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Plan of previous lecture

1. Points, Di�eomorphisms, and Vector Fields

2. Seminorms and C∞(M)-Topology

3. Families of Functionals and Operators

4. ODEs with discontinuous right-hand side

5. De�nition of the right chronological exponential

6. Formal series expansion

7. Estimates and convergence of the series

8. Left chronological exponential

9. Uniqueness for functional and operator ODEs
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Plan of this lecture

1. Autonomous vector �elds

2. Action of di�eomorphisms on vector �elds

3. Commutation of �ows

4. Variations formula

5. Derivative of �ow with respect to parameter

6. Di�erential 1-forms
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Autonomous vector �elds
• For an autonomous vector �eld

Vt ≡ V ∈ VecM,

the �ow generated by a complete �eld is called the exponential and is denoted as

etV .

• The asymptotic series for the exponential takes the form

etV ≈
∞∑
n=0

tn

n!
V n = Id+tV +

t2

2
V ◦ V + · · · ,

i.e, it is the standard exponential series.

• The exponential of an autonomous vector �eld satis�es the ODEs

d

d t
etV = etV ◦ V = V ◦ etV , etV

∣∣∣
t=0

= Id .
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• We apply the asymptotic series for exponential to �nd the Lie bracket of

autonomous vector �elds V ,W ∈ VecM.

• We compute the �rst nonconstant term in the asymptotic expansion at t = 0 of

the curve:

q(t) = q ◦ etV ◦ etW ◦ e−tV ◦ e−tW

= q ◦
(
Id+tV +

t2

2
V 2 + · · ·

)
◦
(
Id+tW +

t2

2
W 2 + · · ·

)
◦
(
Id−tV +

t2

2
V 2 + · · ·

)
◦
(
Id−tW +

t2

2
W 2 + · · ·

)
= q ◦

(
Id+t(V +W ) +

t2

2
(V 2 + 2V ◦W +W 2) + · · ·

)
◦
(
Id−t(V +W ) +

t2

2
(V 2 + 2V ◦W +W 2) + · · ·

)
= q ◦ (Id+t2(V ◦W −W ◦ V ) + · · · ) .
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• So the Lie bracket of the vector �elds as operators (directional derivatives) in

C∞(M) is
[V ,W ] = V ◦W −W ◦ V .

• This proves the formula in local coordinates: if

V =
n∑

i=1

ai
∂

∂ xi
, W =

n∑
i=1

bi
∂

∂ xi
, ai , bi ∈ C∞(M),

then

[V ,W ] =
n∑

i ,j=1

(
aj
∂ bi
∂ xj

− bj
∂ ai
∂ xj

)
∂

∂ xi
=

d W

d x
V − d V

d x
W .

• Similarly,

q ◦ etV ◦ esW ◦ e−tV = q ◦ (Id+tV + · · · ) ◦ (Id+sW + · · · ) ◦ (Id−tV + · · · )
= q ◦ (Id+sW + ts[V ,W ] + · · · ),

and

q ◦ [V ,W ] =
∂2

∂s∂t

∣∣∣∣
s=t=0

q ◦ etV ◦ esW ◦ e−tV .
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Action of di�eomorphisms on tangent vectors
• We have already found counterparts to points, di�eomorphisms, and vector �elds

among functionals and operators on C∞(M). Now we consider action of

di�eomorphisms on tangent vectors and vector �elds.
• Take a tangent vector v ∈ TqM and a di�eomorphism P ∈ DiffM. The tangent

vector P∗v ∈ TP(q)M is the velocity vector of the image of a curve starting from q
with the velocity vector v . We claim that

P∗v = v ◦ P, v ∈ TqM, P ∈ DiffM, (1)

as functionals on C∞(M).
• Take a curve

q(t) ∈ M, q(0) = q,
d

d t

∣∣∣∣
t=0

q(t) = v ,

then

P∗v a =
d

d t

∣∣∣∣
t=0

a(P(q(t))) =

(
d

d t

∣∣∣∣
t=0

q(t)

)
◦ Pa

= v ◦ Pa, a ∈ C∞(M).

