Elements of Chronological Calculus-2

(Lecture 4)

Yuri Sachkov

yusachkov@gmail.com

«Elements of geometric control theory»

Lecture course in Dept. of Mathematics and Mechanics

Lomonosov Moscow State University

12 March 2025

Plan of previous lecture

- 1. Points, Diffeomorphisms, and Vector Fields
- 2. Seminorms and $C^{\infty}(M)$ -Topology
- 3. Families of Functionals and Operators
- 4. ODEs with discontinuous right-hand side
- 5. Definition of the right chronological exponential
- 6. Formal series expansion
- 7. Estimates and convergence of the series
- 8. Left chronological exponential
- 9. Uniqueness for functional and operator ODEs

Plan of this lecture

- 1. Autonomous vector fields
- 2. Action of diffeomorphisms on vector fields
- 3. Commutation of flows
- 4. Variations formula
- 5. Derivative of flow with respect to parameter
- 6. Differential 1-forms

Autonomous vector fields

• For an autonomous vector field

$$V_t \equiv V \in \text{Vec } M$$
,

the flow generated by a complete field is called the *exponential* and is denoted as e^{tV} .

• The asymptotic series for the exponential takes the form

$$e^{tV} pprox \sum_{n=0}^{\infty} rac{t^n}{n!} V^n = \operatorname{Id} + tV + rac{t^2}{2} V \circ V + \cdots ,$$

i.e, it is the standard exponential series.

• The exponential of an autonomous vector field satisfies the ODEs

$$\frac{d}{dt}e^{tV} = e^{tV} \circ V = V \circ e^{tV}, \qquad e^{tV}\Big|_{t=0} = \operatorname{Id}.$$

- We apply the asymptotic series for exponential to find the Lie bracket of autonomous vector fields V, W ∈ Vec M.
- We compute the first nonconstant term in the asymptotic expansion at t=0 of the curve:

$$\begin{split} q(t) &= q \circ e^{tV} \circ e^{tW} \circ e^{-tV} \circ e^{-tW} \\ &= q \circ \left(\operatorname{Id} + tV + \frac{t^2}{2}V^2 + \cdots \right) \circ \left(\operatorname{Id} + tW + \frac{t^2}{2}W^2 + \cdots \right) \\ &\circ \left(\operatorname{Id} - tV + \frac{t^2}{2}V^2 + \cdots \right) \circ \left(\operatorname{Id} - tW + \frac{t^2}{2}W^2 + \cdots \right) \\ &= q \circ \left(\operatorname{Id} + t(V + W) + \frac{t^2}{2}(V^2 + 2V \circ W + W^2) + \cdots \right) \\ &\circ \left(\operatorname{Id} - t(V + W) + \frac{t^2}{2}(V^2 + 2V \circ W + W^2) + \cdots \right) \\ &= q \circ \left(\operatorname{Id} + t^2(V \circ W - W \circ V) + \cdots \right). \end{split}$$

• So the Lie bracket of the vector fields as operators (directional derivatives) in $C^{\infty}(M)$ is

$$[V, W] = V \circ W - W \circ V.$$

• This proves the formula in local coordinates: if

$$V = \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}, \qquad W = \sum_{i=1}^{n} b_i \frac{\partial}{\partial x_i}, \qquad a_i, \ b_i \in C^{\infty}(M),$$

then

$$[V,W] = \sum_{i=1}^{n} \left(a_{j} \frac{\partial b_{i}}{\partial x_{i}} - b_{j} \frac{\partial a_{i}}{\partial x_{i}} \right) \frac{\partial}{\partial x_{i}} = \frac{dW}{dX} V - \frac{dV}{dX} W.$$

Similarly,

$$q \circ e^{tV} \circ e^{sW} \circ e^{-tV} = q \circ (\operatorname{Id} + tV + \cdots) \circ (\operatorname{Id} + sW + \cdots) \circ (\operatorname{Id} - tV + \cdots)$$

= $q \circ (\operatorname{Id} + sW + ts[V, W] + \cdots),$

. .

and $q\circ [V,W]=\left.\frac{\partial^2}{\partial s\partial t}\right|_{s-t=0}q\circ \mathrm{e}^{tV}\circ \mathrm{e}^{sW}\circ \mathrm{e}^{-tV}.$

