Time-Optimal Problem. Ordinary differential equations on manifolds

(Lecture 2)

Yuri Sachkov

yusachkov@gmail.com

«Elements of geometric control theory»

Lecture course in Dept. of Mathematics and Mechanics

Lomonosov Moscow State University

26 February 2025

Plan of previous lecture

- 1. Optimal Control Problem Statement
- 2. Lebesgue measurable sets and functions
- 3. Lebesgue integral
- 4. Carathéodory ODEs
- 5. Reduction of Optimal Control Problem to Study of Attainable Sets
- 6. Filippov's theorem: Compactness of Attainable Sets
- 7. Time-Optimal Problem

Plan of this lecture

- 1. Filippov's theorem: Compactness of Attainable Sets
- 2. Time-Optimal Problem
- 3. Smooth manifolds
- 4. Tangent space and tangent vector
- 5. Ordinary differential equations on manifolds

Optimal Control Problem Statement

$$\dot{q} = f_u(q), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m, \tag{1}$$

$$q(0) = q_0, \tag{2}$$

$$q(t_1) = q_1, \tag{3}$$

$$J(u) = \int_0^{t_1} \varphi(q, u) dt \to \min. \tag{4}$$

Existence of optimal trajectories for problems with fixed t_1

Theorem 1

Let $q_1 \in \mathcal{A}_{q_0}(t_1)$. If $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)$ is compact, then there exists an optimal trajectory in the problem (1)–(4) with the fixed terminal time t_1 .

Theorem 2 (Filippov)

Let the space of control parameters $U \subseteq \mathbb{R}^m$ be compact. Let there exist a compact $K \subseteq M$ such that $f_u(q) = 0$ for $q \notin K$, $u \in U$. Moreover, let the velocity sets

$$f_U(q) = \{f_u(q) \mid u \in U\} \subset T_q M, \qquad q \in M,$$

be convex. Then the attainable sets $A_{q_0}(t)$ and $A_{q_0}^t$ are compact for all $q_0 \in M$, t > 0.

A priori bound in \mathbb{R}^n

- For control systems on $M = \mathbb{R}^n$, there exist well-known sufficient conditions for completeness of vector fields.
- If the right-hand side grows at infinity sublinearly, i.e.,

$$|f_u(x)| \le C(1+|x|), \qquad x \in \mathbb{R}^n, \quad u \in U,$$
 (5)

for some constant C, then the nonautonomous vector fields $f_u(x)$ are complete (here $|x| = \sqrt{x_1^2 + \dots + x_n^2}$ is the norm of a point $x = (x_1, \dots, x_n) \in \mathbb{R}^n$).

• These conditions provide an a priori bound for solutions: any solution x(t) of the control system

$$\dot{x} = f_u(x), \qquad x \in \mathbb{R}^n, \quad u \in U,$$
 (6)

with the right-hand side satisfying (5) admits the bound

$$|x(t)| \le e^{2Ct} (|x(0)| + 1), \qquad t \ge 0.$$

Compactness of attainable sets in \mathbb{R}^n

• Filippov's theorem plus the previous remark imply the following sufficient condition for compactness of attainable sets for systems in \mathbb{R}^n .

Corollary 3

Let system (6) have a compact space of control parameters $U \in \mathbb{R}^m$ and convex velocity sets $f_U(x)$, $x \in \mathbb{R}^n$.

Suppose moreover that the right-hand side of the system satisfies a sublinear bound of the form (5).

Then the attainable sets $\mathcal{A}_{x_0}(t)$ and $\mathcal{A}^t_{x_0}$ are compact for all $x_0 \in \mathbb{R}^n$, t > 0.

Time-optimal problem

• Given a pair of points $q_0 \in M$ and $q_1 \in \mathcal{A}_{q_0}$, the *time-optimal problem* consists in minimizing the time of motion from q_0 to q_1 via admissible controls of control system (1):

$$\min_{u} \{t_1 \mid q_u(t_1) = q_1\}. \tag{7}$$

- That is, we consider the optimal control problem with the integrand $\varphi(q, u) \equiv 1$ and free terminal time t_1 .
- Reduction of optimal control problems to the study of attainable sets and Filippov's Theorem yield the following existence result.

Corollary 4

Under the hypotheses of Filippov's Theorem 2, time-optimal problem (1), (7) has a solution for any points $q_0 \in M$, $q_1 \in A_{q_0}$.

