the attainable set  $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)$  is compact and  $q_1 \in \mathcal{A}_{q_0}(t_1)$ , then the optimal control problem (1)–(3) with fixed time  $t_1$  has a solution.

#### Theorem (Filippov)

Suppose that control system (1) satisfies the hypotheses:

- (1) the set U is compact,
- (2) the set f(q, U) is convex for all  $q \in M$ ,
- (3) there exists a compact set  $K \subset M$  such that for all  $q \in M \setminus K$ ,  $u \in U$  there holds the equality f(q, u) = 0.

Then the attainable sets  $A_{q_0}(t)$ ,  $A_{q_0}(\leq t)$  are compact for any  $q_0 \in M$ , t > 0.

#### Proof.

See A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint, A.A. Аграчев, Ю. Л. Сачков, Геометрическая теория управления.

# Existence of optimal controls in optimal control problem

#### Corollary

Let the optimal control problem (1)-(3) satisfy the hypotheses:

- (1) the set U is compact,
- (2) the set  $\left\{ \left( \begin{array}{c} \varphi(q,u) \\ f(q,u) \end{array} \right) \mid u \in U \right\}$  is convex for all  $q \in M$ ,
- (3) there exists a compact set  $K\subset \mathbb{R} imes M$  such that  $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)\subset K$  ,
- $(4) \quad q_1 \in \mathcal{A}_{q_0}(t_1).$

Then the problem (1)–(3) with fixed time  $t_1$  has a solution.

## Proof of the existence conditions for optimal control problem

• *Proof.* There exists a compact set  $K' \subset \mathbb{R} \times M$  such that  $K \subset \operatorname{int} K'$ . Take a function  $a \in C^{\infty}(\mathbb{R} \times M)$  such that

$$a|_K \equiv 1, \qquad a|_{(\mathbb{R} \times M) \setminus K'} \equiv 0.$$

• Consider a new extended control system:

$$\frac{d\widehat{q}}{dt} = a(\widehat{q})\widehat{f}(\widehat{q}, u), \qquad \widehat{q} \in \mathbb{R} \times M, \quad u \in U.$$

- This system has compact attainable sets for time  $t_1$ , which coincide with the corresponding attainable sets of the extended system.
- Then optimal control problem (1)–(3) has a solution (by Filippov's theorem).

## Existence of solutions to time-optimal problem

Now consider a time-optimal problem

$$\dot{q} = f(q, u), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,$$
 (4)

$$q(0) = q_0, q(t_1) = q_1,$$
 (5)

$$t_1 o \min$$
 . (6)

#### Corollary

Let the following conditions hold:

- (1) the set U is compact,
- (2) the set f(q, U) is convex for all  $q \in M$ ,
- (3) there exist  $t_1 > 0$  and a compact set  $K \subset M$  such that

$$q_1 \in \mathcal{A}_{q_0}(\leq t_1) \subset K$$
.

Then time-optimal problem (4)-(6) has a solution.

- Let M be an n-dimensional smooth manifold. Then the disjoint union of its tangent spaces  $TM = \bigsqcup_{q \in M} T_q M = \{(q, v) \mid q \in M, \ v \in T_q M\}$  is called its tangent bundle.
- If  $(q_1, \ldots, q_n)$  are local coordinates on M, then any tangent vector  $v \in T_q M$  has a decomposition  $v = \sum_{i=1}^n v_i \frac{\partial}{\partial q_i}$ . So  $(q_1, \ldots, q_n; v_1, \ldots, v_n)$  are local coordinates on TM, which is thus a 2n-dimensional smooth manifold.
- For any point  $q \in M$ , the dual space  $(T_q M)^* = T_q^* M$  is called the *cotangent* space to M at q. Thus  $T_q^* M$  consists of linear forms on  $T_q M$ . The disjoint union  $T^* M = \bigsqcup_{q \in M} T_q^* M = \{(q,p) \mid q \in M, \ p \in T_q^* M\}$  is called the *cotangent bundle*.
- If  $(q_1, \ldots, q_n)$  are local coordinates on M, then any covector  $\lambda \in T^*M$  has a decomposition  $\lambda = \sum_{i=1}^n p_i \, dq_i$ . Thus  $(q_1, \ldots, q_n; \ p_1, \ldots, p_n)$  are local coordinates on  $T^*M$  called the *canonical coordinates*. So  $T^*M$  is a smooth 2n-dimensional manifold.
- The canonical projection is the mapping  $\pi \colon T^*M \to M$ ,  $T_q^*M \ni \lambda \mapsto q \in M$ .

