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2. Seeing the Traces:

By the stream and under the trees, scattered are the traces of the lost;

The sweet-scented grasses are growing thick � did he �nd the way?

However remote over the hills and far away the beast may wander,

His nose reaches the heavens and none can conceal it.

Pu-ming, �The Ten Oxherding Pictures�
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Reminder: Plan of the previous lecture

1. Lie groups, Lie algebras, and left-invariant optimal control problems

2. Controllability of linear systems

3. Local controllability of nonlinear systems

4. Orbit of a control system
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Plan of this lecture

1. Preliminaries.

2. The Orbit theorem.

3. Corollaries of the Orbit theorem:
• Orbit and Lie algebra of the system
• Rashevskii�Chow theorem,
• Lie algebra rank condition,
• Frobenius theorem.
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Orbit of a control system
• A control system on a smooth manifold M is an arbitrary set of vector �elds

F ⊂ Vec(M).
• The attainable set of the system F from a point q0 ∈ M:

Aq0 = {etN fN ◦ · · · ◦ et1f1(q0) | ti ≥ 0, fi ∈ F , N ∈ N}.
• The orbit of the system F through the point q0:

Oq0 = {etN fN ◦ · · · ◦ et1f1(q0) | ti ∈ R, fi ∈ F , N ∈ N}.
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Action of di�eomorphisms on tangent vectors and vector �elds
• Let V ∈ Vec(M), and let Φ: M → N be a di�eomorphism, i.e., a smooth bijective

mapping with a smooth inverse.
• The vector �eld Φ∗V ∈ Vec(N) is de�ned as

Φ∗V |Φ(q) =
d

dt

∣∣∣∣
t=0

Φ ◦ etV (q) = Φ∗q(V (q)).

• Thus we have a mapping Φ∗ : Vec(M) → Vec(N), push-forward of vector �elds

from the manifold M to the manifold N under the action of the di�eomorphism Φ.
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Figure: Di�erential DqΦ of the mapping Φ at the point q
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Immersed submanifolds
• A subset W of a smooth manifold M is called a k-dimensional immersed

submanifold of M if there exists a k-dimensional manifold N and a smooth
mapping F : N → M such that:

• F is injective
• Ker F∗q = 0 for any q ∈ N
• W = F (N).

• Example: Figure of eight is a 1-dimensional immersed submanifold of the

2-dimensional plane.

7 / 30



Example: Irrational winding of the torus
• Torus T2 = R2/(2π Z2) = {(x , y) ∈ S1 × S1}
• Vector �eld V = p ∂

∂x + q ∂
∂y ∈ Vec(T2), p2 + q2 ̸= 0.

• The orbit O0 of V through the origin 0 ∈ T2 may have two di�erent types:

(1) p/q ∈ Q ∪ {∞}. Then cl O0 = O0.
(2) p/q ∈ R\Q. Then cl O0 = T2. In this case the orbit O0 is called the irrational

winding of the torus.

• In the both cases the orbit O0 is an immersed submanifold of the torus, but in the

second case it is not embedded.

• So even for one vector �eld the orbit may be an immersed submanifold, but not an

embedded one

• An immersed submanifold N = F (W ) ⊂ M is called embedded if F : W → N is a

homeomorphism in the topology induced by the inclusion N ⊂ M. In case (2) the

topology of the orbit induced by the inclusion O0 ⊂ R2 is weaker than the

topology of the orbit induced by the immersion t 7→ etV (0), R → O0.
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The Orbit theorem

Theorem (Orbit theorem, Nagano�Sussmann)

Let F ⊂ Vec(M), and let q0 ∈ M.

(1) The orbit Oq0 is a connected immersed submanifold of M.

(2) For any q ∈ Oq0

TqOq0 = span(P∗F)(q) = span{(P∗V )(q) | P ∈ P, V ∈ F},
P = {etN fN ◦ · · · ◦ et1f1 | ti ∈ R, fi ∈ F , N ∈ N}.
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Proof of the Orbit theorem: 1/7
Proof.

