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2. Seeing the Traces:
By the stream and under the trees, scattered are the traces of the lost;

The sweet-scented grasses are growing thick — did he find the way?
However remote over the hills and far away the beast may wander,
His nose reaches the heavens and none can conceal it.

Pu-ming, “The Ten Ozherding Pictures”
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Reminder: Plan of the previous lecture

. Lie groups, Lie algebras, and left-invariant optimal control problems
. Controllability of linear systems
. Local controllability of nonlinear systems

. Orbit of a control system
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Plan of this lecture

1. Preliminaries.

2. The Orbit theorem.
3. Corollaries of the Orbit theorem:

® Orbit and Lie algebra of the system
Rashevskii—-Chow theorem,
Lie algebra rank condition,
Frobenius theorem.
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Orbit of a control system

® A control system on a smooth manifold M is an arbitrary set of vector fields
F C Vec(M).
® The attainable set of the system F from a point gg € M:

Aqoz{et/vf/vo...oetlﬂ(qo)’t,'ZO, fie F, NeN}L
® The orbit of the system F through the point qo:
Og = {eMW o 0eff(q) | t; €R, ficF, NN}

qo
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Action of diffeomorphisms on tangent vectors and vector fields

® Let V € Vec(M), and let ®: M — N be a diffeomorphism, i.e., a smooth bijective
mapping with a smooth inverse.

¢ The vector field @,V € Vec(N) is defined as

d
OVio = | @eoeV(a) = 2ua(V(4))

® Thus we have a mapping . : Vec(M) — Vec(N), push-forward of vector fields
from the manifold M to the manifold N under the action of the diffeomorphism ¢.
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Immersed submanifolds

® A subset W of a smooth manifold M is called a k-dimensional immersed
submanifold of M if there exists a k-dimensional manifold N and a smooth
mapping F: N — M such that:
® F is injective
® KerfF,q=0foranyge N
o W =F(N).
® Example: Figure of eight is a 1-dimensional immersed submanifold of the
2-dimensional plane.
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Example: Irrational winding of the torus

Torus T? = R?/(2n Z?) = {(x,y) € S' x S1}
Vector field V = pa—aX + q% € Vec(T?), p? + q* # 0.
The orbit Op of V through the origin 0 € T? may have two different types:
(1) p/ge QU {oc}. Then cl Oy = Oo.
(2) p/qeR\Q. Then cl Og = T?. In this case the orbit Op is called the irrational

winding of the torus.
In the both cases the orbit Qg is an immersed submanifold of the torus, but in the
second case it is not embedded.
So even for one vector field the orbit may be an immersed submanifold, but not an
embedded one
An immersed submanifold N = F(W) C M is called embedded if F : W — N is a
homeomorphism in the topology induced by the inclusion N C M. In case (2) the
topology of the orbit induced by the inclusion @y C R? is weaker than the
topology of the orbit induced by the immersion t — et (0), R — Op.
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The Orbit theorem

Theorem (Orbit theorem, Nagano—Sussmann)

Let F C Vec(M), and let qo € M.

(1) The orbit Og, is a connected immersed submanifold of M.
(2) Forany q € Og,

TqOqo = span(P..F)(q) = span{(P.V)(q) | PP, V € F},
’P:{et’\’f’\’o‘--oetlfl‘t,'ER, fi e F, NGN}.
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Proof of the Orbit theorem: 1/7
Proof.
® Introduce a vector space important in the sequel

Mg = span(P.F)(q) C TqM, ge M,
this is a candidate tangent space to the orbit Oy, .
1) We prove that for all g € Og, we have dim g = dim Mg,.
Choose any point g € Og,, then g = Q(q0)., Q € P. Let us show that
Q. (MNg) C My,
Choose any element (P.f)(q) € Mg, P € P, f € F. Then
Q(PA)(@)] = (Q 0 PF)(Q7H(q))

=[(Q7! o P).f](q0) € (P<F)(go) C Mg
Thus Q;1(MNy) C Mgy, whence dim M, < dim Mg,. Interchanging in this arguments
g and qo, we get dim My, < dim[l,.
Finally we have dim Mg = dimTlg,, g € Og,.
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Proof of the Orbit theorem: 2/7

2) For any point g € M denote m = dimT1,, and choose such vector fields
Vi,..., Vim € P..F that My = span(Vi(q),. .., Vm(q)).