• The Liouville (tautological) differential 1-form  $s \in \Lambda^1(T^*M)$  is defined as follows:

$$\langle s_{\lambda}, w \rangle = \langle \lambda, \pi_* w \rangle, \qquad \lambda \in T^* M, \quad w \in T_{\lambda}(T^* M).$$

In the canonical coordinates on  $T^*M$ , s = p dq.

- The canonical symplectic structure on  $T^*M$  is the differential 2-form  $\sigma = ds \in \Lambda^2(T^*M)$ . In the canonical coordinates  $\sigma = dp \wedge dq = \sum_{i=1}^n dp_i \wedge dq_i$ .
- A Hamiltonian (Hamiltonian function) is an arbitrary function  $h \in C^{\infty}(T^*M)$ .
- The *Hamiltonian vector field*  $\vec{h} \in \text{Vec}(T^*M)$  with the Hamiltonian function h is defined by the equality  $dh = \sigma(\cdot, \vec{h})$ . In the canonical coordinates:

$$h = h(q, p),$$

$$\vec{h} = \frac{\partial h}{\partial p} \frac{\partial}{\partial q} - \frac{\partial h}{\partial q} \frac{\partial}{\partial p} = \sum_{i=1}^{n} \left( \frac{\partial h}{\partial p_{i}} \frac{\partial}{\partial q_{i}} - \frac{\partial h}{\partial q_{i}} \frac{\partial}{\partial p_{i}} \right).$$

• The corresponding Hamiltonian system of ODEs is

$$\dot{\lambda} = \vec{h}(\lambda), \qquad \lambda \in T^*M.$$

In the canonical coordinates:

$$\begin{cases} \dot{q} = \frac{\partial h}{\partial p}, \\ \dot{p} = -\frac{\partial h}{\partial a}, \end{cases} \text{ or } \begin{cases} \dot{q}_i = \frac{\partial h}{\partial p_i}, \\ \dot{p}_i = -\frac{\partial h}{\partial a_i}, \end{cases} \qquad i = 1, \dots, n.$$

• The *Poisson bracket* of Hamiltonians  $h,g \in C^{\infty}(T^*M)$  is the Hamiltonian  $\{h,g\} \in C^{\infty}(T^*M)$  defined by the equalities

$$\{h,g\} = \vec{h}g = \sigma(\vec{h},\vec{g}).$$

In the canonical coordinates:

$$\{h,g\} = \frac{\partial h}{\partial p} \frac{\partial g}{\partial q} - \frac{\partial h}{\partial q} \frac{\partial g}{\partial p} = \sum_{i=1}^{n} \left( \frac{\partial h}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} - \frac{\partial h}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} \right).$$

#### Lemma

Let  $a, b, c \in C^{\infty}(T^*M)$  and  $\alpha, \beta \in \mathbb{R}$ . Then:

- (1)  $\{a,b\} = -\{b,a\},$
- (2)  $\{a,a\}=0$ ,
- (3)  $\{\{a,b\},c\}+\{\{b,c\},a\}+\{\{c,a\},b\}=0,$
- (4)  $\{\alpha a + \beta b, c\} = \alpha \{a, c\} + \beta \{b, c\},$
- (5)  $\{ab,c\} = \{a,c\}b + a\{b,c\},$
- (6)  $[\vec{a}, \vec{b}] = \vec{d}, d = \{a, b\}.$

