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Plan of course

1. Statement of the optimal control problem

2. Measurable sets and functions, Carath�eodory di�erential equations

3. Su�cient Filippov conditions for the existence of an optimal control

4. Di�erential equations on smooth manifolds

5. Elements of chronological calculus of R.V.Gamkrelidze�A.A.Agrachev

6. Di�erential forms

7. Elements of symplectic geometry

8. Proof of the Pontryagin maximum principle on manifolds: geometric form, optimal

control problems with di�erent boundary conditions.

9. Examples of optimal syntheses.
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Plan of lecture

1. Optimal Control Problem Statement

2. Lebesgue measurable sets and functions

3. Lebesgue integral

4. Carath�eodory ODEs

5. Reduction of Optimal Control Problem to Study of Attainable Sets

6. Filippov's theorem: Compactness of Attainable Sets

7. Time-Optimal Problem
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Optimal Control Problem Statement
Control system:

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm. (1)

• M a smooth manifold
• U an arbitrary subset of Rm

• right-hand side of (1):

q 7→ fu(q) is a smooth vector �eld on M for any �xed u ∈ U, (2)

(q, u) 7→ fu(q) is a continuous mapping for q ∈ M, u ∈ U, (3)

and moreover, in any local coordinates on M

(q, u) 7→ ∂ fu
∂ q

(q) is a continuous mapping for q ∈ M, u ∈ U. (4)

• Admissible controls are measurable locally bounded mappings

u : t 7→ u(t) ∈ U,

i.e., u ∈ L∞([0, t1],U). 4 / 35



• Substitute such a control u = u(t) for control parameter into system (1)

• ⇒ nonautonomous ODE q̇ = fu(q)

• By Carath�eodory's Theorem, for any point q0 ∈ M, the Cauchy problem

q̇ = fu(q), q(0) = q0, (5)

has a unique solution qu(t).

• In order to compare admissible controls one with another on a segment [0, t1],
introduce a cost functional:

J(u) =

∫ t1

0

φ(qu(t), u(t)) dt (6)

with an integrand

φ : M × U → R

satisfying the same regularity assumptions as the right-hand side f , see (2)�(4).
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• Take any pair of points q0, q1 ∈ M.
• Consider the following optimal control problem:

Problem 1
Minimize the functional J among all admissible controls u = u(t), t ∈ [0, t1], for which
the corresponding solution qu(t) of Cauchy problem (5) satis�es the boundary condition

qu(t1) = q1. (7)

• This problem can also be written as follows:

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (8)

q(0) = q0, q(t1) = q1, (9)

J(u) =

∫ t1

0

φ(q(t), u(t)) dt → min . (10)

• Two types of problems: with �xed terminal time t1 and free t1.
• A solution u of this problem is called an optimal control, and the corresponding

curve qu(t) is an optimal trajectory.
6 / 35



Example: Euler elasticae

Given:

• uniform elastic rod of length l in the plane

• the rod has �xed endpoints and tangents at endpoints

Find:

• the pro�le of the rod.
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Example: Euler elasticae

q0 = (a0, θ0)

x

y

γ(t) θ(t)

q1 = (a1, θ1)

ẋ = cos θ, q = (x , y , θ) ∈ R2 × S1,

ẏ = sin θ, u ∈ R,
θ̇ = u,

q(0) = q0, q(t1) = q1,

t1 = l is the length of the rod,

J =
1

2

∫ t1

0

u2 dt → min .
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De�nition of Lebesgue measure in I = [0, 1]: H. Lebesgue, 1902 1

• Measure of intervals:

m(∅) := 0, m(|a, b|) := b − a, b ≥ a, | = [ or ].

• Measure of elementary sets: m′(⊔∞
i=1|ai , bi |) :=

∑∞
i=1m(|ai , bi |)

• Outer measure: µ∗(A) := inf {
∑∞

i=1m(Pi ) | A ⊂ ∪∞
i=1Pi , Pi intervals} .

