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Differential equations on smooth manifolds
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Differential forms

Elements of symplectic geometry

Proof of the Pontryagin maximum principle on manifolds: geometric form, optimal
control problems with different boundary conditions.

Examples of optimal syntheses.
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Optimal Control Problem Statement

Control system:
q = fu(q), geM, uvueUCR™

® M a smooth manifold
® U an arbitrary subset of R™
right-hand side of (1):

g — fu(q) is a smooth vector field on M for any fixed v € U,

(g,u) — f,(q) is a continuous mapping for g € M, u € U,

and moreover, in any local coordinates on M

fu, . . _ _
(q,u) — gq(q) is a continuous mapping for g € M, u € U.

Admissible controls are measurable locally bounded mappings
u:t—u(t)eU,
i.e., u € L(]0, t1], U).
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Substitute such a control u = u(t) for control parameter into system (1)
= nonautonomous ODE ¢ = f,(q)
By Carathéodory’s Theorem, for any point qo € M, the Cauchy problem

q= fu(q)7 q(O) = qo,

has a unique solution g,(t).

In order to compare admissible controls one with another on a segment [0, t;],
introduce a cost functional:

with an integrand
p: MxU—=R

satisfying the same regularity assumptions as the right-hand side f, see (2)—(4).
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® Take any pair of points qg, g1 € M.
e Consider the following optimal control problem:

Problem 1
Minimize the functional J among all admissible controls u = u(t), t € [0, t1], for which
the corresponding solution q,(t) of Cauchy problem (5) satisfies the boundary condition

qu(tl) = qi- (7)

® This problem can also be written as follows:

g = fu(q), geM, uwvuelUCR™”, (8)

q(0) =qo,  q(t1) = a1, (9)

J(u) = / ©(q(t), u(t)) dt — min. (10)
0

® Two types of problems: with fixed terminal time t; and free ;.
e A solution u of this problem is called an optimal control, and the corresponding
curve q,(t) is an optimal trajectory.
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Example: Euler elasticae

Given:

® uniform elastic rod of length / in the plane

® the rod has fixed endpoints and tangents at endpoints
Find:

e the profile of the rod.
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Example: Euler elasticae

x = cos0, qg=(x,y,0) € R? x S*,
y =sind, uelR,

0= u,

q(0) = qo,  q(t1) =,

t; = I is the length of the rod,

¢ = (a1,61)

1 [n
x J:2/ u? dt — min.
0
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Definition of Lebesgue measure in | = [0,1]: H. Lebesgue, 1902 ?

Measure of intervals:

m(() := 0, m(|la,b|]):=b—a, b>a, |=][or].

Measure of elementary sets:  m'(US2, |aj, bi|) := D72, m(|ai, bi])
® Outer measure:  p*(A) :=inf{>2; m(P;) | AC U2, P;, P;intervals}.
Lebesgue measure:

® A C |is called measurable if
Ve >0 Jelementary set BC [ : p*(AAB) <, AAB = (A\ B)U(B\ A).

® A measurable = Lebesgue measure pu(A) := p*(A).

LAN. Kolmogorov, S.V. Fomin, "Elements of theory of functions and functional analysis"
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Properties of Lebesgue measure

System of measurable sets is closed w.r.t. U2, N2, \, A

o-additivity:  A; measurable = (U, A) = > 72 u(Ai).

Continuity: Ay D Ay D --- measurable = p(N,A;) = limj_ o0 1(Ai).
Open, closed sets are measurable.

There exist non-measurable sets (G. Vitali, 1905)

A C R is measurable if V AN I, is measurable, I, = (n,n+1], n € Z,

p(A) == 312 (AN 1) € [0, +00].

WA)=0 <& Ve>03Tintervalss U2, PiD A > 2, m(P;) <e.
. A property P holds almost everywhere (a.e.) on aset X if 3 AC X, u(A) =0, s.t.
P holds on X \ A.

. f : R — R™ is measurable if f~1(0) is measurable for any open O C R™.
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Banach-Tarski Paradox

Theorem 2
Let B, B’ C R? be balls of different radii. Then there exist decompositions

B=XU---UX,, B =X{u---uX

such that
3f, € SE(3) : fi(X;) = X/, i=1,...,n.
® Sets X;, X! are not measurable.
e n>5b,
® B, B’ can be replaced by any bounded subsets in R3 with nonempty interior.
e Similar theorem for R? instead of R3 fails.

Reason: SE(2) is solvable, while SE(3) is not:
[se(3),5¢(3)] = s0(3), [s0(3),50(3)] = s0(3) # {0}.
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Lebesgue integral: Definition

Let u(X) < +o0. A function f : X — R is simple if it is measurable and takes

not more than countable number of values.