#### Theorem (Noether)

Let  $a, h \in C^{\infty}(T^*M)$ . Then

$$a(e^{t\tilde{h}}(\lambda)) \equiv \text{const} \quad \Leftrightarrow \quad \{h,a\} = 0.$$

Now we describe the last construction of symplectic geometry necessary for us — linear on fibers of  $T^*M$  Hamiltonians. Let  $X \in \text{Vec}(M)$ . The corresponding linear on fibers of  $T^*M$  Hamiltonian is defined as follows:  $h_X(\lambda) = \langle \lambda, X(q) \rangle$ ,  $q = \pi(\lambda)$ . In the canonical coordinates:

$$X = \sum_{i=1}^{n} X_i \frac{\partial}{\partial q_i}, \qquad h_X(q, p) = \sum_{i=1}^{n} p_i X_i.$$

#### Lemma

Let  $X, Y \in Vec(M)$ . Then:

- (1)  $\{h_X, h_Y\} = h_{[X,Y]},$
- (2)  $[\vec{h}_X, \vec{h}_Y] = \vec{h}_{[X,Y]},$
- (3)  $\pi_* \vec{h}_X = X$ .

The vector field  $\vec{h}_X \in \text{Vec}(T^*M)$  is called the *Hamiltonian lift* of the vector field  $X \in \text{Vec}(M)$ .

## Hamiltonians of Pontryagin maximum principle

• Return to the optimal control problem

$$\dot{q}=f(q,u), \qquad q\in M, \quad u\in U\subset \mathbb{R}^m, \ q(0)=q_0, \qquad q(t_1)=q_1, \ J=\int_0^{t_1} \varphi(q,u)\,dt o \min, \ t_1 ext{ fixed.}$$

Define a family of Hamiltonians of PMP

$$h_u^{\nu}(\lambda) = \langle \lambda, f(q, u) \rangle + \nu \varphi(q, u), \qquad \nu \in \mathbb{R}, \quad u \in U, \quad \lambda \in T^*M, \quad q = \pi(\lambda).$$

## Statement of Pontryagin maximum principle

## Theorem (PMP)

If a control u(t) and the corresponding trajectory  $q(t), t \in [0, t_1]$ , are optimal, then there exist a curve  $\lambda_t \in \text{Lip}([0, t_1], T^*M)$ ,  $\lambda_t \in T^*_{q(t)}M$ , and a number  $\nu \leq 0$  such that the following conditions hold for almost all  $t \in [0, t_1]$ :

- (1)  $\dot{\lambda}_t = \vec{h}^{\nu}_{u(t)}(\lambda_t),$
- (2)  $h_{u(t)}^{\nu}(\lambda_t) = \max_{w \in U} h_w^{\nu}(\lambda_t),$
- (3)  $(\lambda_t, \nu) \neq (0, 0)$ .

If the terminal time  $t_1$  is free, then the following condition is added to (1)–(3):

(4) 
$$h_{\mu(t)}^{\nu}(\lambda_t) \equiv 0.$$

A curve  $\lambda_t$  that satisfies PMP is called an *extremal*, a curve q(t) — an *extremal* trajectory, a control u(t) — an *extremal* control.

#### Exercises

- 1. When the topology of  $M^{\mathcal{F}}$  is stronger than the topology of M?
- 2. When the topology of  $\mathcal{O}_q$  induced by  $M^{\mathcal{F}}$  is stronger than the topology of  $\mathcal{O}_q$  induced by M?
- 3. Construct examples of control systems having an attainable set of the following structure:
  - a smooth manifold without boundary,
  - a manifold with a smooth boundary,
  - a manifold with boundary having an angle singularity,
  - a manifold with boundary having a cusp singularity.
- 4. Prove in detail the induction step in Krener's theorem.
- 5. Prove that in the analytic case the accessibility property is equivalent to the full-rank condition.
- 6. Infer existence of time-optimal trajectories from Filippov's theorem.