Example of a time-optimal problem: Stopping a train

Given:

- material point of mass m > 0 with coordinate $x \in \mathbb{R}$
- force F bounded by the absolute value by $F_{\text{max}} > 0$
- initial position x_0 and initial velocity \dot{x}_0 of the material point

Find:

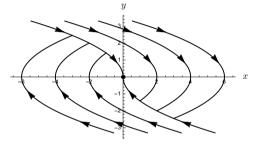
• force F that steers the point to the origin with zero velocity, for a minimal time.

$$\dot{x}_1 = x_2, \qquad (x_1, x_2) \in \mathbb{R}^2, \\ \dot{x}_2 = u, \qquad |u| \le 1, \\ (x_1, x_2)(0) = (x_0, \dot{x}_0), \qquad (x_1, x_2)(t_1) = (0, 0), \\ t_1 \to \min.$$

Example: Stopping a train

• Trajectories of the system with a constant control $u \neq 0$ are the parabolas

$$\frac{x_2^2}{2} = ux_1 + C$$
:



- Now it is visually obvious that $(0,0) \in \mathcal{A}_{(x_1,x_2)}$ for any $(x_1,x_2) \in \mathbb{R}^2$.
- The set of control parameters U = [-1, 1] is compact, the set of admissible velocity vectors $f(x, U) = \{(x_2, u) \mid u \in [-1, 1]\}$ is convex for any $x \in \mathbb{R}^2$, and the right-hand side of the control system has sublinear growth: $|f(x, u)| \leq C(|x| + 1)$.
- All hypotheses of the Filippov theorem are satisfied, thus optimal control exists.

Smooth manifolds

"Smooth" (manifold, mapping, vector field etc.) means C^{∞} .

Definition 5

A subset $M \subset \mathbb{R}^n$ is called a *smooth k-dimensional submanifold* of \mathbb{R}^n , $k \leq n$, if any point $x \in M$ has a neighbourhood O_x in \mathbb{R}^n in which M is described in one of the following ways:

(1) there exists a smooth vector-function

$$F: O_x \to \mathbb{R}^{n-k}, \quad \operatorname{rank} \left. \frac{dF}{dx} \right|_a = n-k$$

such that

$$O_{\scriptscriptstyle X}\cap M=F^{-1}(0);$$

(2) there exists a smooth vector-function

$$f: V_0 \to \mathbb{R}^n$$

from a neighbourhood of the origin $0 \in V_0 \subset \mathbb{R}^k$ such that

$$f(0) = x$$
, rank $\frac{df}{dx}\Big|_{0} = k$,

$$O_{\times} \cap M = f(V_0)$$

and $f: V_0 \to O_x \cap M$ is a homeomorphism;

(3) there exists a smooth vector-function

$$\Phi: O_{\mathsf{x}} \to O_{\mathsf{0}} \subset \mathbb{R}^n$$

onto a neighbourhood of the origin $0 \in O_0 \subset \mathbb{R}^n$ such that

$$\operatorname{rank} \left. \frac{d\Phi}{dx} \right|_{x} = n,$$

$$\Phi(O_{\times}\cap M)=\mathbb{R}^k\cap O_0.$$

- There are two topologically different one-dimensional manifolds: the line \mathbb{R}^1 and the circle S^1 .
- The sphere S^2 and the torus $\mathbb{T}^2 = S^1 \times S^1$ are two-dimensional manifolds.
- The torus can be viewed as a sphere with a handle. Any compact orientable two-dimensional manifold is topologically a sphere with g handles, $g=0,1,2,\ldots$ is the genus of the manifold.
- Smooth manifolds appear naturally already in the basic analysis. For example, the circle S^1 and the torus \mathbb{T}^2 are natural domains of periodic and doubly periodic functions respectively. On the sphere S^2 , it is convenient to consider restriction of homogeneous functions of 3 variables.

Abstract manifold

Definition 6

A smooth k-dimensional manifold M is a Hausdorff paracompact topological space endowed with a smooth structure: M is covered by a system of open subsets

$$M = \cup_{\alpha} O_{\alpha}$$

called coordinate neighbourhoods, in each of which is defined a homeomorphism

$$\Phi_{\alpha}: \mathcal{O}_{\alpha} \to \mathbb{R}^{k}$$

called a local coordinate system such that all compositions

$$\Phi_\beta \circ \Phi_\alpha^{-1} \ : \Phi_\alpha(O_\alpha \cap O_\beta) \subset \mathbb{R}^k \to \Phi_\beta(O_\alpha \cap O_\beta) \subset \mathbb{R}^k$$

are diffeomorphisms, see fig. 1.