Th.: A function f(x) taking not more than countable number of values yi, y»,
.is measurable iff al sets f~1(y,) are measurable.

Th.. A function f(x) is measurable iff it is a uniform limit of simple measurable

functions.

Let f be a simple measurable function taking values yi, y», .... Let AC X be

measurable. Then

x)dp = ZYn,u )/n

A function f is called integrable on Aif thIS series absolutely converges.
A measurable function f is called integrable on A C X if there exist a sequence of
simple integrable on A functions {f,} that converges uniformly to f. Then

/Af(x)du = nango/Afn(x)du.
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Lebesgue integral: Properties

Jaldu = pu(A).

Linearity: [,(af(x) + bg(x))dp =a [, f(x)du+ b [, g(x)dp.
f(x) bounded on A = f(x) integrable on A.
Monotonicity: f(x) < g(x) = [,f(x)du < [,8(x)dp.
pA)=0 = [, F(x)dpu=0.

f(x)=g(x)ae. = [,f(x)du= ng

g(x) integrable on A and |f(x)| < g(x) a.e. = f(x) integrable on A.

Functions f and |f| are integrable or non- integrable simultaneously.
o-additivity: if A= L,A, then [, f(x)du =73, [, f(x

Absolute continuity: f in integrableon A = Ve > O 3(5 >0 s.t.
| [ f(x)dp| < e for any measurable E C A, u(E) < e.

.u(X) 00, X = UpXy, Xp CX,,+1 w(Xp) <o =

fx x)dp = limp oo fX x)d .
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Spaces of integrable functions

f : X = R measurable.

1
Lo(X, 1) = {F | [1Fllp < o0}, £l = (fx [FCAIPdi) 7, p € [1,+00).
Loo(X, ) = {f | Iflloc < 00}, [Iflloc = esssup,ex [f(x)].
1<pp<pp<o0 = Lplngz

Ly, p € [1,400], are Banach spaces ( = complete normed spaces).

o R W=

L2 is a Hilbert space ( = complete Euclidean infinite-dimensional space),
= Jx f(x)g(x)dp.
X
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Carathéodory ODEs: C. Carathéodory, 1873-1950 2
e Carathéodory conditions: let for a domain D C R%;"

1. f(t,x) is defined and continuous in x for almost all t
2. f(t,x) is measurable in t for any x
3. |f(t,x)| < m(t), where m(t) is Lebesgue integrable on any segment

e Carathéodory ODE: x = f(t, x), where f : D — R”" satisfies conditions 1-3.

¢ Solution to Carathéodory ODE: x : |a, b| — R", x(t) = x(ty) + ft(t) f(s,x(s))ds,
to € |a, b|.

e Existence: Solutions exist on sufficiently small segments [tg, tp + €], € > 0.

e Uniqueness: If |f(t,x) — f(t,y)| < I(t)|x — y|, I(t) Lebesgue integrable, then a
solution is unique.

e Extension: Any solution in compact D can be extended in both sides up to 9D.

2A.F. Filippov, "Differential equations with discontinuous right-hand side"
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Optimal Control Problem Statement

g = f,(q), geM, uelUCR™,
q(0) = qo,
q(t1) = q1,

J(u) = /Otl o(q, u)dt — min.

g = qu(-) — solution to Cauchy problem (11), (12)

corresponding to an admissible control u(+).

16 /35



Attainable sets
® Fix an initial point gg € M.

e Attainable set of control system (11) for time t > 0 from qo with measurable
locally bounded controls is defined as follows:

Ago(t) = {qu(t) | u € Lo([0, 2], U)} -

e Similarly, one can consider the attainable sets for time not greater than t:

Ay = U Aa(7)

0<r<t

and for arbitrary nonnegative time:

AQO: U AQO(T)‘

0<r<0
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Extended system

e Optimal control problems on M can be reduced to the study of attainable sets of
some auxiliary control systems on the extended state space

M=RxM={G=(y,q)|y €R, g€ M}.
¢ Consider the following extended control system on M:
déd  ~ _ N
9-7@. §eM ueu, (15)
with the right-hand side
Py v(q, u) )
f, = , eM, welU,
u(q) ( fu(q) q
where ¢ is the integrand of the cost functional J, see (14).
¢ Denote by g,(t) the solution of the extended system (15) with the initial conditions

“0-(50)-(a)
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Reduction to Study of Attainable Sets

Theorem 3
Let q5(t), t € [0, t1], be an optimal trajectory in the problem (11)~(14) with the fixed
terminal time t1. Then qz(t1) € 0.A(g q)(t1)-

Y1 o+

Figure: gz(t) optimal
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Proof.
¢ Solutions g,(t) of the extended system are expressed through solutions q,(t) of
the original system (11) as

a0 = 59). ww-= " o(au(r). u(r)) dr-

qu(t)
Thus attainable sets of the extended system (15) have the form

A0.00)(1) = {(Je(u), qu(8)) | 0 € Loo([0, 1], U)}
The set ./Zl\(o,qo)(tl) should not intersect the ray {(y, Q) EM|y< Jtl(ﬁ)}.

