Orbit theorem (Lecture 3)

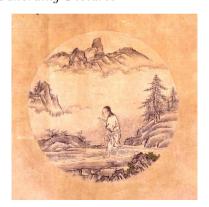
Yuri L. Sachkov

yusachkov@gmail.com

«Introduction to geometric control theory»
Lecture course in Dept. of Mathematics and Mechanics
Lomonosov Moscow State University

2. Seeing the Traces:

By the stream and under the trees, scattered are the traces of the lost; The sweet-scented grasses are growing thick — did he find the way? However remote over the hills and far away the beast may wander, His nose reaches the heavens and none can conceal it. Pu-ming. "The Ten Oxherding Pictures"



Reminder: Plan of the previous lecture

- 1. Lie groups, Lie algebras, and left-invariant optimal control problems
- 2. Controllability of linear systems
- 3. Local controllability of nonlinear systems
- 4. Orbit of a control system

Plan of this lecture

- 1. Preliminaries.
- 2. The Orbit theorem.
- 3. Corollaries of the Orbit theorem:
 - Orbit and Lie algebra of the system
 - Rashevskii–Chow theorem,
 - Lie algebra rank condition,
 - Frobenius theorem.

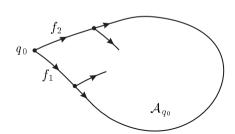
Orbit of a control system

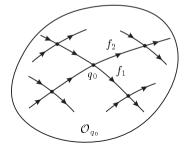
- A *control system* on a smooth manifold M is an arbitrary set of vector fields $\mathcal{F} \subset \text{Vec}(M)$.
- The attainable set of the system $\mathcal F$ from a point $q_0 \in M$:

$$\mathcal{A}_{q_0} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1}(q_0) \mid t_i \geq 0, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.$$

• The *orbit* of the system \mathcal{F} through the point q_0 :

$$\mathcal{O}_{q_0} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1}(q_0) \mid t_i \in \mathbb{R}, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.$$



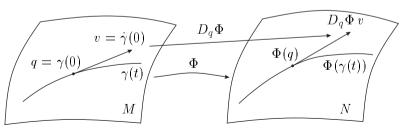


Action of diffeomorphisms on tangent vectors and vector fields

- Let $V \in \text{Vec}(M)$, and let $\Phi \colon M \to N$ be a *diffeomorphism*, i.e., a smooth bijective mapping with a smooth inverse.
- The vector field $\Phi_*V \in \text{Vec}(N)$ is defined as

$$\left. \Phi_* V
ight|_{\Phi(q)} = \left. rac{d}{dt}
ight|_{t=0} \quad \Phi \circ e^{tV}(q) = \Phi_{*q}(V(q)).$$

• Thus we have a mapping Φ_* : Vec $(M) \to \text{Vec}(N)$, push-forward of vector fields from the manifold M to the manifold N under the action of the diffeomorphism Φ .



Immersed submanifolds

- A subset W of a smooth manifold M is called a k-dimensional immersed submanifold of M if there exists a k-dimensional manifold N and a smooth mapping $F: N \to M$ such that:
 - *F* is injective
 - Ker $F_{*q} = 0$ for any $q \in N$
 - W = F(N).
- Example: Figure of eight is a 1-dimensional immersed submanifold of the 2-dimensional plane.