• Introduce a vector space important in the sequel

Πq = span(P∗F)(q) ⊂ TqM, q ∈ M,

this is a candidate tangent space to the orbit Oq0 .
• 1) We prove that for all q ∈ Oq0 we have dimΠq = dimΠq0 .
• Choose any point q ∈ Oq0 , then q = Q(q0), Q ∈ P. Let us show that

Q−1
∗ (Πq) ⊂ Πq0 .

• Choose any element (P∗f )(q) ∈ Πq, P ∈ P, f ∈ F . Then

Q−1
∗ [(P∗f )(q)] = (Q−1

∗ ◦ P∗f )(Q
−1(q))

= [(Q−1 ◦ P)∗f ](q0) ∈ (P∗F)(q0) ⊂ Πq0 .

Thus Q−1
∗ (Πq) ⊂ Πq0 , whence dimΠq ≤ dimΠq0 . Interchanging in this arguments

q and q0, we get dimΠq0 ≤ dimΠq.
• Finally we have dimΠq = dimΠq0 , q ∈ Oq0 .
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Proof of the Orbit theorem: 2/7

• 2) For any point q ∈ M denote m = dimΠq, and choose such vector �elds

V1, . . . ,Vm ∈ P∗F that Πq = span(V1(q), . . . ,Vm(q)).

• Further, de�ne a mapping

Gq : (t1, . . . , tm) 7→ etmVm ◦ · · · ◦ et1V1(q), Rm → M.

• We have
∂Gq

∂ti
(0) = Vi (q), thus the vectors

∂Gq

∂t1
(0), . . . ,

∂Gq

∂tm
(0) are linearly

independent.

• Consequently, the restriction of Gq to a su�ciently small neighbourhood W0 of the

origin in Rm is a submersion.

• 3) The image Gq(W0) is an (embedded) submanifold of M, may be, for a smaller

neighbourhood W0.
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Proof of the Orbit theorem: 3/7

• 4) We show that Gq(W0) ⊂ Oq.

• We have Gq(W0) = {etmVm ◦ · · · ◦ et1V1(q) | t = (t1, . . . , tm) ∈ W0}.
• Since V1 = P∗f ,P ∈ P, f ∈ F , we get

et1V1(q) = et1P∗f (q) = P ◦ et1f ◦ P−1(q) ∈ Oq.

Exercise: prove that

etP∗f (q) = P ◦ etf ◦ P−1(q), f ∈ Vec(M), P ∈ Diff(M), t ∈ R. (1)

• We conclude similarly that et2V2 ◦ et1V1(q) ∈ Oq etc. Finally we have Gq(t) ∈ Oq,

t ∈ W0.
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Proof of the Orbit theorem: 4/7
• 5) We show that Gq∗(TtRm) = ΠGq(t), t ∈ W0. We have

dimGq∗(TtRm) = m = dimΠGq(t), thus it su�ces to prove the inclusion
∂Gq

∂ti
(t) ∈ ΠGq(t), t ∈ W0.

• Let us compute this partial derivative:

∂Gq

∂ti
=

∂

∂ti
etmVm ◦ · · · ◦ etiVi ◦ · · · ◦ et1V1(q)

denote R = etmVm ◦ · · · ◦ eti+1Vi+1 , q′ = eti−1Vi−1 ◦ · · · ◦ et1V1(q),

=
∂

∂ti
R ◦ etiVi (q′) = R∗Vi (e

tiVi (q′))

= (R∗Vi )[R ◦ etiVi ◦ · · · ◦ et1V1(q)]

= (R∗Vi )(Gq(t)) ∈ (P∗F)(Gq(t)) ⊂ ΠGq(t).

• Thus Gq∗(TtRm) = ΠGq(t), i.e., the space ΠGq(t) is a tangent space to the smooth

manifold Gq(W0) at the point Gq(t).
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Proof of the Orbit theorem: 5/7
• 6) We prove that the sets Gq(W0) form a base of a (�strong�) topology on M.

