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Autonomous vector fields

® For an autonomous vector field
Vi=V eVecM,

the flow generated by a complete field is called the exponential and is denoted as
etV.

e The asymptotic series for the exponential takes the form

v oC tﬂ t2

~ n__

e NEO !V —Id—l—tV—|—2VoV+ ,
n

i.e, it is the standard exponential series.
® The exponential of an autonomous vector field satisfies the ODEs

d
— etV =etYoV =Vo e, etV =1d.
dt t=0
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e \We apply the asymptotic series for exponential to find the Lie bracket of
autonomous vector fields V, W € Vec M.

e \We compute the first nonconstant term in the asymptotic expansion at t = 0 of
the curve:

14 o tW —tV —tW

q(t) = qoeoeoeoe

2 2
= gqgo <|d+tv+2v2+-~> o <Id+tW+tQW2+..->
t2 2
O<|d—tV+2V2—i—-~> o <Id—tW+2W2+--.>
t2
= qo (Id+t(V+ W)+§(V2+2VOW+ W2)+--->

2
o(ld—t(v+ W)+%(V2+2VOW+ W2)+...>
= go(ld %—tz(\/ oW —-WoV)+--)
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® So the Lie bracket of the vector fields as operators (directional derivatives) in
C>®(M) is
[V.W]=VoW—-WoV.

® This proves the formula in local coordinates: if

n n
B B .
V = E a,-a—Xi, W = E b,’ai)(i, aj, b,‘ eC (/\/’)7
i=1 i=1

then
: d b; daj\ 0 dW dVv
V. W] = i— —b— ) —=—V - — W.
[ 7 ] é;<%8ﬁ 18@>8m dx XmN
e Similarly,
tvV sW -tV _
goeV oe®oe = qo(ld+tV+---)o(ld+sW +---)o(ld—tV + --
= qo(ld+sW +ts[V, W] +---),
and
0? v w v
qO[V,W]:@q:EOqoet oeoet

)
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Action of diffeomorphisms on tangent vectors
e \We have already found counterparts to points, diffeomorphisms, and vector fields
among functionals and operators on C°°(M). Now we consider action of
diffeomorphisms on tangent vectors and vector fields.
® Take a tangent vector v € T,M and a diffeomorphism P € Diff M. The tangent
vector P.v € Tp(q)M is the velocity vector of the image of a curve starting from g
with the velocity vector v. We claim that

P,v=voP, veTqM, PeDiffM, (1)

as functionals on C*°(M).
® Take a curve

a0 M a0 =0 | an=v
then -
d d
P = S| aPla(t) - (dt 3 q(t)) o Pa

= vo Pa, ae C®(M). 7/38



Action of diffeomorphisms on vector fields
® Now we find expression for PV, V € Vec M, as a derivation of C>°(M).

® \We have

goPoP,V = P(q)oP.V=(P.V)(P(q)) =P(V(g)) = V(g)o P
= qoVoP, geM,

thus
PoP,V=VoP,

P.V=PloVoP, P € Diff M, V € Vec M.

® So diffeomorphisms act on vector fields as similarities.

® |n particular, diffeomorphisms preserve compositions:
P, (VoW)=Plo(VoW)oP=(PtoVoP)o(PloWoP)=P,VoP. W,
thus Lie brackets of vector fields:

PJV,W]=P (VoW -WoV)=P.VoP.W—-PWoP,V=[P.V,P.W].

8/38



Action of diffeomorphisms on vector fields

e If B: C®(M) — C°(M) is an automorphism, then the standard algebraic
notation for the corresponding similarity is Ad B:

(AdB)V ¥ BovoBL

® That is,
P.=Ad P!, P ¢ Diff M.
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Now we find an infinitesimal version of the operator Ad.
Let Pt be a flow on M,

P% = Id, —|  Pt=V e VecM.
dt|,_,
Then J
= (P t=-v,
SO
—| (AdPHW = qa (ProWo(PHY ) =VoW-WoV
=0 dtl,g

= [V, W], W € Vec M.

Denote J
adead( Pf> e 21 AdPt
dt|,—o tli—o

then

(ad V)W = [V, W], W € Vec M.
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Differentiation of the equality
AdPE[X, Y] =[Ad Pt X,Ad Pt Y] X,Y € Vec M,
at t = 0 gives Jacobi identity for Lie bracket of vector fields:
(ad V)[X, Y] =[(ad V)X, Y] + [X, (ad V)Y],
which may also be written as
[V,[X,Y]]=1IV.X], Y]+ [X,[V, Y]], V. X,Y € VecM,

or, in a symmetric way

X[V, Z+ Y. [Z,X]] + [Z.[X,Y]] =0,  X,Y,Z € VecM.
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® The set Vec M is a vector space with an additional operation — Lie bracket, which
has the properties:

(1) bilinearity:
[aX +BY, Z] = o[X, Z] + B[Y, Z],
[X,aY + BZ] = ofX, Y] + B[X, Z], X,Y,ZeVecM, «,B€R,
(2) skew-symmetry:
[X,Y]=—[Y.X], X,Y € VecM,
(3) Jacobi identity (2).