Action of diffeomorphisms on tangent vectors

- We have already found counterparts to points, diffeomorphisms, and vector fields among functionals and operators on $C^{\infty}(M)$. Now we consider action of diffeomorphisms on tangent vectors and vector fields.
- Take a tangent vector $v \in T_qM$ and a diffeomorphism $P \in \text{Diff } M$. The tangent vector $P_*v \in T_{P(q)}M$ is the velocity vector of the image of a curve starting from q with the velocity vector v. We claim that

$$P_*v = v \circ P, \qquad v \in T_qM, \quad P \in \text{Diff } M,$$
 (1)

7/38

as functionals on $C^{\infty}(M)$.

$$q(t) \in M, \qquad q(0) = q, \quad \left. \frac{d}{dt} \right|_{t=0} q(t) = v,$$

then

Take a curve

$$P_* v a = \frac{d}{dt}\Big|_{t=0} a(P(q(t))) = \left(\frac{d}{dt}\Big|_{t=0} q(t)\right) \circ Pa$$

= $v \circ Pa$, $a \in C^{\infty}(M)$.

Action of diffeomorphisms on vector fields

- Now we find expression for P_*V , $V \in \text{Vec } M$, as a derivation of $C^{\infty}(M)$.
- We have

$$q \circ P \circ P_*V = P(q) \circ P_*V = (P_*V)(P(q)) = P_*(V(q)) = V(q) \circ P$$

= $q \circ V \circ P$, $q \in M$,

thus

$$P \circ P_* V = V \circ P$$
,

i.e.,

$$P_*V = P^{-1} \circ V \circ P$$
, $P \in \text{Diff } M$, $V \in \text{Vec } M$.

- So diffeomorphisms act on vector fields as similarities.
- In particular, diffeomorphisms preserve compositions:

$$P_*(V \circ W) = P^{-1} \circ (V \circ W) \circ P = (P^{-1} \circ V \circ P) \circ (P^{-1} \circ W \circ P) = P_*V \circ P_*W,$$
thus Lie brackets of vector fields:

$$P_*[V,W] = P_*(V \circ W - W \circ V) = P_*V \circ P_*W - P_*W \circ P_*V = [P_*V,P_*W].$$

Action of diffeomorphisms on vector fields

• If $B: C^{\infty}(M) \to C^{\infty}(M)$ is an automorphism, then the standard algebraic notation for the corresponding similarity is Ad B:

$$(\operatorname{Ad} B)V \stackrel{\text{def}}{=} B \circ V \circ B^{-1}.$$

That is,

$$P_* = \operatorname{Ad} P^{-1}, \qquad P \in \operatorname{Diff} M.$$

- Now we find an infinitesimal version of the operator Ad.
- Let P^t be a flow on M.

$$P^0 = \operatorname{Id}, \qquad \frac{d}{dt} | P^t = V \in \operatorname{Vec} M.$$

Then

$$\left. \frac{d}{dt} \right|_{t=0} \left(P^t \right)^{-1} = -V,$$

so

$$\frac{d}{dt}\Big|_{t=0} (\operatorname{Ad} P^{t})W = \frac{d}{dt}\Big|_{t=0} (P^{t} \circ W \circ (P^{t})^{-1}) = V \circ W - W \circ V$$
$$= [V, W], \qquad W \in \operatorname{Vec} M.$$

Denote

ad
$$V = \operatorname{ad} \left(\frac{d}{dt} \Big|_{t=0} P^t \right) \stackrel{\text{def}}{=} \left. \frac{d}{dt} \Big|_{t=0} \operatorname{Ad} P^t,$$

then

$$(ad V)W = [V, W], \qquad W \in Vec M.$$

Differentiation of the equality

$$Ad P^{t} [X, Y] = [Ad P^{t} X, Ad P^{t} Y] \qquad X, Y \in Vec M,$$

at t = 0 gives Jacobi identity for Lie bracket of vector fields:

$$(ad V)[X, Y] = [(ad V)X, Y] + [X, (ad V)Y],$$

which may also be written as

$$[V, [X, Y]] = [[V, X], Y] + [X, [V, Y]], \qquad V, X, Y \in \text{Vec } M,$$

or, in a symmetric way

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0,$$
 $X, Y, Z \in \text{Vec } M.$ (2)

- The set Vec M is a vector space with an additional operation Lie bracket, which has the properties:
 - (1) bilinearity:

$$\begin{split} [\alpha X + \beta Y, Z] &= \alpha [X, Z] + \beta [Y, Z], \\ [X, \alpha Y + \beta Z] &= \alpha [X, Y] + \beta [X, Z], \qquad X, Y, Z \in \text{Vec } M, \quad \alpha, \beta \in \mathbb{R}, \end{split}$$

(2) skew-symmetry:

$$[X, Y] = -[Y, X], \qquad X, Y \in \text{Vec } M,$$

- (3) Jacobi identity (2).
- In other words, the set Vec M of all smooth vector fields on a smooth manifold M forms a Lie algebra.