• Lebesgue measure:
• A ⊂ I is called measurable if

∀ ε > 0 ∃ elementary set B ⊂ I : µ∗(A△B) < ε, A△B := (A \ B) ∪ (B \ A).

• A measurable ⇒ Lebesgue measure µ(A) := µ∗(A).

1A.N. Kolmogorov, S.V. Fomin, "Elements of theory of functions and functional analysis"
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Properties of Lebesgue measure

1. System of measurable sets is closed w.r.t. ∪∞
i=1, ∩∞

i=1, \, △
2. σ-additivity: Ai measurable ⇒ µ(⊔∞

i=1Ai ) =
∑∞

i=1 µ(Ai ).

3. Continuity: A1 ⊃ A2 ⊃ · · · measurable ⇒ µ(∩∞
i=1Ai ) = limi→∞ µ(Ai ).

4. Open, closed sets are measurable.

5. There exist non-measurable sets (G. Vitali, 1905)

6. A ⊂ R is measurable if ∀ A ∩ In is measurable, In = (n, n + 1], n ∈ Z,
7. µ(A) :=

∑+∞
n=−∞ µ(A ∩ In) ∈ [0,+∞].

8. µ(A) = 0 ⇔ ∀ε > 0 ∃ intervals: ∪∞
i=1 Pi ⊃ A,

∑∞
i=1m(Pi ) < ε.

9. A property P holds almost everywhere (a.e.) on a set X if ∃ A ⊂ X , µ(A) = 0, s.t.

P holds on X \ A.
10. f : R → Rm is measurable if f −1(O) is measurable for any open O ⊂ Rm.

10 / 35



Banach-Tarski Paradox

Theorem 2
Let B,B ′ ⊂ R3 be balls of di�erent radii. Then there exist decompositions

B = X1 ⊔ · · · ⊔ Xn, B ′ = X ′
1 ⊔ · · · ⊔ X ′

n

such that

∃fi ∈ SE(3) : fi (Xi ) = X ′
i , i = 1, . . . , n.

• Sets Xi , X
′
i are not measurable.

• n ≥ 5.
• B,B ′ can be replaced by any bounded subsets in R3 with nonempty interior.
• Similar theorem for R2 instead of R3 fails.

Reason: SE(2) is solvable, while SE(3) is not:
[se(3), se(3)] = so(3), [so(3), so(3)] = so(3) ̸= {0}.
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Lebesgue integral: De�nition
• Let µ(X ) < +∞. A function f : X → R is simple if it is measurable and takes

not more than countable number of values.
• Th.: A function f (x) taking not more than countable number of values y1, y2,
. . . is measurable i� al sets f −1(yn) are measurable.

• Th.: A function f (x) is measurable i� it is a uniform limit of simple measurable

functions.
• Let f be a simple measurable function taking values y1, y2, . . . . Let A ⊂ X be

measurable. Then ∫
A
f (x)dµ :=

∑
n

ynµ(f
−1(yn)).

A function f is called integrable on A if this series absolutely converges.
• A measurable function f is called integrable on A ⊂ X if there exist a sequence of

simple integrable on A functions {fn} that converges uniformly to f . Then∫
A
f (x)dµ := lim

n→∞

∫
A
fn(x)dµ.
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Lebesgue integral: Properties
1.

∫
A 1dµ = µ(A).

2. Linearity:
∫
A(af (x) + bg(x))dµ = a

∫
A f (x)dµ+ b

∫
A g(x)dµ.

3. f (x) bounded on A ⇒ f (x) integrable on A.

4. Monotonicity: f (x) ≤ g(x) ⇒
∫
A f (x)dµ ≤

∫
A g(x)dµ.

5. µ(A) = 0 ⇒
∫
A f (x)dµ = 0.

6. f (x) = g(x) a.e. ⇒
∫
A f (x)dµ =

∫
A g(x)dµ.

7. g(x) integrable on A and |f (x)| ≤ g(x) a.e. ⇒ f (x) integrable on A.