Example: Irrational winding of the torus

- Torus $\mathbb{T}^2 = \mathbb{R}^2/(2\pi \mathbb{Z}^2) = \{(x, y) \in S^1 \times S^1\}$
- Vector field $V = p \frac{\partial}{\partial x} + q \frac{\partial}{\partial y} \in \text{Vec}(\mathbb{T}^2), \ p^2 + q^2 \neq 0.$
- The orbit \mathcal{O}_0 of V through the origin $0 \in \mathbb{T}^2$ may have two different types:
 - (1) $p/q \in \mathbb{Q} \cup \{\infty\}$. Then cl $\mathcal{O}_0 = \mathcal{O}_0$.
 - (2) $p/q \in \mathbb{R} \setminus \mathbb{Q}$. Then cl $\mathcal{O}_0 = \mathbb{T}^2$. In this case the orbit \mathcal{O}_0 is called the *irrational* winding of the torus.
- In the both cases the orbit \mathcal{O}_0 is an immersed submanifold of the torus, but in the second case it is not embedded.
- So even for one vector field the orbit may be an immersed submanifold, but not an embedded one
- An immersed submanifold $N = F(W) \subset M$ is called *embedded* if $F: W \to N$ is a homeomorphism in the topology induced by the inclusion $N \subset M$. In case (2) the topology of the orbit induced by the inclusion $\mathcal{O}_0 \subset \mathbb{R}^2$ is weaker than the topology of the orbit induced by the immersion $t \mapsto e^{tV}(0)$, $\mathbb{R} \to \mathcal{O}_0$.

The Orbit theorem

Theorem (Orbit theorem, Nagano-Sussmann)

Let $\mathcal{F} \subset \text{Vec}(M)$, and let $q_0 \in M$.

- (1) The orbit \mathcal{O}_{q_0} is a connected immersed submanifold of M.
- (2) For any $q \in \mathcal{O}_{q_0}$

$$T_q \mathcal{O}_{q_0} = \operatorname{span}(\mathcal{P}_* \mathcal{F})(q) = \operatorname{span}\{(P_* V)(q) \mid P \in \mathcal{P}, \quad V \in \mathcal{F}\},\$$

 $\mathcal{P} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1} \mid t_i \in \mathbb{R}, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.$

Proof of the Orbit theorem: 1/7

Proof

• Introduce a vector space important in the sequel

$$\Pi_q = \operatorname{span}(\mathcal{P}_*\mathcal{F})(q) \subset T_qM, \qquad q \in M,$$

this is a candidate tangent space to the orbit \mathcal{O}_{q_0} .

- 1) We prove that for all $q \in \mathcal{O}_{q_0}$ we have $\dim \Pi_q = \dim \Pi_{q_0}$.
- Choose any point $q\in\mathcal{O}_{q_0}$, then $q=Q(q_0)$, $Q\in\mathcal{P}$. Let us show that $Q_*^{-1}(\Pi_q)\subset\Pi_{q_0}$.
- Choose any element $(P_*f)(q) \in \Pi_q$, $P \in \mathcal{P}$, $f \in \mathcal{F}$. Then

$$egin{aligned} Q_*^{-1}[(P_*f)(q)] &= (Q_*^{-1} \circ P_*f)(Q^{-1}(q)) \ &= [(Q^{-1} \circ P)_*f](q_0) \in (\mathcal{P}_*\mathcal{F})(q_0) \subset \Pi_{q_0}. \end{aligned}$$

Thus $Q_*^{-1}(\Pi_q) \subset \Pi_{q_0}$, whence dim $\Pi_q \leq \dim \Pi_{q_0}$. Interchanging in this arguments q and q_0 , we get dim $\Pi_{q_0} \leq \dim \Pi_q$.

• Finally we have dim $\Pi_q = \dim \Pi_{q_0}, \ q \in \mathcal{O}_{q_0}$.

Proof of the Orbit theorem: 2/7

- 2) For any point $q \in M$ denote $m = \dim \Pi_q$, and choose such vector fields $V_1, \ldots, V_m \in \mathcal{P}_*\mathcal{F}$ that $\Pi_q = \operatorname{span}(V_1(q), \ldots, V_m(q))$.
- Further, define a mapping

$$G_q: (t_1,\ldots,t_m) \mapsto e^{t_m V_m} \circ \cdots \circ e^{t_1 V_1}(q), \qquad \mathbb{R}^m o M.$$

- We have $\frac{\partial G_q}{\partial t_i}(0) = V_i(q)$, thus the vectors $\frac{\partial G_q}{\partial t_1}(0), \dots, \frac{\partial G_q}{\partial t_m}(0)$ are linearly independent.
- Consequently, the restriction of G_q to a sufficiently small neighbourhood W_0 of the origin in \mathbb{R}^m is a submersion.
- 3) The image $G_q(W_0)$ is an (embedded) submanifold of M, may be, for a smaller neighbourhood W_0 .