• 6a) It is obvious that any point q ∈ M is contained in the set Gq(W0).

• 6b) Let us show that for any point q̂ ∈ Gq(W0) ∩ Gq̃(W̃0) there exists a set

Gq̂(Ŵ0) ⊂ Gq(W0) ∩ Gq̃(W̃0).

• Take any point q̂ ∈ Gq(W0)∩Gq̃(W̃0) and consider Gq̂(t) = etmV̂m ◦ · · · ◦ et1V̂1(q̂).

• For any point q′ ∈ Gq(W0) we have V̂1(q
′) ∈ (P∗F)(q′) ⊂ Πq′ . But Gq(W0) is a

submanifold with the tangent space Tq′Gq(W0) = Πq′ . The vector �eld V̂1 is

tangent to this submanifold, thus et1V̂1(q̂) ∈ Gq(W0) for small |t1|. We conclude

similarly that et2V̂2 ◦ et1V̂1(q̂) ∈ Gq(W0) for small |t1|, |t2| etc. Finally we get

Gq̂(t) ∈ Gq(W0) for small |t|.

• Similarly Gq̂(t) ∈ Gq̃(W̃0) for small |t|. Thus Gq̂(Ŵ0) ⊂ Gq(W0) ∩ Gq̃(W̃0) for

some neighbourhood Ŵ0, and property 6b) is proved.
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Figure: Intersection of
neighborhoods in topology base

Figure: Intersection of
neighborhoods not in
topology base
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Proof of the Orbit theorem: 6/7

• It follows from properties 6a) and 6b) that the sets Gq(W0) form a base of

topology on the set M. Denote the corresponding topological space as MF .

• 7) We show that for any q0 ∈ M the orbit Oq0 is connected, open and closed in

the space MF .

• The mappings ti 7→ eti fi (q) are continuous in MF , thus Oq0 is connected.

• Any point q ∈ Oq0 is contained in the neighbourhood Gq(W0) ⊂ Oq = Oq0 , thus

the orbit is open in MF .

• Finally, any orbit is a complement in M to orbits with which it does not intersect.

Thus any orbit is closed in MF .

• So any orbit Oq0 is a connected component of the topological space MF .
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Proof of the Orbit theorem: 7/7
• 8) Introduce a smooth structure on Oq0 as follows:

• the sets Gq(W0) are called coordinate neighbourhoods
• the mappings G−1

q : Gq(W0) → W0 are called coordinate mappings.

• It is easy to see that these coordinate neighbourhoods and mappings agree: for

any intersecting neighbourhoods Gq(W0) and Gq̃(W̃0) the composition

Gq̃ ◦ Gq : G−1
q (Gq(W0) ∩ Gq̃(W̃0)) → G−1

q̃ (Gq(W0) ∩ Gq̃(W̃0))

is a di�eomorphism.

• Thus the orbit Oq0 is a smooth manifold.

• Moreover, Oq0 ⊂ M is an immersed submanifold of dimension m = dimΠq0 .

• 9) It follows from item 5) above that the smooth manifold Oq0 has a tangent space

TqOq0 = Πq = span(P∗F)(q), q ∈ Oq0 .

• The Orbit theorem is proved.
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Statement of the Orbit theorem

Theorem (Orbit theorem, Nagano�Sussmann)

Let F ⊂ Vec(M), and let q0 ∈ M.

(1) The orbit Oq0 is a connected immersed submanifold of M.

(2) For any q ∈ Oq0

TqOq0 = span(P∗F)(q) = span{(P∗V )(q) | P ∈ P, V ∈ F},
P = {etN fN ◦ · · · ◦ et1f1 | ti ∈ R, fi ∈ F , N ∈ N}.
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Corollary: Orbit and Lie algebra of the system

Corollary

For any q0 ∈ M and any q ∈ Oq0 we have Lieq(F) ⊂ TqOq0 , where

Lieq(F) = span{[fN , [. . . , [f2, f1] . . . ]](q) | fi ∈ F , N ∈ N} ⊂ TqM.