8. Functions f and |f | are integrable or non-integrable simultaneously.

9. σ-additivity: if A = ⊔nAn then
∫
A f (x)dµ =

∑
n

∫
An

f (x)dµ.

10. Absolute continuity: f in integrable on A ⇒ ∀ε > 0 ∃δ > 0 s.t.∣∣∫
E f (x)dµ

∣∣ < ε for any measurable E ⊂ A, µ(E ) < ε.

11. µ(X ) = ∞, X = ∪nXn, Xn ⊂ Xn+1, µ(Xn) < ∞ ⇒∫
X f (x)dµ := limn→∞

∫
Xn

f (x)dµ.
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Spaces of integrable functions

f : X → R measurable.

1. Lp(X , µ) = {f | ∥f ∥p < ∞}, ∥f ∥p =
(∫

X |f (x)|pdµ
)1/p

, p ∈ [1,+∞).

2. L∞(X , µ) = {f | ∥f ∥∞ < ∞}, ∥f ∥∞ = ess supx∈X |f (x)|.
3. 1 ≤ p1 < p2 ≤ ∞ ⇒ Lp1 ⊋ Lp2 .

4. Lp, p ∈ [1,+∞], are Banach spaces ( = complete normed spaces).

5. L2 is a Hilbert space ( = complete Euclidean in�nite-dimensional space),

(f , g) =
∫
X f (x)g(x)dµ.
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Carath�eodory ODEs: C. Carath�eodory, 1873�1950 2

• Carath�eodory conditions: let for a domain D ⊂ R1+n
t,x

1. f (t, x) is de�ned and continuous in x for almost all t
2. f (t, x) is measurable in t for any x
3. |f (t, x)| ≤ m(t), where m(t) is Lebesgue integrable on any segment

• Carath�eodory ODE: ẋ = f (t, x), where f : D → Rn satis�es conditions 1�3.

• Solution to Carath�eodory ODE: x : |a, b| → Rn, x(t) = x(t0) +
∫ t
t0
f (s, x(s))ds,

t0 ∈ |a, b|.
• Existence: Solutions exist on su�ciently small segments [t0, t0 + ε], ε > 0.

• Uniqueness: If |f (t, x)− f (t, y)| ≤ l(t)|x − y |, l(t) Lebesgue integrable, then a

solution is unique.

• Extension: Any solution in compact D can be extended in both sides up to ∂D.

2A.F. Filippov, "Di�erential equations with discontinuous right-hand side"
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Optimal Control Problem Statement

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (11)

q(0) = q0, (12)

q(t1) = q1, (13)

J(u) =

∫ t1

0

φ(q, u)dt → min . (14)

q = qu(·) � solution to Cauchy problem (11), (12)

corresponding to an admissible control u(·).
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Attainable sets
• Fix an initial point q0 ∈ M.

• Attainable set of control system (11) for time t ≥ 0 from q0 with measurable

locally bounded controls is de�ned as follows:

Aq0(t) = {qu(t) | u ∈ L∞([0, t],U)} .

• Similarly, one can consider the attainable sets for time not greater than t:

At
q0 =

⋃
0≤τ≤t

Aq0(τ)

and for arbitrary nonnegative time:

Aq0 =
⋃

0≤τ<∞
Aq0(τ).
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Extended system
• Optimal control problems on M can be reduced to the study of attainable sets of

some auxiliary control systems on the extended state space

M̂ = R×M = {q̂ = (y , q) | y ∈ R, q ∈ M}.
• Consider the following extended control system on M̂:

d q̂

d t
= f̂u(q̂), q̂ ∈ M̂, u ∈ U, (15)

with the right-hand side

f̂u(q̂) =

(
φ(q, u)
fu(q)

)
, q ∈ M, u ∈ U,

where φ is the integrand of the cost functional J, see (14).
• Denote by q̂u(t) the solution of the extended system (15) with the initial conditions

q̂u(0) =

(
y(0)
q(0)

)
=

(
0

q0

)
.