Coordinate system in smooth manifold M

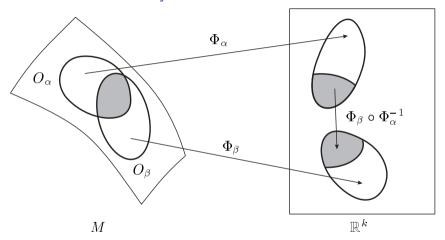


Figure: Coordinate system in smooth manifold M

 As a rule, we denote points of a smooth manifold by q, and its coordinate representation in a local coordinate system by x:

$$q \in M, \qquad \Phi_{\alpha} : O_{\alpha} \to \mathbb{R}^k, \quad x = \Phi(q) \in \mathbb{R}^k.$$

• For a smooth submanifold in \mathbb{R}^n , the abstract Definition 6 holds. Conversely, any connected smooth abstract manifold can be considered as a smooth submanifold in \mathbb{R}^n . Before precise formulation of this statement, we give two definitions.

Definition 7

Let M and N be k- and I-dimensional smooth manifolds respectively. A continuous mapping $f:M\to N$ is called \underline{smooth} if it is smooth in coordinates. That is, let $M=\cup_{\alpha}O_{\alpha}$ and $N=\cup_{\beta}V_{\beta}$ be coverings of M and N by coordinate neighbourhoods and $\Phi_{\alpha}:O_{\alpha}\to\mathbb{R}^k$, $\Psi_{\beta}:V_{\beta}\to\mathbb{R}^I$ the corresponding coordinate mappings. Then all

$$\Psi_{\beta}\circ f\circ \Phi_{\alpha}^{-1}\ :\ \Phi_{\alpha}(O_{\alpha}\cap f^{-1}(V_{\beta}))\subset \mathbb{R}^{k}\to \Psi_{\beta}(f(O_{\alpha})\cap V_{\beta})\subset \mathbb{R}^{l}$$

should be smooth.

Definition 8

A smooth manifold M is called *diffeomorphic* to a smooth manifold N if there exists a homeomorphism

$$f: M \to N$$

such that both f and its inverse f^{-1} are smooth mappings. Such mapping f is called a diffeomorphism.

The set of all diffeomorphisms $f:M\to M$ of a smooth manifold M is denoted by Diff M.

Definition 9

A smooth mapping $f: M \to N$ is called an *embedding* of M into N if $f: M \to f(M)$ is a diffeomorphism. A mapping $f: M \to N$ is called *proper* if $f^{-1}(K)$ is compact for any compactum $K \subseteq N$.

Theorem 10 (Whitney)

Any smooth connected k-dimensional manifold can be properly embedded into \mathbb{R}^{2k+1} .

Tangent space of a submanifold in \mathbb{R}^n

Definition 11

Let M be a smooth k-dimensional submanifold of \mathbb{R}^n and $x \in M$ its point. Then the tangent space to M at the point x is a k-dimensional linear subspace $T_xM \subset \mathbb{R}^n$ defined as follows for cases (1)–(3) of Definition 5:

$$(1) T_x M = \operatorname{Ker} \left. \frac{dF}{dx} \right|_x,$$

(2)
$$T_x M = \operatorname{Im} \left. \frac{df}{dx} \right|_0$$

(3)
$$T_x M = \left(\frac{d\Phi}{dx}\Big|_{x}\right)^{-1} \mathbb{R}^k$$
.

Remark 1

The tangent space is a coordinate-invariant object since smooth changes of variables lead to linear transformations of the tangent space.

Tangent vector to an abstract manifold

Definition 12

Let $\gamma(\cdot)$ be a smooth curve in a smooth manifold M starting from a point $q \in M$:

$$\gamma: (-\varepsilon, \varepsilon) \to M$$
 a smooth mapping, $\gamma(0) = q$.

The tangent vector $\left.\frac{d\,\gamma}{d\,t}\right|_{t=0}=\dot{\gamma}(0)$ to the curve $\gamma(\cdot)$ at the point q is the equivalence class of all smooth curves in M starting from q and having the same 1-st order Taylor polynomial as $\gamma(\cdot)$, for any coordinate system in a neighbourhood of q.