• Consider the flow $P^t = \stackrel{\longrightarrow}{\exp} \int_0^t V_{\tau} \, d\tau$ of a nonautonomous vector field V_t . We find an ODE for the family of operators Ad $P^t = (P^t)_*^{-1}$ on the Lie algebra Vec M.

$$\frac{d}{dt}(\operatorname{Ad} P^{t})X = \frac{d}{dt} \left(P^{t} \circ X \circ (P^{t})^{-1} \right)$$

$$= P^{t} \circ V_{t} \circ X \circ (P^{t})^{-1} - P^{t} \circ X \circ V_{t} \circ (P^{t})^{-1}$$

$$= (\operatorname{Ad} P^{t})[V_{t}, X] = (\operatorname{Ad} P^{t}) \operatorname{ad} V_{t} X, \quad X \in \operatorname{Vec} M.$$

• Thus the family of operators $Ad P^t$ satisfies the ODE

$$\frac{d}{dt}\operatorname{Ad}P^{t} = (\operatorname{Ad}P^{t}) \circ \operatorname{ad}V_{t} \tag{3}$$

with the initial condition

$$Ad P^0 = Id. (4)$$

• So the family Ad P^t is an invertible solution for the Cauchy problem

$$\dot{A}_t = A_t \circ \operatorname{ad} V_t, \quad A_0 = \operatorname{Id}$$

for operators A_t : Vec M o Vec M.

• We can apply the same argument as for the analogous Cauchy problem for flows to derive the asymptotic expansion

$$\operatorname{Ad} P^{t} \approx \operatorname{Id} + \int_{0}^{t} \operatorname{ad} V_{\tau} \, d\tau + \cdots + \int_{\Delta_{\tau}(t)} \int \operatorname{ad} V_{\tau_{n}} \circ \cdots \circ \operatorname{ad} V_{\tau_{1}} \, d\tau_{n} \, \ldots \, d\tau_{1} + \cdots \quad (5)$$

then prove uniqueness of the solution, and justify the following notation:

$$\overrightarrow{\exp} \int_0^t \operatorname{ad} V_{\tau} d\tau \stackrel{\text{def}}{=} \operatorname{Ad} P^t = \operatorname{Ad} \left(\overrightarrow{\exp} \int_0^t V_{\tau} d\tau \right).$$

• Similar identities for the left chronological exponential are

$$\stackrel{\longleftarrow}{\exp} \int_0^t \operatorname{ad}(-V_{ au}) \, d au \stackrel{\operatorname{def}}{=} \operatorname{Ad} \left(\stackrel{\longleftarrow}{\exp} \int_0^t (-V_{ au}) \, d au \right)$$

 $pprox \operatorname{\mathsf{Id}} + \sum_{n=0}^{\infty} \int \cdots \int (-\operatorname{\mathsf{ad}} V_{ au_1}) \circ \cdots \circ (-\operatorname{\mathsf{ad}} V_{ au_n}) \, d au_n \, \ldots \, d au_1.$

- For the asymptotic series (5), there holds an estimate of the remainder term similar to the estimate for the flow P^t .
- Denote the partial sum

$$T_m = \operatorname{\sf Id} + \sum_{n=1}^{m-1} \int_{\Delta_n(t)} \cdots \int \operatorname{\sf ad} \, V_{ au_n} \circ \cdots \circ \operatorname{\sf ad} \, V_{ au_1} \, d au_n \, \ldots \, d au_1,$$

then for any $X \in \text{Vec } M$, s > 0, $K \subseteq M$

$$\left\| \left(\operatorname{Ad} \overrightarrow{\exp} \int_{0}^{t} V_{\tau} d\tau - T_{m} \right) X \right\|_{s,K}$$

$$\leq C_{1} e^{C_{1} \int_{0}^{t} \|V_{\tau}\|_{s+1,K'}} d\tau \frac{1}{m!} \left(\int_{0}^{t} \|V_{\tau}\|_{s+m,K'} d\tau \right)^{m} \|X\|_{s+m,K'} \qquad (6)$$

$$= O(t^{m}), \qquad t \to 0,$$

where $K' \subseteq M$ is some compactum containing K.