® |n other words, the set Vec M of all smooth vector fields on a smooth manifold M
forms a Lie algebra.
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t
e Consider the flow P! :e?f) / V. d7 of a nonautonomous vector field V;. We
0

find an ODE for the family of operators Ad Pt = (P*); ! on the Lie algebra Vec M.
d d
—(AdPHX = — (P'oXo(P)!
S (AdPX = S (Proxo(P) )
= PoVioXo(PH)1—PloXoVio(P)?
= (AdPH)[Vy, X] = (AdPY)ad V; X, X € Vec M.

® Thus the family of operators Ad P! satisfies the ODE

d
T AdP = (AdPY)oad V, (3)

with the initial condition
AdP® =1d. (4)
® So the family Ad P* is an invertible solution for the Cauchy problem
Ar=Aroad Vi, Ap=1Id
for operators A; : Vec M — Vec M.
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e \We can apply the same argument as for the analogous Cauchy problem for flows to
derive the asymptotic expansion

t
AdPtzId+/ ad V;d71 +
0

+/~--/ad V.o--~oadVy dr,...dmnn+--- (5)
Ap(t)
then prove uniqueness of the solution, and justify the following notation:

t
&{;/ ad V. dr ¥ Adpt = Ad<exp/ deT>.
0 0

e Similar identities for the left chronological exponential are

t t
éTp/ ad(—V,)dr & Ad(exp/ (—vT)dT>
0 0

Id+Z/ /—adVTl)O---O(—adVTn)dT,, ... dm.
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® For the asymptotic series (5), there holds an estimate of the remainder term
similar to the estimate for the flow P*.

® Denote the partial sum

m—1
Tm:|d+2/m/ad\/Tno--.oad\/ﬁdrn... dr,
"= an()

then for any X € VecM, s >0, Ke M

t
H(Ad eTp/ V, dr — Tm>X
0 s,K

t 1 t m
< CleCl fo HV-,—HerLK/ dr p (/ || V7'||s+m,K’ dT) ||XHS+m,K’ (6)
: 0

= 0(t™), t—0,

where K/ € M is some compactum containing K.
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L4 I or autonomous vector ﬁelds, we dEI ote
def
etad v — Ad etv?

thus the family of operators ef2dV : Vec M — Vec M is the unique solution to the

problem _
A =AioadV, Ap = Id,

which admits the asymptotic expansion

t2
etadvzld+tadV+§ad2V+--- )

® Let P € Diff M, and let V; be a nonautonomous vector field on M. Then
t t
Poe7p/ deToP—lzeTp/AdeTdT (7)
0 0

since the both parts satisfy the same operator Cauchy problem.
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Commutation of flows

Let V; € Vec M be a nonautonomous vector field and P! :e?[:)) fot V. dr the
corresponding flow. We are interested in the question: under what conditions the flow
P! preserves a vector field W € Vec M ?

Proposition 1
PIW =W Vt < [V,W]=0 Vvt

Proof.

L pytw = Ladptw deT/tadVd W
de ' T de P J, 29 ran

t

= <exp adVTdToad vT>W:<e_x{)/ ad deT> [Ve, W]
0

= 1[Vt7 W]

thus (Pt),1W = W if and only if [V;, W] = 0. O
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® |n general, flows do not commute, neither for nonautonomous vector fields V;, W;:

t1 (53 [%)
e_x{)/ V. dro e?ﬁ/ WTdr;Ae_x;3/ W, dro e_x{)/
0 0 0 0

nor for autonomous vector fields V, W:

t

1
V,dr,

etlv o etzW ?é etzW ° etlv‘
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Proposition 2

In the autonomous case, commutativity of flows is equivalent to commutativity of
vector fields: if V, W &€ Vec M, then

vV W:etzwoetlv

e oe® t1,tr € R, - [\/7 W] =0.

)

Proof.

Necessity:
d2
290 eVoet"oe ™oe ™ = go 2[V, W].

Sufficiency. We have <Ad etlv> W = etV W = W. Taking into account
equality (7), we obtain

t1V w -tV — etz(Adetlv)W

oe2% o e W,

e = €
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Variations formula

e Consider an ODE of the form

g = Vi(q) + We(q).