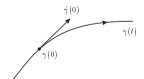


Figure: Tangent vector $\dot{\gamma}(0)$

Tangent space to an abstract manifold

Definition 13

The *tangent space* to a smooth manifold M at a point $q \in M$ is the set of all tangent vectors to all smooth curves in M starting at q:

$$\mathcal{T}_q M = \left\{ \left. rac{d \, \gamma}{d \, t} \right|_{t=0} \mid \gamma \ : \ (-arepsilon, arepsilon)
ightarrow M \ ext{smooth}, \gamma(0) = q
ight\}.$$

Remark 2

Let M be a smooth k-dimensional manifold and $q \in M$. Then the tangent space T_qM has a natural structure of a linear k-dimensional space.

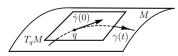


Figure: Tangent space T_qM

Dynamical system

Denote by Vec M the set of all smooth vector fields on a smooth manifold M.

Definition 14

A smooth dynamical system, or an ordinary differential equation (ODE), on a smooth manifold M is an equation of the form $\frac{dq}{dt} = V(q)$, $q \in M$, or, equivalently, $\dot{q} = V(q)$, $q \in M$, where V(q) is a smooth vector field on M.

A solution to this system is a smooth mapping $\gamma:I\to M,$ where $I\subset\mathbb{R}$ is an interval, such that $\frac{d\gamma}{dt}=V(\gamma(t))\quad\forall\ t\in I.$

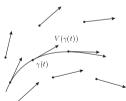


Figure: Solution to ODE $\dot{q} = V(q)$

Differential of a smooth mapping

Definition 15

Let $\Phi: M \to N$ be a smooth mapping between smooth manifolds M and N. The differential of Φ at a point $q \in M$ is a linear mapping

$$D_q\Phi: T_qM \to T_{\Phi(q)}N$$

defined as follows:

$$D_q \Phi\left(\left.\frac{d\,\gamma}{d\,t}\right|_{t=0}\right) = \left.\frac{d}{d\,t}\right|_{t=0} \Phi(\gamma(t)),$$

where

$$\gamma: (-\varepsilon, \varepsilon) \subset \mathbb{R} \to M, \qquad \gamma(0) = q,$$

is a smooth curve in M starting at q.

Action of diffeomorphisms on vector fields

• Let $V \in \text{Vec } M$ be a vector field on M and

$$\dot{q} = V(q) \tag{8}$$

the corresponding ODE.

• To find the action of a diffeomorphism

$$\Phi: M \to N, \qquad \Phi: g \mapsto x = \Phi(g)$$

on the vector field V(q), take a solution q(t) of (8) and compute the ODE satisfied by the image $x(t) = \Phi(q(t))$:

$$\dot{x}(t) = rac{d}{dt} \Phi(q(t)) = (D_q \Phi) \, \dot{q}(t) = (D_q \Phi) \, V(q(t)) = (D_{\Phi^{-1}(x)} \Phi) \, V(\Phi^{-1}(x(t))).$$

So the required ODE is

$$\dot{x} = \left(D_{\Phi^{-1}(x)}\Phi\right)V(\Phi^{-1}(x)). \tag{9}$$

The right-hand side here is the transformed vector field on N induced by the diffeomorphism Φ :

$$(\Phi_*V)(x) \stackrel{\mathrm{def}}{=} (D_{\Phi^{-1}(x)}\Phi) V(\Phi^{-1}(x)).$$

- The notation Φ_{*q} is used, along with $D_q\Phi$, for differential of a mapping Φ at a point q.
- In general, a smooth mapping Φ induces transformation of tangent vectors, not of vector fields.
- In order that $D\Phi$ transform vector fields to vector fields, Φ should be a diffeomorphism.

Smooth ODEs and flows on manifolds

Theorem 16

Consider a smooth ODE

$$\dot{q} = V(q), \qquad q \in M \subset \mathbb{R}^n,$$
 (10)

on a smooth submanifold M of \mathbb{R}^n . For any initial point $q_0 \in M$, there exists a unique solution

$$q(t,q_0), \qquad t \in (a,b), \quad a < 0 < b,$$

of equation (10) with the initial condition $q(0, q_0) = q_0$, defined on a sufficiently short interval (a, b). The mapping

$$(t,q_0)\mapsto q(t,q_0)$$

is smooth. In particular, the domain (a, b) of the solution $q(\cdot, q_0)$ can be chosen smoothly depending on q_0 .