• For autonomous vector fields, we denote

$$e^{t \operatorname{ad} V} \stackrel{\operatorname{def}}{=} \operatorname{Ad} e^{tV},$$

thus the family of operators $e^{t\operatorname{ad} V}:\operatorname{Vec} M\to\operatorname{Vec} M$ is the unique solution to the problem

$$\dot{A}_t = A_t \circ \mathsf{ad}\ V, \qquad A_0 = \mathsf{Id},$$

which admits the asymptotic expansion

$$e^{t \operatorname{ad} V} pprox \operatorname{Id} + t \operatorname{ad} V + \frac{t^2}{2} \operatorname{ad}^2 V + \cdots$$

• Let $P \in \text{Diff } M$, and let V_t be a nonautonomous vector field on M. Then

$$P \circ \overrightarrow{\exp} \int_{0}^{t} V_{\tau} d\tau \circ P^{-1} = \overrightarrow{\exp} \int_{0}^{t} \operatorname{Ad} P V_{\tau} d\tau \tag{7}$$

since the both parts satisfy the same operator Cauchy problem.

Commutation of flows

Let $V_t \in \operatorname{Vec} M$ be a nonautonomous vector field and $P^t = \overrightarrow{\exp} \int_0^t V_\tau \, d\tau$ the corresponding flow. We are interested in the question: under what conditions the flow P^t preserves a vector field $W \in \operatorname{Vec} M$?

Proposition 1

$$P_*^t \overset{\cdot}{W} = W \quad \forall t \quad \Leftrightarrow \quad [V_t, W] = 0 \quad \forall t.$$

Proof.

$$\frac{d}{dt} (P_t)_*^{-1} W = \frac{d}{dt} \operatorname{Ad} P^t W = \left(\frac{d}{dt} \overrightarrow{\exp} \int_0^t \operatorname{ad} V_\tau d\tau \right) W
= \left(\overrightarrow{\exp} \int_0^t \operatorname{ad} V_\tau d\tau \circ \operatorname{ad} V_\tau \right) W = \left(\overrightarrow{\exp} \int_0^t \operatorname{ad} V_\tau d\tau \right) [V_t, W]
= (P^t)_*^{-1} [V_t, W].$$

thus $(P^t)^{-1}_*W\equiv W$ if and only if $[V_t,W]\equiv 0$.

ullet In general, flows do not commute, neither for nonautonomous vector fields $V_t,\ W_t$:

$$\stackrel{\longrightarrow}{\exp} \int_0^{t_1} V_{ au} \, d au \circ \stackrel{\longrightarrow}{\exp} \int_0^{t_2} W_{ au} \, d au
eq \stackrel{\longrightarrow}{\exp} \int_0^{t_2} W_{ au} \, d au \circ \stackrel{\longrightarrow}{\exp} \int_0^{t_1} V_{ au} \, d au,$$

nor for autonomous vector fields V, W:

$$e^{t_1V} \circ e^{t_2W} \neq e^{t_2W} \circ e^{t_1V}$$
.

Proposition 2

In the autonomous case, commutativity of flows is equivalent to commutativity of vector fields: if $V, W \in \text{Vec } M$, then

$$e^{t_1 V} \circ e^{t_2 W} = e^{t_2 W} \circ e^{t_1 V}, \quad t_1, t_2 \in \mathbb{R}, \qquad \Leftrightarrow \qquad [V, W] = 0.$$

Proof.

Necessity:

$$\frac{d^2}{dt^2}q \circ e^{tV} \circ e^{tW} \circ e^{-tV} \circ e^{-tW} = q \circ 2[V, W].$$

Sufficiency. We have $\left(\operatorname{Ad} e^{t_1 V}\right) W = e^{t_1 \operatorname{ad} V} W = W$. Taking into account equality (7), we obtain

$$e^{t_1 V} \circ e^{t_2 W} \circ e^{-t_1 V} = e^{t_2 \left(\operatorname{Ad} e^{t_1 V}\right) W} = e^{t_2 W}.$$

Variations formula

Consider an ODE of the form

$$\dot{q} = V_t(q) + W_t(q). \tag{8}$$

We think of V_t as an initial vector field and W_t as its perturbation.