Proof of the Orbit theorem: 3/7

- 4) We show that $G_q(W_0) \subset \mathcal{O}_q$.
- We have $G_q(W_0) = \{e^{t_m V_m} \circ \cdots \circ e^{t_1 V_1}(q) \mid t = (t_1, \ldots, t_m) \in W_0\}.$
- Since $V_1 = P_*f, P \in \mathcal{P}, f \in \mathcal{F}$, we get

$$e^{t_1 V_1}(q) = e^{t_1 P_* f}(q) = P \circ e^{t_1 f} \circ P^{-1}(q) \in \mathcal{O}_q.$$

Exercise: prove that

$$e^{tP_*f}(q) = P \circ e^{tf} \circ P^{-1}(q), \qquad f \in \text{Vec}(M), \quad P \in \text{Diff}(M), \quad t \in \mathbb{R}.$$
 (1)

• We conclude similarly that $e^{t_2V_2} \circ e^{t_1V_1}(q) \in \mathcal{O}_q$ etc. Finally we have $G_q(t) \in \mathcal{O}_q$, $t \in W_0$.

Proof of the Orbit theorem: 4/7

- 5) We show that $G_{q_*}(T_t\mathbb{R}^m)=\Pi_{G_q(t)}$, $t\in W_0$. We have $\dim G_{q_*}(T_t\mathbb{R}^m)=m=\dim \Pi_{G_q(t)}$, thus it suffices to prove the inclusion $\frac{\partial G_q}{\partial t_i}(t)\in \Pi_{G_q(t)}$, $t\in W_0$.
- Let us compute this partial derivative:

$$\frac{\partial G_q}{\partial t_i} = \frac{\partial}{\partial t_i} e^{t_m V_m} \circ \cdots \circ e^{t_i V_i} \circ \cdots \circ e^{t_1 V_1}(q)$$

denote $R=e^{t_mV_m}\circ\cdots\circ e^{t_{i+1}V_{i+1}}$, $q'=e^{t_{i-1}V_{i-1}}\circ\cdots\circ e^{t_1V_1}(q)$

$$= \frac{\partial}{\partial t_i} R \circ e^{t_i V_i}(q') = R_* V_i(e^{t_i V_i}(q'))$$

$$= (R_* V_i)[R \circ e^{t_i V_i} \circ \cdots \circ e^{t_1 V_1}(q)]$$

$$= (R_* V_i)(G_q(t)) \in (\mathcal{P}_* \mathcal{F})(G_q(t)) \subset \Pi_{G_q(t)}.$$

• Thus $G_{q_*}(T_t\mathbb{R}^m) = \Pi_{G_q(t)}$, i.e., the space $\Pi_{G_q(t)}$ is a tangent space to the smooth manifold $G_q(W_0)$ at the point $G_q(t)$.

Proof of the Orbit theorem: 5/7

- 6) We prove that the sets $G_q(W_0)$ form a base of a ("strong") topology on M.
- 6a) It is obvious that any point $q \in M$ is contained in the set $G_q(W_0)$.
- 6b) Let us show that for any point $\widehat{q} \in G_q(W_0) \cap G_{\widetilde{q}}(\widetilde{W_0})$ there exists a set $G_{\widehat{q}}(\widehat{W_0}) \subset G_q(W_0) \cap G_{\widetilde{q}}(\widetilde{W_0})$.
- Take any point $\widehat{q} \in \mathit{G}_q(W_0) \cap \mathit{G}_{\widetilde{q}}(\widetilde{W_0})$ and consider $\mathit{G}_{\widehat{q}}(t) = e^{t_m \widehat{V}_m} \circ \cdots \circ e^{t_1 \widehat{V}_1}(\widehat{q})$.
- For any point $q' \in G_q(W_0)$ we have $\widehat{V}_1(q') \in (\mathcal{P}_*\mathcal{F})(q') \subset \Pi_{q'}$. But $G_q(W_0)$ is a submanifold with the tangent space $T_{q'}G_q(W_0) = \Pi_{q'}$. The vector field \widehat{V}_1 is tangent to this submanifold, thus $e^{t_1\widehat{V}_1}(\widehat{q}) \in G_q(W_0)$ for small $|t_1|$. We conclude similarly that $e^{t_2\widehat{V}_2} \circ e^{t_1\widehat{V}_1}(\widehat{q}) \in G_q(W_0)$ for small $|t_1|$, $|t_2|$ etc. Finally we get