We think of V; as an initial vector field and W; as its perturbation.

e QOur aim is to find a formula for the flow Q! of the new field Vi + W, as a
perturbation of the flow P! :eﬁ) fot V.. d7 of the initial field V4.

® |n other words, we wish to have a decomposition of the form

t
Qf:eTp/ (V; + W,)dr = Gy o P
0
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® \We proceed as in the method of variation of parameters; we substitute the
previous expression to ODE (8):

d
EQ

Qfo (Ve + Wp)
= GoPt+CoPloV,
= GoP'+ Qo
cancel the common term Q! o V;:
Qfo W, = C;'O Pt
and write down the ODE for the unknown flow C;:
G = QoW (P!
= CioPloW;o (f’t)
= Cio(Ad Pt) W,

t
= Cto<eTp/addeT> W,, Co=Id.
0

-1
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This operator Cauchy problem is of the form Ct = Cto V4, C° = Id, thus it has a
unique solution:

t T
C; =exp (&5/ adV9d9> W, dr.
0 0

Hence we obtain the required decomposition of the perturbed flow:

t t T t
e?p/(VT—i—WT)dT:e?p/ <e7p/ ad ng@) W, dro eTp/ V, dr. (9)
0 0 0 0

This equality is called the variations formula.

It can be written as follows:

t t
&{;/ (VT+WT)dr:eY{)/ (Ad PT) W, dr o P
0 0

So the perturbed flow is a composition of the initial flow P* with the flow of the
perturbation W; twisted by P?.
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e Now we obtain another form of the variations formula, with the flow Pt to the left
of the twisted flow.

® We have
— [t — [t
exp/ (VT—i—WT)dT:exp/ (Ad PT) W, d7 o P?
0 0
t
— Pto (P) o eTp/ (Ad P™) W, dr o Pt
0
t. o7 ! ty—1 T
=Ptoexp [ (Ad(P") o AdPT) Wy dr
0
t
:Pfoer/ Ad (P Lo PT)) W, dr.
(A ((P) o))
® Notice that

(P o PT —exp / Vi d6.

t
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® Thus

t t T
%/(VT+WT)dr:Pfo<e7{)/ <e?£>/ adV9d9> W, dr
0 0 t

t t T
—exp | V,dro eTp/ <e7p/ ad v9d9> W, dr.
0 0 t
(10)

¢ For autonomous vector fields V, W € Vec M, the variations formulas (9), (10)
take the form:

t t
et VW) —exp / e VW droet =eto exp / =02V gr. (11)
0 0

® |n particular, for t = 1 we have
4) 1
eVtW —exp / e VWdroeV.
0
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Derivative of flow with respect to parameter

¢ Let Vi(s) be a nonautonomous vector field depending smoothly on a real
parameter s. We study dependence of the flow of V;(s) on the parameter s.

® We write
t t
&b [ V(s e)dr—eb [ (Vals) +v.(5,9)) or (12)
0 0

with the perturbation oy, (s,e) = V(s +¢) — Vi(s).
¢ By the variations formula (9), the previous flow is equal to

t T t
exp <e7p/ ad Vy(s) d9> Sv.(s,e)dro e7p/ V,(s) dr.
0 0 0
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® Now we expand in &:

Su(se) = o Vi) +0E), e,
W, (s, ¢€) def (e?ﬁ/ ad Vy(s) dG) dv.(s,€)
0
= ¢ (e?fo / ad Vy(s) d9> ({?SVT(S) + 0(£?), e —0,
0

thus

—

t t
exp / W;(s,e)dr = Id —I—/ W, (s,€) dT + O(e?)
0 0

t T
= Id +€/ <e7|5 ad Vj(s) d9> zvT(s) dr 4 0(e?).
0 0 85
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® Finally,

t t
exp/ Vi(s+e dT—exp/ Ws - (e)dTo (T)(()/ V.(s)dr
0 0
7/ Vi (
(9 — t 2
exp ad Viy(s) db %VT(S) dro exp [ Vi(s)dt+ O(g9),
0

that is,

9 & tV(S)dT
65 p 0 T

:/Ot (&5/073(1 Va(s) d6> ;sVT(s) dro e7{)/0t Vi(s)dr. (13)

27/38



e Similarly, we obtain from the variations formula (10) the equality

— exp [ Vi(s)dr

t t T
—exp VT(S)dTO/ <e_7p/ ad Vg(s)d0>8VT(S)dT. (14)
0 0 t ds

® For an autonomous vector field depending on a parameter V(s), formula (13)
takes the form

9 v(s) _ /teTad v OV o, etV(s)
0 0

85 s
and at t = 1: )
0 vis) _ radv(s) OV V(s)
5<¢ /0 e 5 droe’'®. (15)
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Proposition 3
Assume that

Uot V, dr, vt] —0 vt (16)

Then

t
exp | Vidr=ebV-dm .