- Our aim is to find a formula for the flow Q^t of the new field $V_t + W_t$ as a perturbation of the flow $P^t = \overrightarrow{\exp} \int_0^t V_\tau d\tau$ of the initial field V_t .
- In other words, we wish to have a decomposition of the form

$$Q^t = \overrightarrow{\exp} \int_0^t (V_\tau + W_\tau) d\tau = C_t \circ P^t.$$

 We proceed as in the method of variation of parameters; we substitute the previous expression to ODE (8):

$$\frac{d}{dt}Q^{t} = Q^{t} \circ (V_{t} + W_{t})$$

$$= \dot{C}_{t} \circ P^{t} + C_{t} \circ P^{t} \circ V_{t}$$

$$= \dot{C}_{t} \circ P^{t} + Q^{t} \circ V_{t},$$

cancel the common term $Q^t \circ V_t$:

$$Q^t \circ W_t = \dot{C}_t \circ P^t,$$

and write down the ODE for the unknown flow C_t :

$$\dot{C}_t = Q^t \circ W_t \circ (P^t)^{-1}
= C_t \circ P^t \circ W_t \circ (P^t)^{-1}
= C_t \circ (\operatorname{Ad} P^t) W_t
= C_t \circ \left(\overrightarrow{\exp} \int_{-1}^t \operatorname{ad} V_\tau d\tau\right) W_t, \quad C_0 = \operatorname{Id}.$$

• This operator Cauchy problem is of the form $\dot{C}^t = C^t \circ V_t$, $C^0 = \operatorname{Id}$, thus it has a unique solution:

$$C_t = \overrightarrow{\exp} \int_0^t \left(\overrightarrow{\exp} \int_0^{\tau} \operatorname{ad} V_{\theta} d\theta \right) W_{\tau} d\tau.$$

• Hence we obtain the required decomposition of the perturbed flow:

$$\overrightarrow{\exp} \int_0^t (V_\tau + W_\tau) \, d\tau = \overrightarrow{\exp} \int_0^t \left(\overrightarrow{\exp} \int_0^\tau \operatorname{ad} V_\theta \, d\theta \right) W_\tau \, d\tau \circ \, \overrightarrow{\exp} \int_0^t V_\tau \, d\tau. \tag{9}$$

- This equality is called the variations formula.
- It can be written as follows:

$$\overrightarrow{\exp} \int_0^t (V_{\tau} + W_{\tau}) d\tau = \overrightarrow{\exp} \int_0^t (\operatorname{Ad} P^{\tau}) W_{\tau} d\tau \circ P^t.$$

• So the perturbed flow is a composition of the initial flow P^t with the flow of the perturbation W_t twisted by P^t .

- Now we obtain another form of the variations formula, with the flow P^t to the left of the twisted flow.
- We have

$$\overrightarrow{\exp} \int_0^t (V_\tau + W_\tau) \, d\tau = \overrightarrow{\exp} \int_0^t (\operatorname{Ad} P^\tau) \, W_\tau \, d\tau \, \circ \, P^t$$

$$= P^t \circ (P^t)^{-1} \circ \overrightarrow{\exp} \int_0^t (\operatorname{Ad} P^\tau) \, W_\tau \, d\tau \circ P^t$$

$$= P^t \circ \overrightarrow{\exp} \int_0^t \left(\operatorname{Ad} (P^t)^{-1} \circ \operatorname{Ad} P^\tau \right) W_\tau \, d\tau$$

$$= P^t \circ \overrightarrow{\exp} \int_0^t \left(\operatorname{Ad} \left((P^t)^{-1} \circ P^\tau \right) \right) W_\tau \, d\tau.$$

Notice that

$$(P^t)^{-1} \circ P^{\tau} = \stackrel{\longrightarrow}{\exp} \int_{t}^{\tau} V_{\theta} d\theta.$$

Thus

$$\overrightarrow{\exp} \int_{0}^{t} (V_{\tau} + W_{\tau}) d\tau = P^{t} \circ \overrightarrow{\exp} \int_{0}^{t} \left(\overrightarrow{\exp} \int_{t}^{\tau} \operatorname{ad} V_{\theta} d\theta \right) W_{\tau} d\tau$$

$$= \overrightarrow{\exp} \int_{0}^{t} V_{\tau} d\tau \circ \overrightarrow{\exp} \int_{0}^{t} \left(\overrightarrow{\exp} \int_{t}^{\tau} \operatorname{ad} V_{\theta} d\theta \right) W_{\tau} d\tau. \tag{10}$$

