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1. Searching for the Ouz:
Alone in the wilderness, lost in the jungle, the boy is searching, searching!

The swelling waters, the far-away mountains, and the unending path;
Exhausted and in despair, he knows not where to go,

He only hears the evening cicadas singing in the maple-woods.
Pu-ming, “The Ten Ozherding Pictures”
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Reminder: Plan of the previous lecture

1. Examples of optimal control problems
2. Statements of the main problems of this course:

2.1 controllability problem,
2.2 optimal control problem.

3. Smooth manifolds and vector fields.
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Plan of this lecture

Lie bracket of vector fields

Lie groups, Lie algebras, and left-invariant optimal control problems
Controllability of linear systems

Local controllability of nonlinear systems

Orbit of control system
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Lie bracket of vector fields

® The commutator (Lie bracket) of the vector fields V, W at the point qp is defined
as [V, W](qo) := 5¢(0), so that

o(t) = qo + t2[V, W](qo) + o(t?), t— 0.

tW
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Example: Car in the plane

X cos 6 0
y| =ulsing|+v|[0], V:coseg—ksian, Wzé.
j 0 1 Ox dy 00

0 0 —sinf 0 sind
[V,W]:%WV—?/W:O‘V— 0 0 cosf 0] = —cosé
q9 q9 00 0 1 0

Another way of computing Lie brackets, via commutator of differential operators:

[V,W]=VoW—-WoV = <c0598a+sin06> 9_9 <c0508+sin9

)

X dy ) 00 00 Ox
. .0 0
—smﬁa—cosﬁa.

dy
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Example: Car in the plane

® Notice the visual meaning of the vector fields V, W [V, W] for the car:
® V generates the motion forward
® W generates rotations of the car
® [V, W] generates motion of the car in the direction perpendicular to its orientation.

¢ Choosing alternating motions of the car:
forward — rotation counter-clockwise — backward — rotation clockwise,

we can move the car infinitesimally in the forbidden direction. So the Lie bracket
[V, W] is generated by a car during parking manoeuvres in a limited space.
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Lie groups

® Aset G is called a Lie group if it is a smooth manifold endowed with a group
structure such that the following mappings are smooth:

(g,h)—~gh,  grrg ™t

Let Id € G denote the identity element of the group G.
® Denote by R"*" the set of al real n x n matrices. The set
GL(n,R) = {g € R™*" | det g # 0}
is a Lie group w.r.t. the matrix product, it is called the general linear group.
® A linear Lie group is a closed subgroup of GL(n,R).

Theorem
A closed subgroup of a Lie group is a Lie subgroup.
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Lie algebras

A set g is called a Lie algebra if it is a vector space endowed with a binary
operation [-, -] called Lie bracket that satisfies the following properties:

(1) bilinearity: [ax + by, z] = a[x, z] + by, z]. x,y,z€g, a beR,
(2) skew symmetry: x,¥] = -1y, x]. X, Yy €g,
(3) Jacobiidentity:  [x, [y, 2] + [y [z xl] + [z, by =0, x, v, z€q.

For any element g of a Lie group G, the mapping Ly : h— gh, G—G,is
called the left translation by g. A vector field X € Vec(G) is called left-invariant if
it is preserved by left translations: (Lg).(X(h)) = X(gh), g, heG.

Lie bracket of left-invariant vector fields is left-invariant. Thus left-invariant vector
fields on a Lie group G form a Lie algebra g called the Lie algebra of the Lie
group G.

There is a linear isomorphism g = T4 G, which defines the structure of a Lie
algebra on T\4G. Thus the tangent space T\4G is also called the Lie algebra of the
Lie group G.
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Examples of Lie groups G and their Lie algebras g

Denote the vector space R™" = {A = (aj) | aj € R, i,j=1,...,n}.

The general linear group: GL(n,R) = {A € R™" | det A # 0},

its Lie algebra gl(n,R) = R™*" with Lie bracket [A, B] = AB — BA.

The special linear group: SL(n,R) = {A € R"™" | det A =1},

sl(n,R) ={A € R™" | trA=0}.

The special orthogonal group: SO(n) = {A € R™" | AAT =1d, detA = 1},
so(n) = {A € R™" | A+ AT =0}.

The special Euclidean group:

SE(n) = {( g ’1’ > e R*DX(n+1) | 'y € SO(n), b e R”} C GL(n+1),

ﬁe(n):{<é\ g) | A €so(n), beR”}.
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Left-invariant vector fields and optimal control problems

For a Lie group G, the tangent space is T,G = (Lg)« T14G, ge€aG.
In the case of a linear Lie group G C GL(n,R), (Lg)«A=gA g€ G, Ac Ti4G.
Thus left-invariant vector fields on a linear Lie group G have the form

V(g) = gA, ge G, Aec TyG.
A control system on a Lie group G
g ="f(g,u), geqG, uvel,
is called left-invariant if its dynamics is preserved by left translations:
(Lp)«f(g,u) = f(hg, u), g, he G, uel.