0

That is, we state that under the commutativity assumption (16), the chronological
. . . . t .
exponential e?;g fot V, d7 coincides with the flow Qt = eJo V=97 defined as follows:

QR = @i,
aQt t
6;:/0 V,dro QL Qi =1Id.
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Proof.

® We show that the exponential in the right-hand side satisfies the same ODE as the
chronological exponential in the left-hand side.

® By (15), we have
d t 1 t t
Eefo Vedr _ / eTadfO Vp df Vt dr o efo Vq—dT‘
0

® In view of equality (16),
erad [y Vo do V, = V,,

thus

d
Eefofvfdr: Vtoefofvfdr_

® By equality (16), we can permute operators in the right-hand side:

%efot Vedr — olo VrdT o v,
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® Notice the initial condition .
el Vrdr|  —q.
t=0

® Now the statement follows since the Cauchy problem for flows

A= A;o Vs, Ao = Id

has a unique solution:

® Here we finish our excursion to Chronological Calculus.
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Differential 1-forms

Linear forms

E a real vector space of finite dimension n.
A linear form on E is a linear function £ : E — R.

The set of linear forms on E has a natural structure of a vector space called the
dual space to E and denoted by E*.

If vectors ey, ..., e, form a basis of E, then the corresponding dual basis of E* is
formed by the covectors €], ..., e} such that
<e,7‘,ej>:5,-j, i j=1,...n.

So the dual space has the same dimension as the initial one:

dmE*=n=dmE.
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Cotangent bundle

M a smooth manifold and T4 M its tangent space at a point g € M.
The space of linear forms on TqM, i.e., the dual space (TyM)* to TqM, is called
the cotangent space to M at q and is denoted as T;M.

The disjoint union of all cotangent spaces is called the cotangent bundle of M:
def *
™M < || oM.
qgeM

The set T*M has a natural structure of a smooth manifold of dimension 2n, where
n=dimM.

Local coordinates on T*M are constructed from local coordinates on M.

Let O C M be a coordinate neighborhood and let

d: 0—=R" ®(q) = (x(q), -, xa(q)),

be a local coordinate system.
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Differentials of the coordinate functions
dx,-|qET;I\/I, i=1,...,n, g€ 0,

form a basis in the cotangent space T, M.
The dual basis in the tangent space TqM is formed by the vectors

e T M, i=1,...,n, qg€Oo,
aX,'q 9 q9

0 o
<d><i,axj>:5,-j, i, j=1,...,n.

Any linear form £ € T;M can be decomposed via the basis forms:

£=) &idx.
i—1

So any covector £ € T*M is characterized by n coordinates (xi, ..., x,) of the
point g € M where £ is attached, and by n coordinates (&1, ...,&,) of the linear
form & in the basis dxi, ..., dx,.
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® Mappings of the form
E &y oy &n X1y o vy Xn)

define local coordinates on the cotangent bundle. Consequently, T*M is a
2n-dimensional manifold.
¢ Coordinates of the form (&, x) are called canonical coordinates on T*M.
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® If F: M— N is asmooth mapping between smooth manifolds, then the
differential
F* : TqM — TF(q)N

has the adjoint (dual) mapping
F e (F): TEgN = TeM
defined as follows:

F*£:§OF*, §€ T;(Q)N’
(F*¢,v) = (&, Fav),  veTgM.

® A vector v € TyM is pushed forward by the differential F, to the vector
F.v € Tr(q)yN, while a covector § € T,’_i(q)N is pulled back to the covector
F¢ € TiM.
® So a smooth mapping F : M — N between manifolds induces a smooth mapping

F* : T*N — T*M between their cotangent bundles.
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Differential 1-forms

A differential 1-form on M is a smooth mapping q — wq € T;M, g€ M, i.e, a
family w = {wq} of linear forms on the tangent spaces T,M smoothly depending
on the point g € M.

The set of all differential 1-forms on M has a natural structure of an
infinite-dimensional vector space denoted as Al M.

Like linear forms on a vector space are dual objects to vectors of the space,
differential forms on a manifold are dual objects to smooth curves in the manifold.
The pairing operation is the integral of a differential 1-form w € AL M along a
smooth oriented curve v : [ty, t1] — M, defined as follows:

/ def/ w0, 4(1)) dt.

The integral of a 1-form along a curve does not change under
orientation-preserving smooth reparametrizations of the curve and changes its sign
under change of orientation.
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