• For autonomous vector fields $V, W \in \text{Vec } M$, the variations formulas (9), (10) take the form:

$$e^{t(V+W)} = \overrightarrow{\exp} \int_0^t e^{\tau \operatorname{ad} V} W \, d\tau \circ e^{tV} = e^{tV} \circ \overrightarrow{\exp} \int_0^t e^{(\tau-t)\operatorname{ad} V} W \, d\tau. \tag{11}$$

• In particular, for t=1 we have

$$e^{V+W} = \stackrel{\longrightarrow}{\exp} \int_0^1 e^{\tau \operatorname{ad} V} W d\tau \circ e^{V}.$$

Derivative of flow with respect to parameter

- Let $V_t(s)$ be a nonautonomous vector field depending smoothly on a real parameter s. We study dependence of the flow of $V_t(s)$ on the parameter s.
- We write

$$\overrightarrow{\exp} \int_0^t V_{\tau}(s+\varepsilon) d\tau = \overrightarrow{\exp} \int_0^t \left(V_{\tau}(s) + \delta_{V_{\tau}}(s,\varepsilon) \right) d\tau \tag{12}$$

with the perturbation $\delta_{V_{\tau}}(s,\varepsilon) = V_{\tau}(s+\varepsilon) - V_{\tau}(s)$.

• By the variations formula (9), the previous flow is equal to

$$\stackrel{\longrightarrow}{\exp} \int_0^t \left(\stackrel{\longrightarrow}{\exp} \int_0^{ au} \operatorname{ad} V_{ heta}(s) \, d heta
ight) \delta_{V_{ au}}(s,arepsilon) \, d au \circ \stackrel{\longrightarrow}{\exp} \int_0^t V_{ au}(s) \, d au.$$

• Now we expand in ε :

$$egin{array}{lll} \delta_{V_{ au}}(s,arepsilon) &=& arepsilonrac{\partial}{\partial\,s}V_{ au}(s) + O(arepsilon^2), & arepsilon o 0, \ W_{ au}(s,arepsilon) &\stackrel{ ext{def}}{=} & \left(\stackrel{ ext{exp}}{=} \int_0^{ au} \operatorname{ad} V_{ heta}(s) \, d heta
ight) \delta_{V_{ au}}(s,arepsilon) \ &=& arepsilon \left(\stackrel{ ext{exp}}{=} \int_0^{ au} \operatorname{ad} V_{ heta}(s) \, d heta
ight) rac{\partial}{\partial\,s} V_{ au}(s) + O(arepsilon^2), & arepsilon o 0, \end{array}$$

thus

$$\begin{array}{ll} \overrightarrow{\exp} \int_0^t W_{\tau}(s,\varepsilon) \, d\tau & = & \operatorname{Id} + \int_0^t W_{\tau}(s,\varepsilon) \, d\tau + O(\varepsilon^2) \\ & = & \operatorname{Id} + \varepsilon \int_0^t \left(\overrightarrow{\exp} \int_0^\tau \operatorname{ad} V_{\theta}(s) \, d\theta \right) \frac{\partial}{\partial s} V_{\tau}(s) \, d\tau + O(\varepsilon^2). \end{array}$$

Finally,

$$\begin{split} \overrightarrow{\exp} & \int_0^t V_\tau(s+\varepsilon) \, d\tau = \overrightarrow{\exp} \int_0^t W_{s,\tau}(\varepsilon) \, d\tau \circ \, \overrightarrow{\exp} \int_0^t V_\tau(s) \, d\tau \\ & = \overrightarrow{\exp} \int_0^t V_\tau(s) \, d\tau \\ & + \varepsilon \int_0^t \left(\overrightarrow{\exp} \int_0^\tau \operatorname{ad} V_\theta(s) \, d\theta \right) \frac{\partial}{\partial s} V_\tau(s) \, d\tau \circ \, \overrightarrow{\exp} \int_0^t V_\tau(s) \, d\tau + O(\varepsilon^2), \end{split}$$

that is,

$$\frac{\partial}{\partial s} \overrightarrow{\exp} \int_0^t V_{\tau}(s) d\tau$$

$$= \int_0^t \left(\overrightarrow{\exp} \int_0^{\tau} \operatorname{ad} V_{\theta}(s) d\theta \right) \frac{\partial}{\partial s} V_{\tau}(s) d\tau \circ \overrightarrow{\exp} \int_0^t V_{\tau}(s) d\tau. \quad (13)$$