Proof.

We prove the theorem by reduction to its classical analogue in \mathbb{R}^n . The statement of the theorem is local. We rectify the submanifold M in the neighbourhood of the point q_0 :

$$\Phi: O_{q_0} \subset \mathbb{R}^n \to O_0 \subset \mathbb{R}^n, \Phi(O_{q_0} \cap M) = \mathbb{R}^k.$$

Consider the restriction $\varphi = \Phi|_M$. Then a curve q(t) in M is a solution to (10) if and only if its image $x(t) = \varphi(q(t))$ in \mathbb{R}^k is a solution to the induced system:

$$\dot{x} = \Phi_* V(x), \qquad x \in \mathbb{R}^k.$$

Theorem 17

Let $M \subset \mathbb{R}^n$ be a smooth submanifold and let

$$\dot{q} = V(q), \qquad q \in \mathbb{R}^n,$$
 (11)

be a system of ODEs in \mathbb{R}^n such that

$$q \in M \Rightarrow V(q) \in T_q M$$
.

Then for any initial point $q_0 \in M$, the corresponding solution $q(t, q_0)$ to (11) with $q(0, q_0) = q_0$ belongs to M for all sufficiently small |t|.

Proof.

Consider the restricted vector field:

$$f = V|_{M}$$
.

By the existence theorem for M, the system

$$\dot{q}=f(q), \qquad q\in M,$$

has a solution $q(t, q_0)$, $q(0, q_0) = q_0$, with

$$q(t, q_0) \in M$$
 for small $|t|$. (12)

On the other hand, the curve $q(t, q_0)$ is a solution of (11) with the same initial condition. Then inclusion (12) proves the theorem.

Complete vector fields

Definition 18

A vector field $V \in \text{Vec } M$ is called *complete*, if for all $q_0 \in M$ the solution $q(t, q_0)$ of the Cauchy problem

$$\dot{q} = V(q), \qquad q(0, q_0) = q_0$$
 (13)

is defined for all $t \in \mathbb{R}$.

Example 19

The vector field V(x)=x is complete on \mathbb{R} , as well as on $\mathbb{R}\setminus\{0\}$, $(-\infty,0)$, $(0,+\infty)$, and $\{0\}$, but not complete on other submanifolds of \mathbb{R} .

The vector field $V(x) = x^2$ is not complete on any submanifolds of \mathbb{R} except $\{0\}$.

Proposition 1

Suppose that there exists $\varepsilon > 0$ such that for any $q_0 \in M$ the solution $q(t, q_0)$ to Cauchy problem (13) is defined for $t \in (-\varepsilon, \varepsilon)$. Then the vector field V(q) is complete.

Remark 3

In this proposition it is required that there exists $\varepsilon>0$ common for all initial points $q_0\in M$. In general, ε may be not bounded away from zero for all $q_0\in M$. E.g., for the vector field $V(x)=x^2$ we have $\varepsilon\to 0$ as $x_0\to\infty$.

Proof.

Suppose that the hypothesis of the proposition is true. Then we can introduce the following family of mappings in M:

$$P^t: M \to M, \qquad t \in (-\varepsilon, \varepsilon),$$

 $P^t: q_0 \mapsto q(t, q_0).$

 $P^t(q_0)$ is the shift of a point $q_0 \in M$ along the trajectory of the vector field V(q) for time t.

By Theorem 16, all mappings P^t are smooth. Moreover, the family $\{P^t \mid t \in (-\varepsilon, \varepsilon)\}$ is a smooth family of mappings.

A very important property of this family is that it forms a local one-parameter group, i.e.,

$$P^t(P^s(q)) = P^s(P^t(q)) = P^{t+s}(q), \quad q \in M, \quad t, s, t+s \in (-\varepsilon, \varepsilon).$$

Indeed, the both curves in M:

$$t\mapsto P^t(P^s(q))$$
 and $t\mapsto P^{t+s}(q)$

satisfy the ODE $\dot{q}=V(q)$ with the same initial value $P^0(P^s(q))=P^{0+s}(q)=P^s(q)$. By uniqueness, $P^t(P^s(q))=P^{t+s}(q)$. The equality for $P^s(P^t(q))$ is obtained by switching t and s.