® Indeed, suppose that there exists a point (y,q1) € “‘T(O,qo)(tl)v y < Jy (0).
Then the trajectory of the extended system g,(t) that steers (0, qo) to (v, q1):

a0 -(g)  aw=(2).

gives a trajectory q,(t), qu(0) = qo, qu(t1) = g1, with Jy, (u) =y < Jy (1), a
contradiction to optimality of ©. O
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Existence of optimal trajectories for problems with fixed t;

Theorem 4 R
Let q1 € Ago(t1)- If A(o,q0)(t1) is compact, then there exists an optimal trajectory in
the problem (11)—(14) with the fixed terminal time t.

Proof.
® The intersection ./‘T(o,qo)(tl) N{(y,q) € M} is nonempty and compact.
Denote J = min{y € R | (y,q1) € A(gq)(t1)}-

(4, 1) € A0,q0)(t1)-
There exists an admissible control & such that qg steers qo to g1 for time t; with
the cost J.

The trajectory gy is optimal.
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Existence of optimal trajectories for problems with free t;

Theorem 5
Let g1 € Agy. Let A 0.5 £ >0 be compact. Let there extist U € L [0, t1] that

steers qg to g1 such that for any u € L.[0, t1] that steers qo to qi:
>t = J(u)> J(0).

Then there exists an optimal trajectory in the problem (11)—(14) with the free t;.
Proof.
® Denote It = {y eER|(y,q) € “ZEO,qo)}' Jt=min/t.
Since g1 € Ag,(t1) for some t; > 0, then /™ # ().
Let T = max(ty, 71). We have /7 # (). Denote J = JT.
There exists I € Loo[0, 1] that steers qo to g1 with the cost J = J(1).

The control u is optimal in the problem with the free t;.

[J227/35



Compactness of attainable sets

Theorem 6 (Filippov)

Let the space of control parameters U € R™ be compact. Let there exist a compact
K € M such that f,(q) =0 for q ¢ K, u € U. Moreover, let the velocity sets

fu(q) = {fu(q) | u € U} C TyM, ge M,

be convex. Then the attainable sets Aq,(t) and Ay are compact for all go € M, t > 0.

Remark 1
The condition of convexity of the velocity sets fy(q) is natural: the flow of the ODE

q=a(t)fy(q) + (1 - a(t)f,(q),  0<at) <1,

can be approximated by flows of the systems of the form

g="1,(q), where v(t)e {ui(t), u(t)}.

23/35



Sketch of the proof of Filippov's Theorem: 1/5
All nonautonomous vector fields 7,(g) with admissible controls u have a common
compact support, thus are complete.

Under hypotheses of the theorem, velocities f,(q), g € M, u € U, are uniformly
bounded, thus all trajectories g(t) of control system (11) starting at qo are
Lipschitzian with the same Lipschitz constant.

Embed the manifold M into a Euclidean space RV, then the space of continuous
curves g(t) becomes endowed with the uniform topology of continuous mappings
from [0, ;] to RV,

The set of trajectories g(t) of control system (11) starting at qg is uniformly
bounded:

la(8)ll < €

and equicontinous:

Ve>030>0Vq() Vit — | < |lg(t1) — q(t2)|| < e.
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Sketch of the proof of Filippov's Theorem: 2/5

Theorem 7 (Arzela—Ascoli)

Consider a family of mappins F C C([0, t1], M), where M is a complete metric space.
If F is uniformly bounded and equicontinuous, then it is precompact:

V{qgn} C F 3 a converging subsequence q,, — q € C([0, 1], M).

® Thus the set of admissible trajectories is precompact in the topology of uniform
convergence.
® For any sequence g,(t) of admissible trajectories:

qn(t) = fun(qn(t))a 0<t<t, qn(o) = qo,
there exists a uniformly converging subsequence, we denote it again by g,(t):
an(-) — q(-) in C([0, t1], M) as n — oc.