• Similarly, we obtain from the variations formula (10) the equality

$$\frac{\partial}{\partial s} \overrightarrow{\exp} \int_{0}^{t} V_{\tau}(s) d\tau$$

$$= \overrightarrow{\exp} \int_{0}^{t} V_{\tau}(s) d\tau \circ \int_{0}^{t} \left(\overrightarrow{\exp} \int_{s}^{\tau} \operatorname{ad} V_{\theta}(s) d\theta \right) \frac{\partial}{\partial s} V_{\tau}(s) d\tau. \quad (14)$$

• For an autonomous vector field depending on a parameter V(s), formula (13) takes the form

$$\frac{\partial}{\partial s} e^{tV(s)} = \int_0^t e^{\tau \operatorname{ad} V(s)} \, \frac{\partial V}{\partial s} \, d\tau \circ e^{tV(s)},$$

and at t=1:

$$\frac{\partial}{\partial s} e^{V(s)} = \int_0^1 e^{\tau \operatorname{ad} V(s)} \frac{\partial V}{\partial s} d\tau \circ e^{V(s)}. \tag{15}$$

Proposition 3

Assume that

$$\left[\int_0^t V_\tau \, d\tau, V_t\right] = 0 \qquad \forall t. \tag{16}$$

Then

$$\stackrel{\longrightarrow}{\exp} \int_0^t V_{ au} \, d au = e^{\int_0^t V_{ au} \, d au} \qquad orall t.$$

That is, we state that under the commutativity assumption (16), the chronological exponential $\overrightarrow{\exp} \int_0^t V_\tau d\tau$ coincides with the flow $Q^t = e^{\int_0^t V_\tau d\tau}$ defined as follows:

$$egin{aligned} Q^t &= Q_1^t, \ rac{\partial \, Q_s^t}{\partial \, s} &= \int_0^t \, V_{ au} \, d au \circ Q_s^t, \qquad Q_0^t &= \operatorname{\sf Id}. \end{aligned}$$

Proof.

- We show that the exponential in the right-hand side satisfies the same ODE as the chronological exponential in the left-hand side.
- By (15), we have

$$rac{d}{d\,t}e^{\int_0^t V_ au\,d au}=\int_0^1 e^{ au\operatorname{ad}\int_0^t V_ heta\,d heta}\,V_t\,d au\circ e^{\int_0^t V_ au\,d au}.$$

• In view of equality (16),

$$e^{ au\operatorname{ad}\int_0^t V_ heta\,d heta}\,V_t=V_t,$$

thus

$$\frac{d}{dt} e^{\int_0^t V_\tau d\tau} = V_t \circ e^{\int_0^t V_\tau d\tau}.$$

• By equality (16), we can permute operators in the right-hand side:

$$\frac{d}{dt}e^{\int_0^t V_\tau d\tau} = e^{\int_0^t V_\tau d\tau} \circ V_t.$$

Notice the initial condition

$$e^{\int_0^t V_{\tau} d\tau}\Big|_{t=0} = \operatorname{Id}.$$

• Now the statement follows since the Cauchy problem for flows

$$\dot{A}_t = A_t \circ V_t, \qquad A_0 = \operatorname{Id}$$

has a unique solution:

$$A_t = e^{\int_0^t V_{\tau} d au} = \overrightarrow{\exp} \int_0^t V_{ au} d au.$$

Here we finish our excursion to Chronological Calculus.

Differential 1-forms

Linear forms

- E a real vector space of finite dimension n.
- A *linear form* on E is a linear function $\xi: E \to \mathbb{R}$.
- The set of linear forms on E has a natural structure of a vector space called the dual space to E and denoted by E^* .
- If vectors e_1, \ldots, e_n form a basis of E, then the corresponding *dual basis* of E^* is formed by the covectors e_1^*, \ldots, e_n^* such that

$$\langle e_i^*, e_j \rangle = \delta_{ij}, \qquad i, j = 1, \dots n.$$

• So the dual space has the same dimension as the initial one:

$$\dim E^* = n = \dim E$$
.