•
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Action of di�eomorphisms on vector �elds
• Now we �nd expression for P∗V , V ∈ VecM, as a derivation of C∞(M).
• We have

q ◦ P ◦ P∗V = P(q) ◦ P∗V = (P∗V ) (P(q)) = P∗(V (q)) = V (q) ◦ P
= q ◦ V ◦ P, q ∈ M,

thus

P ◦ P∗V = V ◦ P,
i.e.,

P∗V = P−1 ◦ V ◦ P, P ∈ DiffM, V ∈ VecM.

• So di�eomorphisms act on vector �elds as similarities.
• In particular, di�eomorphisms preserve compositions:

P∗(V ◦W ) = P−1 ◦ (V ◦W ) ◦P = (P−1 ◦V ◦P) ◦ (P−1 ◦W ◦P) = P∗V ◦P∗W ,

thus Lie brackets of vector �elds:

P∗[V ,W ] = P∗(V ◦W −W ◦ V ) = P∗V ◦ P∗W − P∗W ◦ P∗V = [P∗V ,P∗W ].
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Action of di�eomorphisms on vector �elds

• If B : C∞(M) → C∞(M) is an automorphism, then the standard algebraic

notation for the corresponding similarity is AdB :

(AdB)V
def
= B ◦ V ◦ B−1.

• That is,

P∗ = AdP−1, P ∈ DiffM.
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• Now we �nd an in�nitesimal version of the operator Ad.
• Let Pt be a �ow on M,

P0 = Id,
d

d t

∣∣∣∣
t=0

Pt = V ∈ VecM.

• Then
d

d t

∣∣∣∣
t=0

(
Pt

)−1
= −V ,

so

d

d t

∣∣∣∣
t=0

(AdPt)W =
d

d t

∣∣∣∣
t=0

(Pt ◦W ◦ (Pt)−1) = V ◦W −W ◦ V

= [V ,W ], W ∈ VecM.

• Denote

adV = ad

(
d

d t

∣∣∣∣
t=0

Pt

)
def
=

d

d t

∣∣∣∣
t=0

AdPt ,

then

(adV )W = [V ,W ], W ∈ VecM.
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• Di�erentiation of the equality

AdPt [X ,Y ] = [AdPt X ,AdPt Y ] X ,Y ∈ VecM,

at t = 0 gives Jacobi identity for Lie bracket of vector �elds:

(adV )[X ,Y ] = [(adV )X ,Y ] + [X , (adV )Y ],

which may also be written as

[V , [X ,Y ]] = [[V ,X ],Y ] + [X , [V ,Y ]], V ,X ,Y ∈ VecM,

or, in a symmetric way

[X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0, X ,Y ,Z ∈ VecM. (2)
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• The set VecM is a vector space with an additional operation � Lie bracket, which
has the properties:

(1) bilinearity:

[αX + βY ,Z ] = α[X ,Z ] + β[Y ,Z ],

[X , αY + βZ ] = α[X ,Y ] + β[X ,Z ], X ,Y ,Z ∈ VecM, α, β ∈ R,

(2) skew-symmetry:
[X ,Y ] = −[Y ,X ], X ,Y ∈ VecM,

(3) Jacobi identity (2).

• In other words, the set VecM of all smooth vector �elds on a smooth manifold M
forms a Lie algebra.
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• Consider the �ow Pt =
−→
exp

∫ t

0

Vτ dτ of a nonautonomous vector �eld Vt . We

�nd an ODE for the family of operators AdPt = (Pt)−1∗ on the Lie algebra VecM.

d

d t
(AdPt)X =

d

d t

(
Pt ◦ X ◦ (Pt)−1

)
= Pt ◦ Vt ◦ X ◦ (Pt)−1 − Pt ◦ X ◦ Vt ◦ (Pt)−1

= (AdPt)[Vt ,X ] = (AdPt) adVt X , X ∈ VecM.