An optimal control problem on G is called /left-invariant if both its dynamics and
the cost functional are preserved by left translations.

If an optimal control problem is left-invariant on a Lie group, we can set g(0) = Id.
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Controllability of linear systems:

Cauchy's formula
Linear control systems:

k
>'<:Ax—|-Zu;b,-:Ax+Bu, x€eR", u=(u,...,u) € Rk
i=1
Find solutions by the variation of constants method:

_ At At _ % K /gl
x(t) = e C(1), e ZkZO(At) /K,
x = AetC + M C = Ae™ C + Bu,

C(t)=eMBu(t) = C(t)= /t e " Bu(s) ds + Gy,
0
x(t) = et (/t e "*Bu(s) ds + Co) , x(0) = Gy = xp,
0

t
x(t) = e (xo +/ e *Bu(s) ds> — Cauchy's formula for linear systems.
0
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Kalman controllability test

A control system in R" is called globally controllable from a point xo € R” for time
t1 > 0 (for time not greater than t1) if A, (t1) =R" (resp. A, (< t1) =R").

Theorem (R. Kalman)

Let t; > 0 and xg € R". A linear system x = Ax + Bu is globally controllable from xp
for time t iff span(B, AB,...,A""1B) = R",

13/26



Proof of the Kalman controllability test

The mapping L' > u(-) = x(t1) € R" is affine, thus its image A, (t1) is an affine
subspace of R".
Rewrite the definition of controllability taking into account Cauchy’s formula:

t1
Ao(t)) =R" & Im et <x0 + / e tBu(t) dt) =R"
0
t1
@Im/ e “'Bu(t) dt = R".
0
Necessity. Let A, (t1) = R", but span(B, AB, ..., A""1B) # R".

Then 30#peR™st. pAAB=0, i=0,...,n—1.
By the Cayley—Hamilton theorem, A" = 272_01 a; A’ for some o € R. Thus

n—1
A" =N"BrAL BT ER, m=0,1.2,....
i=0
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Proof of the Kalman controllability test

e Consequently,

n—1
pATB =" BMpA'B =0, m=0,1,2,...,
i=0
—Atp _ S (_At)m _
pe "B=p Z oy B =0,
m=0

and Im fotl e AtBu(t) dt # R", a contradiction.

® Necessity proved.
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Proof of the Kalman controllability test
Sufficiency. Let span(B, AB, ..., A"1B) = R", but Im [, e~ **Bu(t) dt # R".
Then 30 # p € R™ s.t.

t1
p/ e MBu(t)dt =0  Vue [1([0, 1], R¥).
0

Let ey,..., ek be the standard frame in R¥. For any 7 € [0, t;] and any
i=1,...,k, define the following controls:
[ e, te]o,7],
u(t) = { 0, te(rt].

We have [* e~ AtBu(t)dt = [J e "tb; dt = 1 if\_AT b;, thus p' 72_% B=0.
We differentiate successively previous identity at 7 = 0 and obtain
pB = pAB = --- = pA""1B =0, a contradiction.



Final remarks on controllability of linear systems

® The control used in the proof of Kalman's controllability test is piecewise constant.
Thus if Kalman's condition holds, then linear system is controllable for any time
t; > 0 with piecewise-constant controls.

® For linear systems, controllability for the class of admissible controls u(-) € L! is
equivalent to controllability for any class of admissible controls u(-) € L where L is
a linear subspace of L' containing piecewise constant functions.
® The following conditions are equivalent for a linear system:
® the Kalman controllability condition
® Vi >0Vxy €R" the system is globally controllable from xq for time t;
® Vi >0Vxp € R" the system is globally controllable from xp for time not greater
than t;
® Jt; > 0 dxp € R" such the linear system is globally controllable from xq for time t;
® 3t > 0 Ix € R" such the linear system is globally controllable from xq for time
not greater than t;.

® |n these cases a linear system is called controllable.
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Local controllability of nonlinear systems
® Nonlinear system
x = f(x, u), xeR", wvweUCcCR™ (1)

® A point (xo, up) € R" x U is called an equilibrium point of system (1) if
f(xo,up) = 0. Let yp € int U.
® [inearization of system (1) at the equilibrium point (xg, up):

y=Ay+Bv, yeR" vecRT (2)
f f
Aot gl 9
6X (XO,UO) 8u (XO,UO)

Theorem (linearization principle for controllability)

If linearization (2) at an equilibrium point (xo, ug) is controllable, then for any t; > 0
nonlinear system (1) is locally controllable at the point xy for time t;:

Vit >0 xo €intAg(tr).
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Proof of linearization principle for controllability

Fix any t; > 0.
Let e,..., e, be the standard frame in R". Since linearization is controllable, then
Vi=1,...,n 3v; € L([0, 4], R™) . y,(0) =0, y,(t1)=cei. (3)

Construct the following family of controls:
u(z,t) = up +z1va(t) + -+ zpva(t), z=(z1,...,25) € R".