® Now we show that g(t) is an admissible trajectory of control system (11).
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Sketch of the proof of Filippov's Theorem: 3/5

Fix a sufficiently small € > 0.
Then in local coordinates

t+e
St —al) =2 [ o) er
€ conv U fu(gn(7)) C conv U fu(q),

Te[t7t+5] qeoq(t)(ce)

where c is the doubled Lipschitz constant of admissible trajectories.
We pass to the limit n — co and obtain

1
“(a(t+e)—q() econv ] fu(a).
q€O0q(1)(ce)
Now let € — 0. If t is a point of differentiability of g(t), then
q(t) € fu(q)

since fy(q) is convex.
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Sketch of the proof of Filippov's Theorem: 4/5
In order to show that g(t) is an admissible trajectory of control system (11), we
should find a measurable selection u(t) € U that generates q(t).
We do this via the lexicographic order on the set U = {(u1,...,um)} C R™.
The set

Ve ={v e Uld4(t) = f(q(t))}

is a compact subset of U, thus of R™.
There exists a vector v™"(t) € V; minimal in the sense of lexicographic order. To
find v™n(t), we minimize the first coordinate on V4:

v =min{vi [ v =(vi,...,Vm) € Vi },

then minimize the second coordinate on the compact set found at the first step:

V2min:min{V2’V:(V{nin7v27'-'7Vm)€Vt}’ Tt
v = min{ v [ v = (" ... v, V) € Ve )
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Sketch of the proof of Filippov's Theorem: 5/5

® The control v™n(t) = (v{""(t),...,v™i"(t)) is measurable, thus q(t) is an

r'm

admissible trajectory of system (11) generated by this control.
® The proof of compactness of the attainable set Aq,(t) is complete.

e Compactness of Af,o is proved similarly. O
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Discussion on completeness

In Filippov’'s theorem, the hypothesis of common compact support of the vector
fields in the right-hand side is essential to ensure the uniform boundedness of
velocities and completeness of vector fields.

On a manifold, sufficient conditions for completeness of a vector field cannot be
given in terms of boundedness of the vector field and its derivatives: a constant
vector field is not complete on a bounded domain in R".

Nevertheless, one can prove compactness of attainable sets for many systems
without the assumption of common compact support. If for such a system we have
a priori bounds on solutions, then we can multiply its right-hand side by a cut-off
function, and obtain a system with vector fields having compact support.

We can apply Filippov's theorem to the new system. Since trajectories of the
initial and new systems coincide in a domain of interest for us, we obtain a
conclusion on compactness of attainable sets for the initial system.
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A priori bound in R”

® For control systems on M = R", there exist well-known sufficient conditions for
completeness of vector fields.
e |f the right-hand side grows at infinity not faster than a linear field, i.e.,

fu(x)] <CA+|x]), xeR" wel, (16)
for some constant C, then the nonautonomous vector fields 7,(x) are complete

(here |x| = /x2 + -+ + x2 is the norm of a point x = (x1,...,X,) € R").

® These conditions provide an a priori bound for solutions: any solution x(t) of the

control system
x = fu(x), x€eR" wel, (17)

with the right-hand side satisfying (16) admits the bound
x()] < < (Ix(0)[ +1),  t>0.
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Compactness of attainable sets in R”

e Filippov's theorem plus the previous remark imply the following sufficient condition
for compactness of attainable sets for systems in R”.

Corollary 8

Let system (17) have a compact space of control parameters U @ R™ and convex
velocity sets fy(x), x € R".

Suppose moreover that the right-hand side of the system satisfies a sublinear bound of
the form (16).

Then the attainable sets A, (t) and AL are compact for all xo € R", t > 0.
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Time-optimal problem

® Given a pair of points gg € M and q; € Ag,, the time-optimal problem consists in
minimizing the time of motion from gg to g; via admissible controls of control
system (11):
min {t; | qu(t1) = a1}, (18)
® That is, we consider the optimal control problem with the integrand ¢(q,u) =1
and free terminal time t7.

® Reduction of optimal control problems to the study of attainable sets and
Filippov's Theorem yield the following existence result.

Corollary 9

Under the hypotheses of Filippov's Theorem 6, time-optimal problem (11), (18) has a
solution for any points qo € M, q1 € Ag,.
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Example of a time-optimal problem:
Stopping a train

Given:

® material point of mass m > 0 with coordinate x € R

e force F bounded by the absolute value by Fr. > 0

e initial position xp and initial velocity xp of the material point
Find:

e force F that steers the point to the origin with zero velocity, for a minimal time.

).(1 = X2, (X15X2) €R2,

).(2 = u, |U| < ]-7

(x1,%)(0) = (%0, %),  (x1,%)(t1) = (0,0),
t1 — min.
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Example: Stopping a train

Trajectories of the system with a constant control u # 0 are the parabolas

x2 y

F =ux+ C:

Now it is visually obvious that (0,0) € Ay, »,) for any (x1,x2) € R?.

The set of control parameters U = [—1,1] is compact, the set of admissible
velocity vectors f(x, U) = {(x2, u) | u € [~1,1]} is convex for any x € R?, and the
right-hand side of the control system has sublinear growth: |f(x, u)| < C(|x| + 1).
All hypotheses of the Filippov theorem are satisfied, thus optimal control exists.
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