$$G_{\widehat{q}}(t) \in G_q(W_0)$$
 for small $|t|$.

• Similarly $G_{\widehat{q}}(t) \in G_{\widetilde{q}}(\widetilde{W}_0)$ for small |t|. Thus $G_{\widehat{q}}(\widehat{W}_0) \subset G_q(W_0) \cap G_{\widetilde{q}}(\widetilde{W}_0)$ for some neighbourhood \widehat{W}_0 , and property 6b) is proved.

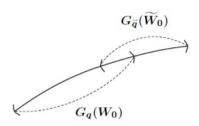


Figure: Intersection of neighborhoods in topology base

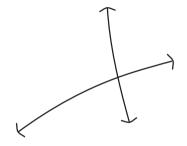


Figure: Intersection of neighborhoods not in topology base

Proof of the Orbit theorem: 6/7

- It follows from properties 6a) and 6b) that the sets $G_q(W_0)$ form a base of topology on the set M. Denote the corresponding topological space as $M^{\mathcal{F}}$.
- 7) We show that for any $q_0 \in M$ the orbit \mathcal{O}_{q_0} is connected, open and closed in the space $M^{\mathcal{F}}$.
- The mappings $t_i\mapsto e^{t_if_i}(q)$ are continuous in $M^{\mathcal{F}}$, thus \mathcal{O}_{q_0} is connected.
- Any point $q \in \mathcal{O}_{q_0}$ is contained in the neighbourhood $G_q(W_0) \subset \mathcal{O}_q = \mathcal{O}_{q_0}$, thus the orbit is open in $M^{\mathcal{F}}$.
- Finally, any orbit is a complement in M to orbits with which it does not intersect. Thus any orbit is closed in $M^{\mathcal{F}}$.
- So any orbit \mathcal{O}_{q_0} is a connected component of the topological space $M^{\mathcal{F}}$.

Proof of the Orbit theorem: 7/7

- 8) Introduce a smooth structure on \mathcal{O}_{q_0} as follows:
 - the sets $G_{\alpha}(W_0)$ are called coordinate neighbourhoods
 - the mappings $G_a^{-1}: G_a(W_0) \to W_0$ are called coordinate mappings.
- It is easy to see that these coordinate neighbourhoods and mappings agree: for any intersecting neighbourhoods $G_q(W_0)$ and $G_{\widetilde{q}}(\widetilde{W_0})$ the composition

$$G_{\widetilde{q}}\circ G_q\,:\,G_q^{-1}(G_q(W_0)\cap G_{\widetilde{q}}(\widetilde{W_0}))
ightarrow G_{\widetilde{q}}^{-1}(G_q(W_0)\cap G_{\widetilde{q}}(\widetilde{W_0}))$$

is a diffeomorphism.

- Thus the orbit \mathcal{O}_{q_0} is a smooth manifold.
- Moreover, $\mathcal{O}_{q_0} \subset M$ is an immersed submanifold of dimension $m = \dim \Pi_{q_0}$.
- 9) It follows from item 5) above that the smooth manifold \mathcal{O}_{q_0} has a tangent space

$$T_q\mathcal{O}_{q_0}=\Pi_q=\mathsf{span}(\mathcal{P}_*\mathcal{F})(q), \qquad q\in\mathcal{O}_{q_0}.$$

The Orbit theorem is proved.