• Proof. Let q0 ∈ M, q ∈ Oq0 .
• Take any f ∈ F . Then φ(t) = etf (q) ∈ Oq0 , thus φ̇(0) = f (q) ∈ TqOq0 . It
follows that F(q) ⊂ TqOq0 .

• Further, take any f1, f2 ∈ F , then φ(t) = e−tf2 ◦ e−tf1 ◦ etf2 ◦ etf1(q) ∈ Oq0 . Thus

d

dt

∣∣∣∣
t=0

φ(
√
t) = [f1, f2](q) ∈ TqOq0 .

It follows that [F ,F ](q) ⊂ TqOq0 .
• We prove similarly that [[F ,F ],F ](q) ⊂ TqOq0 , and by induction that

Lieq(F) ⊂ TqOq0 .
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Analytic and non-analytic cases
• In the analytic case the inclusion Lieq(F) ⊂ TqOq0 turns into an equality.

Proposition

Let M and F be real-analytic. Then for any q0 ∈ M and any q ∈ Oq0

Lieq(F) = TqOq0 .

• But in a smooth non-analytic case the inclusion Lieq(F) ⊂ TqOq0 may become

strict.
• Example: Orbit of non-analytic system.

• let M = R2

x,y , F = {f1, f2}, f1 = ∂
∂x , f2 = a(x) ∂

∂y , where a ∈ C∞(R), a(x) = 0 for

x ≤ 0, a(x) > 0 for x > 0.
• It is easy to see that Oq = R2 for any q = (x , y) ∈ R2.
• Although, for x < 0 we have

Lieq(F) = span(f1(q)) ̸= TqOq.

20 / 30



Corollary: Rashevskii-Chow theorem

• A system F ⊂ Vec(M) is called completely nonholonomic (full-rank,

bracket-generating) if Lieq(F) = TqM ∀q ∈ M.

Theorem (Rashevskii-Chow)

If F ⊂ Vec(M) is full-rank and M is connected, then Oq = M ∀ q ∈ M.

Proof.

• Take any q ∈ M and any q1 ∈ Oq.

• We have Tq1Oq ⊃ Lieq1(F) = Tq1M, thus dimOq = dimM, i.e., Oq is open in M.

• On the other hand, any orbit is closed as a complement to the union of all other

orbits.

• Thus any orbit is a connected component of M. Since M is connected, each orbit

coincides with M.
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Corollary: Lie algebra rank condition

Corollary (Lie algebra rank condition, LARC)

If a manifold M is connected, and a system F ⊂ Vec(M) is symmetric and completely

nonholonomic, then it is globally controllable on M.
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Distributions
• A distribution on a smooth manifold M is a smooth mapping

∆: q 7→ ∆q ⊂ TqM, q ∈ M,

where the vector subspaces ∆q have the same dimension called the rank of ∆.
• An immersed submanifold N ⊂ M is called an integral manifold of a distribution ∆
if ∀q ∈ N TqN = ∆q.

• A distribution ∆ on M is called integrable if for any point q ∈ M there exists an

integral manifold Nq ∋ q.
• Denote by ∆̄ = {f ∈ Vec(M) | f (q) ∈ ∆q ∀q ∈ M} the set of vector �elds

tangent to ∆.
• A distribution ∆ is called holonomic if [∆̄, ∆̄] ⊂ ∆̄.
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Corollary: Frobenius theorem

Theorem (Frobenius)

A distribution is integrable i� it is holonomic.

Proof:

• Necessity. Take any f , g ∈ ∆̄. Let q ∈ M, and let Nq ∋ q be the integral manifold

of ∆ through q.