• Thus the family of operators AdPt satis�es the ODE

d

d t
AdPt = (AdPt) ◦ adVt (3)

with the initial condition

AdP0 = Id . (4)

• So the family AdPt is an invertible solution for the Cauchy problem

Ȧt = At ◦ adVt , A0 = Id

for operators At : VecM → VecM.
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• We can apply the same argument as for the analogous Cauchy problem for �ows to

derive the asymptotic expansion

AdPt ≈ Id+

∫ t

0

adVτ dτ + · · ·

+

∫
· · ·

∫
∆n(t)

adVτn ◦ · · · ◦ adVτ1 dτn . . . dτ1 + · · · (5)

then prove uniqueness of the solution, and justify the following notation:

−→
exp

∫ t

0

adVτ dτ
def
= AdPt = Ad

(
−→
exp

∫ t

0

Vτ dτ

)
.

• Similar identities for the left chronological exponential are

←−
exp

∫ t

0

ad(−Vτ ) dτ
def
= Ad

(
←−
exp

∫ t

0

(−Vτ ) dτ

)
≈ Id+

∞∑
n=1

∫
· · ·

∫
∆n(t)

(− adVτ1) ◦ · · · ◦ (− adVτn) dτn . . . dτ1.
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• For the asymptotic series (5), there holds an estimate of the remainder term

similar to the estimate for the �ow Pt .

• Denote the partial sum

Tm = Id+
m−1∑
n=1

∫
· · ·

∫
∆n(t)

adVτn ◦ · · · ◦ adVτ1 dτn . . . dτ1,

then for any X ∈ VecM, s ≥ 0, K ⋐ M∥∥∥∥(Ad −→exp ∫ t

0

Vτ dτ − Tm

)
X

∥∥∥∥
s,K

≤ C1e
C1

∫ t
0 ∥Vτ∥s+1,K ′ dτ 1

m!

(∫ t

0

∥Vτ∥s+m,K ′ dτ

)m

∥X∥s+m,K ′ (6)

= O(tm), t → 0,

where K ′ ⋐ M is some compactum containing K .
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• For autonomous vector �elds, we denote

et adV
def
= Ad etV ,

thus the family of operators et adV : VecM → VecM is the unique solution to the

problem

Ȧt = At ◦ adV , A0 = Id,

which admits the asymptotic expansion

et adV ≈ Id+t adV +
t2

2
ad2 V + · · · .

• Let P ∈ DiffM, and let Vt be a nonautonomous vector �eld on M. Then

P◦ −→exp
∫ t

0

Vτ dτ ◦ P−1 = −→exp
∫ t

0

AdP Vτ dτ (7)

since the both parts satisfy the same operator Cauchy problem.
16 / 38



Commutation of �ows
Let Vt ∈ VecM be a nonautonomous vector �eld and Pt =

−→
exp

∫ t
0
Vτ dτ the

corresponding �ow. We are interested in the question: under what conditions the �ow

Pt preserves a vector �eld W ∈ VecM ?

Proposition 1

Pt
∗W = W ∀t ⇔ [Vt ,W ] = 0 ∀t.

Proof.

d

d t
(Pt)

−1
∗ W =

d

d t
AdPtW =

(
d

d t

−→
exp

∫ t

0

adVτ dτ

)
W

=

(
−→
exp

∫ t

0

adVτ dτ ◦ adVτ

)
W =

(
−→
exp

∫ t

0

adVτ dτ

)
[Vt ,W ]

= (Pt)−1∗ [Vt ,W ],

thus (Pt)−1∗ W ≡ W if and only if [Vt ,W ] ≡ 0.
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• In general, �ows do not commute, neither for nonautonomous vector �elds Vt , Wt :

−→
exp

∫ t1

0

Vτ dτ ◦
−→
exp

∫ t2

0

Wτ dτ ̸= −→exp
∫ t2

0

Wτ dτ ◦
−→
exp

∫ t1

0

Vτ dτ,

nor for autonomous vector �elds V , W :

et1V ◦ et2W ̸= et2W ◦ et1V .
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Proposition 2

In the autonomous case, commutativity of �ows is equivalent to commutativity of

vector �elds: if V ,W ∈ VecM, then

et1V ◦ et2W = et2W ◦ et1V , t1, t2 ∈ R, ⇔ [V ,W ] = 0.