So we have the following local group properties of the mappings P^t :

$$\begin{split} &P^t \circ P^s = P^s \circ P^t = P^{t+s}, \qquad t, \ s, \ t+s \in (-\varepsilon,\varepsilon), \\ &P^0 = \mathsf{Id}, \\ &P^{-t} \circ P^t = P^t \circ P^{-t} = \mathsf{Id}, \qquad t \in (-\varepsilon,\varepsilon), \\ &P^{-t} = \left(P^t\right)^{-1}, \qquad t \in (-\varepsilon,\varepsilon). \end{split}$$

In particular, all P^t are diffeomorphisms.

Now we extend the mappings P^t for all $t \in \mathbb{R}$. Any $t \in \mathbb{R}$ can be represented as

$$t=rac{arepsilon}{2}{\cal K}+ au, \qquad 0\leq au <rac{arepsilon}{2}, \quad {\cal K}=0,\pm 1,\pm 2,\dots.$$

We set

$$P^t \stackrel{\mathrm{def}}{=} P^{\tau} \circ \underbrace{P^{\pm \varepsilon/2} \circ \cdots \circ P^{\pm \varepsilon/2}}_{|K| \text{ times}}, \qquad \pm = \operatorname{sgn} t.$$

Then the curve

$$t\mapsto P^t(q_0), \qquad t\in\mathbb{R},$$

is a solution to Cauchy problem (13).

The flow of a vector field

Definition 20

For a complete vector field $V \in \text{Vec } M$, the mapping

$$t\mapsto P^t, \qquad t\in\mathbb{R},$$

is called the flow generated by V.

Example 21

The linear vector field V(x) = Ax, $x \in \mathbb{R}^n$, has the flow $P^t = e^{tA} = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!}$. By this reason the flow of any complete vector field $V \in \text{Vec } M$ is denoted as $P^t = e^{tV}$.

Remark 4

It is useful to imagine a vector field $V \in \text{Vec } M$ as a field of velocity vectors of a moving liquid in M. Then the flow P^t takes any particle of the liquid from a position $q \in M$ and transfers it for a time $t \in \mathbb{R}$ to the position $P^t(q) \in M$.

Sufficient conditions for completeness of a vector field

Proposition 2

Let $K \subset M$ be a compact subset, and let $V \in \text{Vec } M$. Then there exists $\varepsilon_K > 0$ such that for all $q_0 \in K$ the solution $q(t, q_0)$ to Cauchy problem (13) is defined for all $t \in (-\varepsilon_K, \varepsilon_K)$.

Proof.

By Theorem 16, domain of the solution $q(t, q_0)$ can be chosen continuously depending on q_0 . The diameter of this domain has a positive infimum $2\varepsilon_K$ for q_0 in the compact set K.

Corollary 22

If a smooth manifold M is compact, then any vector field $V \in \text{Vec } M$ is complete.

Corollary 23

Suppose that a vector field $V \in \text{Vec } M$ has a compact support:

$$\mathsf{supp}\,V\ \stackrel{\mathrm{def}}{=}\ \overline{\{\,q\in M\mid V(q)\neq 0\,\}}\ \textit{is compact}.$$

Then V is complete.

Proof.

Indeed, by Proposition 2, there exists $\varepsilon>0$ such that all trajectories of V starting in supp V are defined for $t\in(-\varepsilon,\varepsilon)$. But $V|_{M\setminus \text{supp }V}=0$, and all trajectories of V starting outside of supp V are constant, thus defined for all $t\in\mathbb{R}$. By Proposition 1, the vector field V is complete.

Remark 5

If we are interested in the behaviour of (trajectories of) a vector field $V \in \operatorname{Vec} M$ in a compact subset $K \subset M$, we can suppose that V is complete. Indeed, take an open neighbourhood O_K of K with the compact closure $\overline{O_K}$. We can find a function $a \in C^\infty(M)$ such that

$$\mathsf{a}(q) = \left\{ egin{array}{ll} 1, & q \in \mathcal{K}, \ 0, & q \in \mathcal{M} \setminus \mathcal{O}_\mathcal{K}. \end{array}
ight.$$

Then the vector field $a(q)V(q) \in \text{Vec } M$ is complete since it has a compact support. On the other hand, in K the vector fields a(q)V(q) and V(q) coincide, thus have the same trajectories.

Plan of this lecture

- 1. Filippov's theorem: Compactness of Attainable Sets
- 2. Time-Optimal Problem
- 3. Smooth manifolds
- 4. Tangent space and tangent vector
- 5. Ordinary differential equations on manifolds