18 / 35



Reduction to Study of Attainable Sets

Theorem 3
Let qũ(t), t ∈ [0, t1], be an optimal trajectory in the problem (11)�(14) with the �xed

terminal time t1. Then q̂ũ(t1) ∈ ∂Â(0,q0)(t1).

q
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Figure: qũ(t) optimal
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Proof.
• Solutions q̂u(t) of the extended system are expressed through solutions qu(t) of
the original system (11) as

q̂u(t) =

(
Jt(u)
qu(t)

)
, Jt(u) =

∫ t

0

φ(qu(τ), u(τ)) dτ.

• Thus attainable sets of the extended system (15) have the form

Â(0,q0)(t) = {(Jt(u), qu(t)) | u ∈ L∞([0, t],U)} .

• The set Â(0,q0)(t1) should not intersect the ray
{
(y , q1) ∈ M̂ | y < Jt1(ũ)

}
.

• Indeed, suppose that there exists a point (y , q1) ∈ Â(0,q0)(t1), y < Jt1(ũ).
• Then the trajectory of the extended system q̂u(t) that steers (0, q0) to (y , q1):

q̂u(0) =

(
0

q0

)
, q̂u(t1) =

(
y
q1

)
,

gives a trajectory qu(t), qu(0) = q0, qu(t1) = q1, with Jt1(u) = y < Jt1(ũ), a
contradiction to optimality of ũ. □
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Existence of optimal trajectories for problems with �xed t1

Theorem 4
Let q1 ∈ Aq0(t1). If Â(0,q0)(t1) is compact, then there exists an optimal trajectory in

the problem (11)�(14) with the �xed terminal time t1.

Proof.

• The intersection Â(0,q0)(t1) ∩ {(y , q1) ∈ M̂} is nonempty and compact.

• Denote J̃ = min{y ∈ R | (y , q1) ∈ Â(0,q0)(t1)}.
• (J̃, q1) ∈ Â(0,q0)(t1).

• There exists an admissible control ũ such that qũ steers q0 to q1 for time t1 with

the cost J̃.

• The trajectory qũ is optimal.
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Existence of optimal trajectories for problems with free t1
Theorem 5
Let q1 ∈ Aq0 . Let Ât

(0,q0)
, t > 0, be compact. Let there extist u ∈ L∞[0, t1] that

steers q0 to q1 such that for any u ∈ L∞[0, t1] that steers q0 to q1:

t1 > t1 ⇒ J(u) > J(u).

Then there exists an optimal trajectory in the problem (11)�(14) with the free t1.

Proof.

• Denote I t =
{
y ∈ R | (y , q1) ∈ Ât

(0,q0)

}
, Jt = min I t .

• Since q1 ∈ Aq0(t1) for some t1 > 0, then I t1 ̸= ∅.
• Let T = max(t1, t1). We have IT ̸= ∅. Denote J̃ = JT .

• There exists ũ ∈ L∞[0, t̃1] that steers q0 to q1 with the cost J̃ = J(ũ).

• The control ũ is optimal in the problem with the free t1.
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Compactness of attainable sets

Theorem 6 (Filippov)

Let the space of control parameters U ⋐ Rm be compact. Let there exist a compact

K ⋐ M such that fu(q) = 0 for q /∈ K , u ∈ U. Moreover, let the velocity sets

fU(q) = {fu(q) | u ∈ U} ⊂ TqM, q ∈ M,

be convex. Then the attainable sets Aq0(t) and At
q0 are compact for all q0 ∈ M, t > 0.

Remark 1
The condition of convexity of the velocity sets fU(q) is natural: the �ow of the ODE

q̇ = α(t)fu1(q) + (1− α(t))fu2(q), 0 ≤ α(t) ≤ 1,

can be approximated by �ows of the systems of the form

q̇ = fv (q), where v(t) ∈ {u1(t), u2(t)}.
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Sketch of the proof of Filippov's Theorem: 1/5
• All nonautonomous vector �elds fu(q) with admissible controls u have a common

compact support, thus are complete.