Statement of the Orbit theorem

Theorem (Orbit theorem, Nagano-Sussmann)

Let $\mathcal{F} \subset \text{Vec}(M)$, and let $q_0 \in M$.

- (1) The orbit \mathcal{O}_{q_0} is a connected immersed submanifold of M.
- (2) For any $q \in \mathcal{O}_{q_0}$

$$T_q \mathcal{O}_{q_0} = \operatorname{span}(\mathcal{P}_* \mathcal{F})(q) = \operatorname{span}\{(P_* V)(q) \mid P \in \mathcal{P}, \quad V \in \mathcal{F}\},\$$

 $\mathcal{P} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1} \mid t_i \in \mathbb{R}, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.$

Corollary: Orbit and Lie algebra of the system

Corollary

For any $q_0 \in M$ and any $q \in \mathcal{O}_{q_0}$ we have $\operatorname{Lie}_q(\mathcal{F}) \subset T_q\mathcal{O}_{q_0}$, where

$$\mathsf{Lie}_q(\mathcal{F}) = \mathsf{span}\{[f_{\mathcal{N}}, [\ldots, [f_2, f_1] \ldots]](q) \mid f_i \in \mathcal{F}, \ \mathcal{N} \in \mathbb{N}\} \subset T_q \mathcal{M}.$$

- Proof. Let $q_0 \in M$, $q \in \mathcal{O}_{q_0}$.
- Take any $f \in \mathcal{F}$. Then $\varphi(t) = e^{tf}(q) \in \mathcal{O}_{q_0}$, thus $\dot{\varphi}(0) = f(q) \in \mathcal{T}_q \mathcal{O}_{q_0}$. It follows that $\mathcal{F}(q) \subset \mathcal{T}_q \mathcal{O}_{q_0}$.
- Further, take any $f_1,f_2\in\mathcal{F}$, then $\varphi(t)=e^{-tf_2}\circ e^{-tf_1}\circ e^{tf_2}\circ e^{tf_1}(q)\in\mathcal{O}_{q_0}$. Thus

$$\left. rac{d}{dt} \right|_{t=0} \; arphi(\sqrt{t}) = [f_1,f_2](q) \in T_q \mathcal{O}_{q_0}.$$

It follows that $[\mathcal{F},\mathcal{F}](q)\subset T_q\mathcal{O}_{q_0}$.

• We prove similarly that $[[\mathcal{F},\mathcal{F}],\mathcal{F}](q)\subset T_q\mathcal{O}_{q_0}$, and by induction that $\mathrm{Lie}_q(\mathcal{F})\subset T_q\mathcal{O}_{q_0}$.

Analytic and non-analytic cases

• In the analytic case the inclusion $\operatorname{Lie}_{a}(\mathcal{F}) \subset T_{a}\mathcal{O}_{a_{0}}$ turns into an equality.

Proposition

Let M and ${\mathcal F}$ be real-analytic. Then for any $q_0\in M$ and any $q\in {\mathcal O}_{q_0}$

$$\operatorname{\mathsf{Lie}}_q(\mathcal{F}) = \mathcal{T}_q \mathcal{O}_{q_0}.$$

- But in a smooth non-analytic case the inclusion $\mathrm{Lie}_q(\mathcal{F}) \subset T_q\mathcal{O}_{q_0}$ may become strict.
- Example: Orbit of non-analytic system.
 - let $M = \mathbb{R}^2_{x,y}$, $\mathcal{F} = \{f_1, f_2\}$, $f_1 = \frac{\partial}{\partial x}$, $f_2 = a(x)\frac{\partial}{\partial y}$, where $a \in C^{\infty}(\mathbb{R})$, a(x) = 0 for x < 0, a(x) > 0 for x > 0.
 - It is easy to see that $\mathcal{O}_q = \mathbb{R}^2$ for any $q = (x, y) \in \mathbb{R}^2$.
 - Although, for x < 0 we have

$$\mathsf{Lie}_q(\mathcal{F}) = \mathsf{span}(f_1(q))
eq T_q \mathcal{O}_q.$$

Corollary: Rashevskii-Chow theorem

• A system $\mathcal{F} \subset \text{Vec}(M)$ is called *completely nonholonomic* (full-rank, bracket-generating) if $\text{Lie}_q(\mathcal{F}) = T_q M \quad \forall q \in M$.