Cotangent bundle

- M a smooth manifold and T_qM its tangent space at a point $q \in M$.
- The space of linear forms on T_qM , i.e., the dual space $(T_qM)^*$ to T_qM , is called the *cotangent space* to M at q and is denoted as T_q^*M .
- The disjoint union of all cotangent spaces is called the *cotangent bundle* of *M*:

$$T^*M \stackrel{\mathrm{def}}{=} \bigsqcup_{q \in M} T_q^*M.$$

- The set T^*M has a natural structure of a smooth manifold of dimension 2n, where $n = \dim M$.
- Local coordinates on T^*M are constructed from local coordinates on M.
- Let $O \subset M$ be a coordinate neighborhood and let

$$\Phi: O \to \mathbb{R}^n, \qquad \Phi(q) = (x_1(q), \ldots, x_n(q)),$$

be a local coordinate system.

Differentials of the coordinate functions

$$dx_i|_q \in T_q^*M, \qquad i=1,\ldots,n, \quad q \in O,$$

form a basis in the cotangent space T_a^*M .

• The dual basis in the tangent space T_aM is formed by the vectors

$$\left. \frac{\partial}{\partial x_i} \right|_q \in T_q M, \qquad i = 1, \dots, n, \quad q \in O,$$

$$\left\langle dx_i, \frac{\partial}{\partial x_j} \right\rangle \equiv \delta_{ij}, \qquad i, j = 1, \dots, n.$$

• Any linear form $\xi \in T_a^*M$ can be decomposed via the basis forms:

$$\xi = \sum_{i=1}^n \xi_i \, dx_i.$$

• So any covector $\xi \in T^*M$ is characterized by n coordinates (x_1, \ldots, x_n) of the point $q \in M$ where ξ is attached, and by n coordinates (ξ_1, \ldots, ξ_n) of the linear form ξ in the basis dx_1, \ldots, dx_n .

Mappings of the form

$$\xi \mapsto (\xi_1,\ldots,\xi_n; x_1,\ldots,x_n)$$

define local coordinates on the cotangent bundle. Consequently, T^*M is a 2n-dimensional manifold.

• Coordinates of the form (ξ, x) are called *canonical coordinates* on T^*M .

• If $F:M\to N$ is a smooth mapping between smooth manifolds, then the differential

$$F_*: T_qM \to T_{F(q)}N$$

has the adjoint (dual) mapping

$$F^* \stackrel{\text{def}}{=} (F_*)^* : T_{F(q)}^* N \to T_q^* M$$

defined as follows:

$$F^*\xi = \xi \circ F_*, \qquad \xi \in T^*_{F(q)}N,$$
$$\langle F^*\xi, \nu \rangle = \langle \xi, F_*\nu \rangle, \qquad \nu \in T_qM.$$

- A vector $v \in T_q M$ is pushed forward by the differential F_* to the vector $F_* v \in T_{F(q)} N$, while a covector $\xi \in T_{F(q)}^* N$ is pulled back to the covector $F^* \xi \in T_q^* M$.
- So a smooth mapping $F: M \to N$ between manifolds induces a smooth mapping $F^*: T^*N \to T^*M$ between their cotangent bundles.

Differential 1-forms

- A differential 1-form on M is a smooth mapping $q \mapsto \omega_q \in T_q^*M$, $q \in M$, i.e, a family $\omega = \{\omega_q\}$ of linear forms on the tangent spaces T_qM smoothly depending on the point $q \in M$.
- The set of all differential 1-forms on M has a natural structure of an infinite-dimensional vector space denoted as $\Lambda^1 M$.
- Like linear forms on a vector space are dual objects to vectors of the space, differential forms on a manifold are dual objects to smooth curves in the manifold.
- The pairing operation is the *integral* of a differential 1-form $\omega \in \Lambda^1 M$ along a smooth oriented curve $\gamma: [t_0, t_1] \to M$, defined as follows:

$$\int_{\gamma} \omega \stackrel{\mathrm{def}}{=} \int_{t_0}^{t_1} \langle \omega_{\gamma(t)}, \dot{\gamma}(t) \rangle dt.$$

 The integral of a 1-form along a curve does not change under orientation-preserving smooth reparametrizations of the curve and changes its sign under change of orientation.

Plan of this lecture

- 1. Autonomous vector fields
- 2. Action of diffeomorphisms on vector fields
- 3. Commutation of flows
- 4. Variations formula
- 5. Derivative of flow with respect to parameter
- 6. Differential 1-forms