• Under hypotheses of the theorem, velocities fu(q), q ∈ M, u ∈ U, are uniformly

bounded, thus all trajectories q(t) of control system (11) starting at q0 are

Lipschitzian with the same Lipschitz constant.

• Embed the manifold M into a Euclidean space RN , then the space of continuous

curves q(t) becomes endowed with the uniform topology of continuous mappings

from [0, t1] to RN .

• The set of trajectories q(t) of control system (11) starting at q0 is uniformly

bounded:

∥q(t)∥ ≤ C

and equicontinous:

∀ε > 0 ∃δ > 0 ∀q(·) ∀|t1 − t2| < δ ∥q(t1)− q(t2)∥ < ε.
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Sketch of the proof of Filippov's Theorem: 2/5

Theorem 7 (Arzel�a�Ascoli)

Consider a family of mappins F ⊂ C ([0, t1],M), where M is a complete metric space.

If F is uniformly bounded and equicontinuous, then it is precompact:

∀{qn} ⊂ F ∃ a converging subsequence qnk → q ∈ C ([0, t1],M).

• Thus the set of admissible trajectories is precompact in the topology of uniform

convergence.
• For any sequence qn(t) of admissible trajectories:

q̇n(t) = fun(qn(t)), 0 ≤ t ≤ t1, qn(0) = q0,

there exists a uniformly converging subsequence, we denote it again by qn(t):

qn(·) → q(·) in C ([0, t1],M) as n → ∞.

• Now we show that q(t) is an admissible trajectory of control system (11).
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Sketch of the proof of Filippov's Theorem: 3/5
• Fix a su�ciently small ε > 0.
• Then in local coordinates

1

ε
(qn(t + ε)− qn(t)) =

1

ε

∫ t+ε

t
fun(qn(τ)) dτ

∈ conv
⋃

τ∈[t,t+ε]

fU(qn(τ)) ⊂ conv
⋃

q∈Oq(t)(cε)

fU(q),

where c is the doubled Lipschitz constant of admissible trajectories.
• We pass to the limit n → ∞ and obtain

1

ε
(q(t + ε)− q(t)) ∈ conv

⋃
q∈Oq(t)(cε)

fU(q).

• Now let ε → 0. If t is a point of di�erentiability of q(t), then

q̇(t) ∈ fU(q)

since fU(q) is convex. 26 / 35



Sketch of the proof of Filippov's Theorem: 4/5
• In order to show that q(t) is an admissible trajectory of control system (11), we
should �nd a measurable selection u(t) ∈ U that generates q(t).

• We do this via the lexicographic order on the set U = {(u1, . . . , um)} ⊂ Rm.
• The set

Vt = {v ∈ U | q̇(t) = fv (q(t))}
is a compact subset of U, thus of Rm.

• There exists a vector vmin(t) ∈ Vt minimal in the sense of lexicographic order. To

�nd vmin(t), we minimize the �rst coordinate on Vt :

vmin
1 = min{ v1 | v = (v1, . . . , vm) ∈ Vt },

then minimize the second coordinate on the compact set found at the �rst step:

vmin
2 = min{ v2 | v = (vmin

1 , v2, . . . , vm) ∈ Vt }, . . . ,

vmin
m = min{ vm | v = (vmin

1 , . . . , vmin
m−1, vm) ∈ Vt }.
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Sketch of the proof of Filippov's Theorem: 5/5

• The control vmin(t) = (vmin
1 (t), . . . , vmin

m (t)) is measurable, thus q(t) is an
admissible trajectory of system (11) generated by this control.

• The proof of compactness of the attainable set Aq0(t) is complete.

• Compactness of At
q0 is proved similarly. □
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Discussion on completeness

• In Filippov's theorem, the hypothesis of common compact support of the vector

�elds in the right-hand side is essential to ensure the uniform boundedness of

velocities and completeness of vector �elds.

• On a manifold, su�cient conditions for completeness of a vector �eld cannot be

given in terms of boundedness of the vector �eld and its derivatives: a constant

vector �eld is not complete on a bounded domain in Rn.