Since yg € int U, for sufficiently small |z| and any t € [0, t;], the control
u(z, t) € U, thus it is admissible for the nonlinear system.

Consider the corresponding family of trajectories of the nonlinear system:
X(Z7 t):Xu(z,-)(t)v X(Z7O) =xp, ZE€B,

where B is a small open ball in R” centred at the origin.
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Proof of linearization principle for controllability

® Since
X(Z7 tl) S AXo(t].)u zeB,

then the mapping
F:z—x(z,t1), B—R"

satisfies the inclusion
F(B) C Ay (t1).

® |t remains to show that xg € int F(B). Define the matrix function

_ 0x(z,t)

W(t) = R L

® We show that det W(t;) = ?)—f ,—o 7 0. This would imply that
xo = F(0) € int F(B) C Ay (t1)-
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Proof of linearization principle for controllability

Differentiating the identity % = f(x,u(z,t)) w.r.t. z, we get

oox|  _of|  ox| L of| o
ot 0z|,_, Ox (0,10 0z|,_, Ou (x0,0) 0z|,_,
since u(0,t) = up and x(0,t) = xp.
Thus we get a matrix ODE W/(t W(t) + B(wvi(t),..., va(t)) with the initial
condition W(0) = % - %420 0 =0.

This matrix ODE means that columns of the matrix W(t) are solutions to the
linearised system with the control v;(t). Since y,.(t1) = e;, we have
W(t1) = (e1,...,en), so det W(t;) =1 #0.

By the implicit function theorem, we have xp € int F(B), thus xp € int Ay (t1). O
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Example: Application of the linearization principle for controllability

x=ufi(x)+ (1 —uw)h(x), x=(1,x)ecR? wuvel0,1] (4)
0 0 0
f(x) = 2 H(X) = — — 4 x —.
1(x) Oxy’ 2(x) Ox1 o 0x2 (5)
e (X% u% = (0, %) is an equilibrium point and u® € int([0, 1]).
® The linearization of system (4) at the equilibrium point (x°, u°) has the form
y=Ay+Bv, yeR)® veR, (6)
0 0 2
) )
30 0
, .\ 2 0 .
¢ Check Kalman's condition: rank(B, AB) = rank ( 01 > = 2, thus linear

system (6) is controllable.

So nonlinear system (4) is locally controllable at the point x° for any time t; > 0.
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Orbit of a control system

® A control system on a smooth manifold M is an arbitrary set of vector fields
F C Vec(M).
® The attainable set of the system F from a point gg € M:

Aqoz{et/vf/vo...oetlﬂ(qo)’t,'ZO, fie F, NeN}L
® The orbit of the system F through the point qo:
Og = {eMW o 0eff(q) | t; €R, ficF, NN}

qo
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Basic properties of attainable sets and orbits

1. Agy C Og,, obvious
2. Og, has a “simpler” structure than Ag,

3. Ag, has a “reasonable” structure inside O, .

® A system F is called symmetric if F = —F.
4. F: _..F = Aqo = Oqo-
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Exercises 1

1. Show that the following sets are linear Lie groups:
® the special linear group

SL(n,R) = {g € GL(n,R) | detg = 1},
® the special orthogonal group
SO(n) = {g € GL(n,R) |detg =1, g7' = gT}7

® the special Euclidean group

0 1

® the special unitary group

SE(n):{( Av ) € GL(n+1,R) | A SO(n), veR”},

SU(n) = {( _AB i ) c RQnX2n I A,B c Rnxn’ AAT 4 BBT — |d,

BAT — ABT =0, det(A+iB) = 1} ,

compute their dimensions. 25 /26



Exercises 2

. Prove that the 2D sphere S? is not a Lie group. Hint: there is no smooth nowhere
vanishing vector field on S2.

. Prove that the product

(x1,01,21) - (%2, 2, 22) = (X1 + X2, 1 + y2, 21 + 22 + (X2 — xex1)/2),
(xi,ynz)ER®, =12

turns R3 into a Lie group called the Heisenberg group. Show that Dido’s problem
is left-invariant on this Lie group.

. For the sub-Riemannian problem on the group of motions of the plane, find
equilibrium points and study controllability of linearization at these points.

. For Euler’s elastic problem, find equilibrium points and study controllability of
linearization at these points.

. Prove local and global controllability of system (4), (5) geometrically, with the
help of the phase portraits of the vector fields i, 5.
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