Further, define a mapping

Gy:(tr,... . tm)— emVmo...0eftV1(q), R™ — M.
q

We have %(t;l"(O) = Vi(q), thus the vectors %f" 0),..., g—gj(O) are linearly
independent.

Consequently, the restriction of Gq4 to a sufficiently small neighbourhood W of the
origin in R™ is a submersion.

3) The image G4(Wp) is an (embedded) submanifold of M, may be, for a smaller
neighbourhood Wj.
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Proof of the Orbit theorem: 3/7

4) We show that G4(Wp) C Og.
We have G,(Wp) = {efmVmo...0etVi(q) | t = (t1,...,tm) € Wo}.
Since Vi = P.f,P e P, f € F, we get

etVi(q) = 1P f(q) = Po e’ o P71(q) € O,
Exercise: prove that
etPf(q) = Poetf o P71(q), f € Vec(M), P eDiff(M), teR. (1)

We conclude similarly that e®2V2 0 e1V1(q) € O, etc. Finally we have G,(t) € O,
te Ws.
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Proof of the Orbit theorem: 4/7

® 5) We show that Gg, (T:R™) =g, 1), t € Wp. We have

dim Gg, (T:R™) = m = dim Mg, (¢), thus it suffices to prove the inclusion

%f()EnG(t), te W.

® |et us compute this partial derivative:

8Gq_£ethmo_” t,'\/,‘o”.oetlvl(

= o e
ot; ot;

denote R = etmVm o ... o elittVit1 ¢ = eli-1Vi-10... 0 e1V1(g),

q)

0 ny
= 3R e(d) = RVi(e(4)

— (R*\/,)[R cetiViog... o etlvl(q)]
= (R Vi)(Gq(1)) € (PuF)(Gq(t)) C M, (r)-
® Thus G4, (T:R™) = Mg, (t) i-e., the space Mg, (1) is a tangent space to the smooth
manifold G4(Wp) at the point Gg(t).
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Proof of the Orbit theorem: 5/7
6) We prove that the sets G4(W)) form a base of a (“strong”) topology on M.
6a) It is obvious that any point g € M is contained in the set G4(Wp).
6b) Let us show that for any point g € G4(Wp) N Ga(VNVo) there exists a set
Gg(Wo) C Gg(Wo) N Gg(Wh).

Take any point g € Gq(Wp) N Ga(VNVo) and consider G4(t) = etmVm .. ot \71(5)_

For any point g’ € G,(Wp) we have Vi(q') € (P.F)(q') C My But Go(Wp) is a
submanifold with the tangent space Ty G4(Wo) = Myr. The vector field V; is
tangent to this submanifold, thus et1\71(a) € Gg(Wp) for small |t;|. We conclude
similarly that e2V2 o et1‘71(6) € Gg(Wh) for small |t1], |t2] etc. Finally we get

G5(t) € Gq(Wp) for small |t|.

Similarly G4(t) € Gz(Wh) for small |t]. Thus G4(Wo) C G4(Wo) N Gg( W) for
some neighbourhood W), and property 6b) is proved.
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T Gq(Wo)

Figure: Intersection of
neighborhoods in topology base

Figure: Intersection of
neighborhoods not in
topology base
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Proof of the Orbit theorem: 6/7

It follows from properties 6a) and 6b) that the sets Gg(Wp) form a base of
topology on the set M. Denote the corresponding topological space as M.