Proof.
Necessity:

d2

dt2
q ◦ etV ◦ etW ◦ e−tV ◦ e−tW = q ◦ 2[V ,W ].

Su�ciency. We have
(
Ad et1V

)
W = et1 adVW = W . Taking into account

equality (7), we obtain

et1V ◦ et2W ◦ e−t1V = et2(Ad e
t1V )W = et2W .

19 / 38



Variations formula

• Consider an ODE of the form

q̇ = Vt(q) +Wt(q). (8)

We think of Vt as an initial vector �eld and Wt as its perturbation.

• Our aim is to �nd a formula for the �ow Qt of the new �eld Vt +Wt as a

perturbation of the �ow Pt =
−→
exp

∫ t
0
Vτ dτ of the initial �eld Vt .

• In other words, we wish to have a decomposition of the form

Qt =
−→
exp

∫ t

0

(Vτ +Wτ ) dτ = Ct ◦ Pt .
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• We proceed as in the method of variation of parameters; we substitute the

previous expression to ODE (8):

d

d t
Qt = Qt ◦ (Vt +Wt)

= Ċt ◦ Pt + Ct ◦ Pt ◦ Vt

= Ċt ◦ Pt + Qt ◦ Vt ,

cancel the common term Qt ◦ Vt :

Qt ◦Wt = Ċt ◦ Pt ,

and write down the ODE for the unknown �ow Ct :

Ċt = Qt ◦Wt ◦
(
Pt

)−1
= Ct ◦ Pt ◦Wt ◦

(
Pt

)−1
= Ct ◦

(
AdPt

)
Wt

= Ct ◦
(
−→
exp

∫ t

0

adVτ dτ

)
Wt , C0 = Id .
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• This operator Cauchy problem is of the form Ċ t = C t ◦ Vt , C
0 = Id, thus it has a

unique solution:

Ct =
−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ dθ

)
Wτ dτ.

• Hence we obtain the required decomposition of the perturbed �ow:

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ dθ

)
Wτ dτ ◦

−→
exp

∫ t

0

Vτ dτ. (9)

• This equality is called the variations formula.

• It can be written as follows:

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(AdPτ )Wτ dτ ◦ Pt .

• So the perturbed �ow is a composition of the initial �ow Pt with the �ow of the

perturbation Wt twisted by Pt .
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• Now we obtain another form of the variations formula, with the �ow Pt to the left

of the twisted �ow.

• We have

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(AdPτ )Wτ dτ ◦ Pt

= Pt ◦
(
Pt

)−1 ◦ −→exp ∫ t

0

(AdPτ )Wτ dτ ◦ Pt

= Pt◦ −→exp
∫ t

0

(
Ad

(
Pt

)−1 ◦ AdPτ
)
Wτ dτ

= Pt◦ −→exp
∫ t

0

(
Ad

((
Pt

)−1 ◦ Pτ
))

Wτ dτ.

• Notice that (
Pt

)−1 ◦ Pτ =
−→
exp

∫ τ

t
Vθ dθ.
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• Thus

−→
exp

∫ t

0

(Vτ +Wτ ) dτ = Pt◦ −→exp
∫ t

0

(
−→
exp

∫ τ

t
adVθ dθ

)
Wτ dτ

=
−→
exp

∫ t

0

Vτ dτ◦
−→
exp

∫ t

0

(
−→
exp

∫ τ

t
adVθ dθ

)
Wτ dτ.

(10)

• For autonomous vector �elds V ,W ∈ VecM, the variations formulas (9), (10)
take the form:

et(V+W ) =
−→
exp

∫ t

0

eτ adVW dτ ◦ etV = etV ◦ −→exp
∫ t

0

e(τ−t) adVW dτ. (11)

• In particular, for t = 1 we have

eV+W =
−→
exp

∫ 1

0

eτ adVW dτ ◦ eV .
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Derivative of �ow with respect to parameter

• Let Vt(s) be a nonautonomous vector �eld depending smoothly on a real

parameter s. We study dependence of the �ow of Vt(s) on the parameter s.

• We write

−→
exp

∫ t

0

Vτ (s + ε) dτ =
−→
exp

∫ t

0

(Vτ (s) + δVτ (s, ε)) dτ (12)

with the perturbation δVτ (s, ε) = Vτ (s + ε)− Vτ (s).