Theorem (Rashevskii-Chow)

If $\mathcal{F} \subset \text{Vec}(M)$ is full-rank and M is connected, then $\mathcal{O}_q = M$ $\forall q \in M$.

- ullet Take any $q\in M$ and any $q_1\in \mathcal{O}_q$.
- We have $T_{q_1}\mathcal{O}_q\supset \operatorname{Lie}_{q_1}(\mathcal{F})=T_{q_1}M$, thus $\dim\mathcal{O}_q=\dim M$, i.e., \mathcal{O}_q is open in M.
- On the other hand, any orbit is closed as a complement to the union of all other orbits.
- Thus any orbit is a connected component of M. Since M is connected, each orbit coincides with M.

Corollary: Lie algebra rank condition

Corollary (Lie algebra rank condition, LARC)

If a manifold M is connected, and a system $\mathcal{F} \subset \mathsf{Vec}(M)$ is symmetric and completely nonholonomic, then it is globally controllable on M.

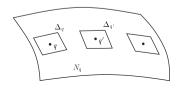
Distributions

• A distribution on a smooth manifold M is a smooth mapping

$$\Delta \colon q \mapsto \Delta_q \subset T_q M, \quad q \in M,$$

where the vector subspaces Δ_q have the same dimension called the rank of Δ .

- An immersed submanifold $N \subset M$ is called an *integral manifold* of a distribution Δ if $\forall q \in N \mid T_q N = \Delta_q$.
- A distribution Δ on M is called *integrable* if for any point $q \in M$ there exists an integral manifold $N_q \ni q$.
- Denote by $\bar{\Delta} = \{ f \in \text{Vec}(M) \mid f(q) \in \Delta_q \quad \forall q \in M \}$ the set of vector fields tangent to Δ .
- A distribution Δ is called *holonomic* if $[\bar{\Delta}, \bar{\Delta}] \subset \bar{\Delta}$.



Corollary: Frobenius theorem

Theorem (Frobenius)

A distribution is integrable iff it is holonomic.

Proof

- *Necessity*. Take any $f, g \in \bar{\Delta}$. Let $q \in M$, and let $N_q \ni q$ be the integral manifold of Δ through q.
- Then

$$\varphi(t) = e^{-tg} \circ e^{-tf} \circ e^{tg} \circ e^{tf}(q) \in N_q,$$

thus

$$\left. rac{d}{dt} \right|_{t=0} \, arphi(\sqrt{t}) = [f,g](q) \in \mathit{T}_q \mathit{N}_q = \Delta_q.$$

• So $[f,g]\in \bar{\Delta}$, and the inclusion $[\bar{\Delta},\bar{\Delta}]\subset \bar{\Delta}$ follows.

Frobenius theorem

- Sufficiency. We consider only the analytic case.
- We have

$$[\bar{\Delta},\bar{\Delta}]\subset\bar{\Delta},\qquad [[\bar{\Delta},\bar{\Delta}],\bar{\Delta}]\subset[\bar{\Delta},\bar{\Delta}]\subset\bar{\Delta}.$$

- ullet Inductively $\operatorname{\mathsf{Lie}}_q(ar{\Delta})\subset ar{\Delta}_q=\Delta_q.$
- The reverse inclusion is obvious, thus $\operatorname{Lie}_q(\bar{\Delta}) = \Delta_q, \ q \in M$. Denote $N_q = \mathcal{O}_q(\bar{\Delta})$ and prove that N_q is an integral manifold of Δ :

$$T_{q'} N_q = T_{q'} (\mathcal{O}_q(\bar{\Delta})) = \mathsf{Lie}_{q'}(\bar{\Delta}) = \Delta_{q'}, \quad q' \in \mathit{N}_q.$$

• So $N_q \ni q$ is the integral manifold of Δ , and Δ is integrable.