7) We show that for any go € M the orbit Og, is connected, open and closed in
the space M7 .

The mappings t; — €%fi(q) are continuous in M7, thus Oy, is connected.

Any point g € O, is contained in the neighbourhood G4(Wp) C Og = Oy, thus
the orbit is open in M7

Finally, any orbit is a complement in M to orbits with which it does not intersect.

Thus any orbit is closed in M7

So any orbit O, is a connected component of the topological space M7
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Proof of the Orbit theorem: 7/7

8) Introduce a smooth structure on O, as follows:
® the sets G4(Wp) are called coordinate neighbourhoods
® the mappings Gq’1 . Gg(Wp) — Wy are called coordinate mappings.

It is easy to see that these coordinate neighbourhoods and mappings agree: for
any intersecting neighbourhoods Gq(Wp) and Gz(Wp) the composition

Ggo Gy = Gy (Gg(Wo) N Gg(Wo)) — G (Gg( W) N G W)

is a diffeomorphism.

Thus the orbit Og, is a smooth manifold.

Moreover, Oy C M is an immersed submanifold of dimension m = dim Ig,.

9) It follows from item 5) above that the smooth manifold Og, has a tangent space

T4Oq, = Mg = span(P..F)(q), q € Og.

The Orbit theorem is proved.
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Statement of the Orbit theorem

Theorem (Orbit theorem, Nagano—Sussmann)

Let F C Vec(M), and let qo € M.

(1) The orbit Og, is a connected immersed submanifold of M.
(2) Forany q € Og,

TqOqo = span(P..F)(q) = span{(P.V)(q) | PP, V € F},
P:{ethNo‘--oetlfllt;ER, fi e F, NGN}.
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Corollary: Orbit and Lie algebra of the system

Corollary
For any qo € M and any q € Og, we have Lieg(F) C TqOq,, where

Lieg(F) = span{[fn,[..., [, A]...]l(q) | ie F, N e N} C T4M.

® Proof. Let gqg € M, q € Og,.
® Take any f € F. Then o(t) = etf(q) € Og,. thus ¢(0) = (q) € T,O04. It
follows that F(q) C TqOg,-
® Further, take any f1,f € F, then o(t) = e 2 o e " o et 0 etfi(q) € O,. Thus
qd
dt|—o
It follows that [F, F](q) C TqOg,.
® We prove similarly that [[F, F], F](q) C TqOg,, and by induction that
Lieg(F) C TqOq-

So(ﬁ) = [, R](q) € TqOq-

O
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Analytic and non-analytic cases
® In the analytic case the inclusion Lieg(F) C TqOy, turns into an equality.

Proposition
Let M and F be real-analytic. Then for any qo € M and any g € O,

Lieg(F) = TqOq,-

® But in a smooth non-analytic case the inclusion Liey(F) C TqOq, may become
strict.
e Example: Orbit of non-analytic system.
clet M=R2 F={fhtA=2 fHh= a(x)%, where a € C*(R), a(x) = 0 for
x <0, a(x) > 0 for x > 0.
® It is easy to see that O, = R? for any g = (x,y) € R
® Although, for x < 0 we have

Lieq(F) = span(f(q)) # TqOq-
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Corollary: Rashevskii-Chow theorem

® A system F C Vec(M) is called completely nonholonomic (full-rank,
bracket-generating) if Lieg(F) = TqM Vg € M.
Theorem (Rashevskii-Chow)
If F C Vec(M) is full-rank and M is connected, then Og = M VgeM.
Proof.
® Take any g € M and any q; € O.
® We have T4, 04 D Lieg, (F) = Tg, M, thus dim Og = dim M, i.e., Oq is open in M.

® On the other hand, any orbit is closed as a complement to the union of all other
orbits.

® Thus any orbit is a connected component of M. Since M is connected, each orbit
coincides with M.