• Nevertheless, one can prove compactness of attainable sets for many systems

without the assumption of common compact support. If for such a system we have

a priori bounds on solutions, then we can multiply its right-hand side by a cut-o�

function, and obtain a system with vector �elds having compact support.

• We can apply Filippov's theorem to the new system. Since trajectories of the

initial and new systems coincide in a domain of interest for us, we obtain a

conclusion on compactness of attainable sets for the initial system.
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A priori bound in Rn

• For control systems on M = Rn, there exist well-known su�cient conditions for

completeness of vector �elds.

• If the right-hand side grows at in�nity not faster than a linear �eld, i.e.,

|fu(x)| ≤ C (1+ |x |), x ∈ Rn, u ∈ U, (16)

for some constant C , then the nonautonomous vector �elds fu(x) are complete

(here |x | =
√

x21 + · · ·+ x2n is the norm of a point x = (x1, . . . , xn) ∈ Rn).

• These conditions provide an a priori bound for solutions: any solution x(t) of the
control system

ẋ = fu(x), x ∈ Rn, u ∈ U, (17)

with the right-hand side satisfying (16) admits the bound

|x(t)| ≤ e2Ct (|x(0)|+ 1) , t ≥ 0.
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Compactness of attainable sets in Rn

• Filippov's theorem plus the previous remark imply the following su�cient condition

for compactness of attainable sets for systems in Rn.

Corollary 8

Let system (17) have a compact space of control parameters U ⋐ Rm and convex

velocity sets fU(x), x ∈ Rn.

Suppose moreover that the right-hand side of the system satis�es a sublinear bound of

the form (16).
Then the attainable sets Ax0(t) and At

x0 are compact for all x0 ∈ Rn, t > 0.
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Time-optimal problem

• Given a pair of points q0 ∈ M and q1 ∈ Aq0 , the time-optimal problem consists in

minimizing the time of motion from q0 to q1 via admissible controls of control

system (11):
min
u

{t1 | qu(t1) = q1}. (18)

• That is, we consider the optimal control problem with the integrand φ(q, u) ≡ 1

and free terminal time t1.

• Reduction of optimal control problems to the study of attainable sets and

Filippov's Theorem yield the following existence result.

Corollary 9

Under the hypotheses of Filippov's Theorem 6, time-optimal problem (11), (18) has a
solution for any points q0 ∈ M, q1 ∈ Aq0 .
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Example of a time-optimal problem:
Stopping a train

Given:

• material point of mass m > 0 with coordinate x ∈ R
• force F bounded by the absolute value by Fmax > 0
• initial position x0 and initial velocity ẋ0 of the material point

Find:

• force F that steers the point to the origin with zero velocity, for a minimal time.

ẋ1 = x2, (x1, x2) ∈ R2,

ẋ2 = u, |u| ≤ 1,

(x1, x2)(0) = (x0, ẋ0), (x1, x2)(t1) = (0, 0),

t1 → min .
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Example: Stopping a train

• Trajectories of the system with a constant control u ̸= 0 are the parabolas
x22
2 = ux1 + C :

x

y

• Now it is visually obvious that (0, 0) ∈ A(x1,x2) for any (x1, x2) ∈ R2.

• The set of control parameters U = [−1, 1] is compact, the set of admissible

velocity vectors f (x ,U) = {(x2, u) | u ∈ [−1, 1]} is convex for any x ∈ R2, and the

right-hand side of the control system has sublinear growth: |f (x , u)| ≤ C (|x |+ 1).

• All hypotheses of the Filippov theorem are satis�ed, thus optimal control exists.
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Plan of lecture

1. Optimal Control Problem Statement

2. Lebesgue measurable sets and functions

3. Lebesgue integral

4. Carath�eodory ODEs

5. Reduction of Optimal Control Problem to Study of Attainable Sets

6. Filippov's theorem: Compactness of Attainable Sets

7. Time-Optimal Problem
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