• By the variations formula (9), the previous �ow is equal to

−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
δVτ (s, ε) dτ ◦

−→
exp

∫ t

0

Vτ (s) dτ.
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• Now we expand in ε:

δVτ (s, ε) = ε
∂

∂ s
Vτ (s) + O(ε2), ε → 0,

Wτ (s, ε)
def
=

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
δVτ (s, ε)

= ε

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) + O(ε2), ε → 0,

thus

−→
exp

∫ t

0

Wτ (s, ε) dτ = Id+

∫ t

0

Wτ (s, ε) dτ + O(ε2)

= Id+ε

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ + O(ε2).
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• Finally,

−→
exp

∫ t

0

Vτ (s + ε) dτ =
−→
exp

∫ t

0

Ws,τ (ε) dτ ◦
−→
exp

∫ t

0

Vτ (s) dτ

=
−→
exp

∫ t

0

Vτ (s) dτ

+ ε

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ ◦

−→
exp

∫ t

0

Vτ (s) dτ + O(ε2),

that is,

∂

∂ s

−→
exp

∫ t

0

Vτ (s) dτ

=

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ ◦

−→
exp

∫ t

0

Vτ (s) dτ. (13)
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• Similarly, we obtain from the variations formula (10) the equality

∂

∂ s

−→
exp

∫ t

0

Vτ (s) dτ

=
−→
exp

∫ t

0

Vτ (s) dτ ◦
∫ t

0

(
−→
exp

∫ τ

t
adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ. (14)

• For an autonomous vector �eld depending on a parameter V (s), formula (13)
takes the form

∂

∂ s
etV (s) =

∫ t

0

eτ adV (s) ∂ V

∂ s
dτ ◦ etV (s),

and at t = 1:
∂

∂ s
eV (s) =

∫ 1

0

eτ adV (s) ∂ V

∂ s
dτ ◦ eV (s). (15)
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Proposition 3

Assume that [∫ t

0

Vτ dτ,Vt

]
= 0 ∀t. (16)

Then
−→
exp

∫ t

0

Vτ dτ = e
∫ t
0 Vτ dτ ∀t.

That is, we state that under the commutativity assumption (16), the chronological

exponential
−→
exp

∫ t
0
Vτ dτ coincides with the �ow Qt = e

∫ t
0 Vτ dτ de�ned as follows:

Qt = Qt
1,

∂ Qt
s

∂ s
=

∫ t

0

Vτ dτ ◦ Qt
s , Qt

0 = Id .
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Proof.

• We show that the exponential in the right-hand side satis�es the same ODE as the

chronological exponential in the left-hand side.

• By (15), we have

d

d t
e
∫ t
0 Vτ dτ =

∫ 1

0

eτ ad
∫ t
0 Vθ dθ Vt dτ ◦ e

∫ t
0 Vτ dτ .

• In view of equality (16),

eτ ad
∫ t
0 Vθ dθ Vt = Vt ,

thus
d

d t
e
∫ t
0 Vτ dτ = Vt ◦ e

∫ t
0 Vτ dτ .

• By equality (16), we can permute operators in the right-hand side:

d

d t
e
∫ t
0 Vτ dτ = e

∫ t
0 Vτ dτ ◦ Vt .
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• Notice the initial condition

e
∫ t
0 Vτ dτ

∣∣∣
t=0

= Id .

• Now the statement follows since the Cauchy problem for �ows

Ȧt = At ◦ Vt , A0 = Id

has a unique solution:

At = e
∫ t
0 Vτ dτ =

−→
exp

∫ t

0

Vτ dτ.

• Here we �nish our excursion to Chronological Calculus.
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Di�erential 1-forms
Linear forms

• E a real vector space of �nite dimension n.

• A linear form on E is a linear function ξ : E → R.
• The set of linear forms on E has a natural structure of a vector space called the

dual space to E and denoted by E ∗.

• If vectors e1, . . . , en form a basis of E , then the corresponding dual basis of E ∗ is
formed by the covectors e∗1 , . . . , e

∗
n such that

⟨e∗i , ej⟩ = δij , i , j = 1, . . . n.