O]
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Corollary: Lie algebra rank condition

Corollary (Lie algebra rank condition, LARC)

If a manifold M is connected, and a system F C Vec(M) is symmetric and completely
nonholonomic, then it is globally controllable on M.
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Distributions

A distribution on a smooth manifold M is a smooth mapping
A:qg— Ay CTgM, qe M,

where the vector subspaces A, have the same dimension called the rank of A.

An immersed submanifold N C M is called an integral manifold of a distribution A
if Vge N TgN=A,.

A distribution A on M is called integrable if for any point g € M there exists an
integral manifold N, > g.

Denote by A = {f € Vec(M) | f(q) € A, Yq € M} the set of vector fields
tangent to A.

A distribution A is called holonomic if [A, A] C A.
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Corollary: Frobenius theorem

Theorem (Frobenius)
A distribution is integrable iff it is holonomic.
Proof.

® Necessity. Take any f,g € A. Let g € M, and let Ng > q be the integral manifold
of A through q.

® Then
o(t)=e ®oe Toe®oel(q) e N,
thus J
2| eV =1[f.gl(q) € ToNg = Aq.
t=0

® So [f,g] € A, and the inclusion [A, A] C A follows.

24 /30



Frobenius theorem

Sufficiency. We consider only the analytic case.

We have o _ o o B
[A,A]c A, [[AALA]c[AA] CA

Inductively Lieg(A) C A, = A,

The reverse inclusion is obvious, thus Lies(A) = Ag, g € M.

Denote Ny = Og(A) and prove that N is an integral manifold of A:

TyNg = T (Og(B)) = Lieg(A) = Ay, ¢ € N,

So Ng > q is the integral manifold of A, and A is integrable.
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Corollary: Frobenius condition

e Consider a local frame of A:
Ay =span(fi(q),...,f(q)), geSCM, fi,....,fk € Vec(S), k=dimAg,
where S is an open subset of M.

e Then the inclusion [A, A] C A takes the form

k
[fi, f1(a) =D _ci(a)fila), a€S, cfeC(S),

=1

® This equality is called the Frobenius condition.
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Example:
The sub-Riemannian problem on the group of motions of the plane

® The control system has the following form:

F ={unfi + wh | (v, ) € R’} C Vec(R? x S,
3}

fh= Eﬂg'

fi = cos€aax + sin 9@,
® The system is symmetric: F = —F.
® Compute its Lie algebra:

[f1, f2] =sin 0% - coseaay =: f3,

Lieg(F) = span(fi(q), £(q), (q)) = Tq(R? x S).

® The system F is completely nonholonomic, thus controllable.
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® |et

® \\e have;

Example:
Orbits of different dimensions

0
M =R,, F= {Xﬁx} C Vec(M).

x>0 = O, ={x>0}
x=0 = 04 ={x=0},
<0 = 0O4={x<0},

® Thus the system has two one-dimensional orbits and one zero-dimensional orbit.
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Example:
More orbits of different dimensions

Let

0 0 0 0 0

0
M = Ri%Z, F = {Xay “Vaor Vor z@, 2o X@z} C Vec(M).

Then for any point g € R3
Oq = {(x,y,2) R} | X +y* + 2% = [q*},

This is a sphere for g # 0 and a point for g = 0.

An orbit of a control system is a generalisation of a trajectory of a vector field to
the case of more than one vector field.
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Exercises

1. Prove formula (1).

. Let N C M be an immersed submanifold. Prove that if a vector field f € Vec(M)
satisfies the condition f(q) € T,N for all g € N, then ef(q) € N for all g € N,
[t| < e.

. Study integrability of the distribution A =span (f, %), fi = za% + x%,

f = za% + y%, (x,y,z) € R3, z £ 0. If it is integrable, describe its integral
manifolds.

. Prove that the mappings t; — efifi(g) are continuous in the topology of M7 see
item 7) of the proof of the Orbit Theorem.

. Fill the gaps in item 8) of the proof of the Orbit Theorem.
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