Corollary: Frobenius condition

• Consider a *local frame* of Δ :

$$\Delta_q = \operatorname{span}(f_1(q), \dots, f_k(q)), \quad q \in S \subset M, \quad f_1, \dots, f_k \in \operatorname{Vec}(S), \quad k = \dim \Delta_q,$$
 where S is an open subset of M .

• Then the inclusion $[\bar{\Delta},\bar{\Delta}]\subset\bar{\Delta}$ takes the form

$$[f_i,f_j](q)=\sum_{l=1}^k c_{ij}^l(q)f_l(q), \qquad q\in\mathcal{S}, \quad c_{ij}^l\in C^\infty(\mathcal{S}).$$

• This equality is called the *Frobenius condition*.

Example:

The sub-Riemannian problem on the group of motions of the plane

• The control system has the following form:

$$\mathcal{F} = \{ u_1 f_1 + u_2 f_2 \mid (u_1, u_2) \in \mathbb{R}^2 \} \subset \text{Vec}(\mathbb{R}^2 \times S^1),$$

$$f_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \qquad f_2 = \frac{\partial}{\partial \theta}.$$

- The system is symmetric: $\mathcal{F} = -\mathcal{F}$.
- Compute its Lie algebra:

$$[f_1, f_2] = \sin \theta \frac{\partial}{\partial x} - \cos \theta \frac{\partial}{\partial y} =: f_3,$$

$$Lie_q(\mathcal{F}) = span(f_1(q), f_2(q), f_3(q)) = T_q(\mathbb{R}^2 \times S^1).$$

ullet The system ${\mathcal F}$ is completely nonholonomic, thus controllable.

Example:

Orbits of different dimensions

Let

$$M = \mathbb{R}_x, \qquad \mathcal{F} = \left\{ x \frac{\partial}{\partial x} \right\} \subset \mathsf{Vec}(M).$$

• We have:

$$x_0 > 0 \Rightarrow \mathcal{O}_{x_0} = \{x > 0\},\ x_0 = 0 \Rightarrow \mathcal{O}_{x_0} = \{x = 0\},\ x_0 < 0 \Rightarrow \mathcal{O}_{x_0} = \{x < 0\},\$$

• Thus the system has two one-dimensional orbits and one zero-dimensional orbit.

Example:

More orbits of different dimensions

Let

$$M = \mathbb{R}^3_{x,y,z}, \qquad \mathcal{F} = \left\{ x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}, \ y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}, \ z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right\} \subset \mathsf{Vec}(M).$$

• Then for any point $q \in \mathbb{R}^3$

$$\mathcal{O}_{q} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = |q|^{2}\},$$

- This is a sphere for $q \neq 0$ and a point for q = 0.
- An orbit of a control system is a generalisation of a trajectory of a vector field to the case of more than one vector field.

Exercises

- 1. Prove formula (1).
- 2. Let $N \subset M$ be an immersed submanifold. Prove that if a vector field $f \in \text{Vec}(M)$ satisfies the condition $f(q) \in T_q N$ for all $q \in N$, then $e^{tf}(q) \in N$ for all $q \in N$, $|t| < \varepsilon$.
- 3. Study integrability of the distribution $\Delta = \operatorname{span}(f_1, f_2)$, $f_1 = z \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}$, $f_2 = z \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}$, $(x, y, z) \in \mathbb{R}^3$, $z \neq 0$. If it is integrable, describe its integral manifolds.
- 4. Prove that the mappings $t_i \mapsto e^{t_i f_i}(q)$ are continuous in the topology of $M^{\mathcal{F}}$; see item 7) of the proof of the Orbit Theorem.
- 5. Fill the gaps in item 8) of the proof of the Orbit Theorem.