• So the dual space has the same dimension as the initial one:

dimE ∗ = n = dimE .
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Cotangent bundle
• M a smooth manifold and TqM its tangent space at a point q ∈ M.

• The space of linear forms on TqM, i.e., the dual space (TqM)∗ to TqM, is called

the cotangent space to M at q and is denoted as T ∗qM.

• The disjoint union of all cotangent spaces is called the cotangent bundle of M:

T ∗M
def
=

⊔
q∈M

T ∗qM.

• The set T ∗M has a natural structure of a smooth manifold of dimension 2n, where
n = dimM.

• Local coordinates on T ∗M are constructed from local coordinates on M.

• Let O ⊂ M be a coordinate neighborhood and let

Φ : O → Rn, Φ(q) = (x1(q), . . . , xn(q)),

be a local coordinate system.
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• Di�erentials of the coordinate functions

dxi |q ∈ T ∗qM, i = 1, . . . , n, q ∈ O,

form a basis in the cotangent space T ∗qM.
• The dual basis in the tangent space TqM is formed by the vectors

∂

∂ xi

∣∣∣∣
q

∈ TqM, i = 1, . . . , n, q ∈ O,〈
dxi ,

∂

∂ xj

〉
≡ δij , i , j = 1, . . . , n.

• Any linear form ξ ∈ T ∗qM can be decomposed via the basis forms:

ξ =
n∑

i=1

ξi dxi .

• So any covector ξ ∈ T ∗M is characterized by n coordinates (x1, . . . , xn) of the
point q ∈ M where ξ is attached, and by n coordinates (ξ1, . . . , ξn) of the linear
form ξ in the basis dx1, . . . , dxn.
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• Mappings of the form

ξ 7→ (ξ1, . . . , ξn; x1, . . . , xn)

de�ne local coordinates on the cotangent bundle. Consequently, T ∗M is a

2n-dimensional manifold.

• Coordinates of the form (ξ, x) are called canonical coordinates on T ∗M.
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• If F : M → N is a smooth mapping between smooth manifolds, then the

di�erential

F∗ : TqM → TF (q)N

has the adjoint (dual) mapping

F ∗
def
= (F∗)

∗ : T ∗F (q)N → T ∗qM

de�ned as follows:

F ∗ξ = ξ ◦ F∗, ξ ∈ T ∗F (q)N,

⟨F ∗ξ, v⟩ = ⟨ξ,F∗v⟩, v ∈ TqM.

• A vector v ∈ TqM is pushed forward by the di�erential F∗ to the vector

F∗v ∈ TF (q)N, while a covector ξ ∈ T ∗F (q)N is pulled back to the covector

F ∗ξ ∈ T ∗qM.

• So a smooth mapping F : M → N between manifolds induces a smooth mapping

F ∗ : T ∗N → T ∗M between their cotangent bundles.
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Di�erential 1-forms
• A di�erential 1-form on M is a smooth mapping q 7→ ωq ∈ T ∗qM, q ∈ M, i.e, a
family ω = {ωq} of linear forms on the tangent spaces TqM smoothly depending

on the point q ∈ M.
• The set of all di�erential 1-forms on M has a natural structure of an

in�nite-dimensional vector space denoted as Λ1M.
• Like linear forms on a vector space are dual objects to vectors of the space,

di�erential forms on a manifold are dual objects to smooth curves in the manifold.
• The pairing operation is the integral of a di�erential 1-form ω ∈ Λ1M along a

smooth oriented curve γ : [t0, t1] → M, de�ned as follows:∫
γ
ω

def
=

∫ t1

t0

⟨ωγ(t), γ̇(t)⟩ dt.

• The integral of a 1-form along a curve does not change under

orientation-preserving smooth reparametrizations of the curve and changes its sign

under change of orientation.
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Plan of this lecture

1. Autonomous vector �elds

2. Action of di�eomorphisms on vector �elds

3. Commutation of �ows

4. Variations formula

5. Derivative of �ow with respect to parameter

6. Di�erential 1-forms
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