• Then

φ(t) = e−tg ◦ e−tf ◦ etg ◦ etf (q) ∈ Nq,

thus
d

dt

∣∣∣∣
t=0

φ(
√
t) = [f , g ](q) ∈ TqNq = ∆q.

• So [f , g ] ∈ ∆̄, and the inclusion [∆̄, ∆̄] ⊂ ∆̄ follows.
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Frobenius theorem

• Su�ciency. We consider only the analytic case.

• We have

[∆̄, ∆̄] ⊂ ∆̄, [[∆̄, ∆̄], ∆̄] ⊂ [∆̄, ∆̄] ⊂ ∆̄.

• Inductively Lieq(∆̄) ⊂ ∆̄q = ∆q.

• The reverse inclusion is obvious, thus Lieq(∆̄) = ∆q, q ∈ M.

Denote Nq = Oq(∆̄) and prove that Nq is an integral manifold of ∆:

Tq′Nq = Tq′(Oq(∆̄)) = Lieq′(∆̄) = ∆q′ , q′ ∈ Nq.

• So Nq ∋ q is the integral manifold of ∆, and ∆ is integrable.
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Corollary: Frobenius condition

• Consider a local frame of ∆:

∆q = span(f1(q), . . . , fk(q)), q ∈ S ⊂ M, f1, . . . , fk ∈ Vec(S), k = dim∆q,

where S is an open subset of M.

• Then the inclusion [∆̄, ∆̄] ⊂ ∆̄ takes the form

[fi , fj ](q) =
k∑

l=1

c lij(q)fl(q), q ∈ S , c lij ∈ C∞(S).

• This equality is called the Frobenius condition.
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Example:
The sub-Riemannian problem on the group of motions of the plane
• The control system has the following form:

F = {u1f1 + u2f2 | (u1, u2) ∈ R2} ⊂ Vec(R2 × S1),

f1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, f2 =

∂

∂θ
.

• The system is symmetric: F = −F .

• Compute its Lie algebra:

[f1, f2] = sin θ
∂

∂x
− cos θ

∂

∂y
=: f3,

Lieq(F) = span(f1(q), f2(q), f3(q)) = Tq(R2 × S1).

• The system F is completely nonholonomic, thus controllable.
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Example:
Orbits of di�erent dimensions

• Let

M = Rx , F =

{
x
∂

∂x

}
⊂ Vec(M).

• We have:

x0 > 0 ⇒ Ox0 = {x > 0},
x0 = 0 ⇒ Ox0 = {x = 0},
x0 < 0 ⇒ Ox0 = {x < 0},

• Thus the system has two one-dimensional orbits and one zero-dimensional orbit.
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Example:
More orbits of di�erent dimensions

• Let

M = R3
x ,y ,z , F =

{
x
∂

∂y
− y

∂

∂x
, y

∂

∂z
− z

∂

∂y
, z

∂

∂x
− x

∂

∂z

}
⊂ Vec(M).

• Then for any point q ∈ R3

Oq = {(x , y , z) ∈ R3 | x2 + y2 + z2 = |q|2},

• This is a sphere for q ̸= 0 and a point for q = 0.

• An orbit of a control system is a generalisation of a trajectory of a vector �eld to

the case of more than one vector �eld.
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Exercises

1. Prove formula (1).

2. Let N ⊂ M be an immersed submanifold. Prove that if a vector �eld f ∈ Vec(M)
satis�es the condition f (q) ∈ TqN for all q ∈ N, then etf (q) ∈ N for all q ∈ N,

|t| < ε.

3. Study integrability of the distribution ∆ = span (f1, f2), f1 = z ∂
∂x + x ∂

∂z ,

f2 = z ∂
∂y + y ∂

∂z , (x , y , z) ∈ R3, z ̸= 0. If it is integrable, describe its integral

manifolds.

4. Prove that the mappings ti 7→ eti fi (q) are continuous in the topology of MF ; see
item 7) of the proof of the Orbit Theorem.

5. Fill the gaps in item 8) of the proof of the Orbit Theorem.
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