Optimal Control Problem: Statement and existence of solutions. Lebesgue measure and integral

(Lecture 1)

Yuri Sachkov

yusachkov@gmail.com

«Elements of geometric control theory»

Lecture course in Dept. of Mathematics and Mechanics

Lomonosov Moscow State University

19 February 2025

Plan of course

- 1. Statement of the optimal control problem
- 2. Measurable sets and functions, Carathéodory differential equations
- 3. Sufficient Filippov conditions for the existence of an optimal control
- 4. Differential equations on smooth manifolds
- 5. Elements of chronological calculus of R.V.Gamkrelidze—A.A.Agrachev
- 6. Differential forms
- 7. Elements of symplectic geometry
- 8. Proof of the Pontryagin maximum principle on manifolds: geometric form, optimal control problems with different boundary conditions.
- 9. Examples of optimal syntheses.

Plan of lecture

- 1. Optimal Control Problem Statement
- 2. Lebesgue measurable sets and functions
- 3. Lebesgue integral
- 4. Carathéodory ODEs
- 5. Reduction of Optimal Control Problem to Study of Attainable Sets
- 6. Filippov's theorem: Compactness of Attainable Sets
- 7. Time-Optimal Problem

Optimal Control Problem Statement

Control system:

$$\dot{q} = f_u(q), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m.$$
 (1)

- *M* a smooth manifold
- U an arbitrary subset of \mathbb{R}^m
- right-hand side of (1):

 $q\mapsto f_u(q)$ is a smooth vector field on M for any fixed $u\in U,$ (2)

$$(q,u)\mapsto f_u(q)$$
 is a continuous mapping for $q\in M,\;u\in\overline{U},$ (3)

and moreover, in any local coordinates on M

$$(q, u) \mapsto \frac{\partial f_u}{\partial q}(q)$$
 is a continuous mapping for $q \in M, \ u \in \overline{U}$. (4)

• Admissible controls are measurable locally bounded mappings

 $u : t \mapsto u(t) \in U,$

i.e.,
$$u \in L_{\infty}([0, t_1], U)$$
.

• Substitute such a control u = u(t) for control parameter into system (1)

•
$$\Rightarrow$$
 nonautonomous ODE $\dot{q} = f_u(q)$

• By Carathéodory's Theorem, for any point $q_0 \in M$, the Cauchy problem

$$\dot{q} = f_u(q), \qquad q(0) = q_0,$$
 (5)

has a unique solution $q_u(t)$.

• In order to compare admissible controls one with another on a segment [0, t₁], introduce a *cost functional*:

$$J(u) = \int_0^{t_1} \varphi(q_u(t), u(t)) dt$$
(6)

with an integrand

$$\varphi : M \times U \to \mathbb{R}$$

satisfying the same regularity assumptions as the right-hand side f, see (2)-(4).

- Take any pair of points $q_0, q_1 \in M$.
- Consider the following *optimal control problem*:

Problem 1

Minimize the functional J among all admissible controls u = u(t), $t \in [0, t_1]$, for which the corresponding solution $q_u(t)$ of Cauchy problem (5) satisfies the boundary condition

$$q_u(t_1) = q_1. \tag{7}$$

• This problem can also be written as follows:

$$\dot{q} = f_u(q), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,$$
 (8)

$$q(0) = q_0, \qquad q(t_1) = q_1,$$
 (9)

$$J(u) = \int_0^{t_1} \varphi(q(t), u(t)) \, dt \to \min \,. \tag{10}$$

- Two types of problems: with fixed terminal time t_1 and free t_1 .
- A solution u of this problem is called an *optimal control*, and the corresponding curve $q_u(t)$ is an *optimal trajectory*.

Example: Euler elasticae

Given:

- uniform elastic rod of length / in the plane
- the rod has fixed endpoints and tangents at endpoints

Find:

• the profile of the rod.

Example: Euler elasticae

$$\dot{x} = \cos heta, \qquad q = (x, y, heta) \in \mathbb{R}^2 \times S^1,$$

 $\dot{y} = \sin heta, \qquad u \in \mathbb{R},$
 $\dot{ heta} = u,$
 $q(0) = q_0, \qquad q(t_1) = q_1,$
 $t_1 = I$ is the length of the rod,
 $J = \frac{1}{2} \int_0^{t_1} u^2 dt \rightarrow \min.$

Definition of Lebesgue measure in I = [0, 1]: H. Lebesgue, 1902¹

• Measure of intervals:

$$m(\emptyset) := 0,$$
 $m(|a, b|) := b - a,$ $b \ge a,$ $| = [\text{ or }].$

- Measure of elementary sets: $m'(\sqcup_{i=1}^{\infty}|a_i,b_i|):=\sum_{i=1}^{\infty}m(|a_i,b_i|)$
- Outer measure: $\mu^*(A) := \inf \left\{ \sum_{i=1}^{\infty} m(P_i) \mid A \subset \cup_{i=1}^{\infty} P_i, \ P_i \text{ intervals} \right\}.$
- Lebesgue measure:
 - $A \subset I$ is called *measurable* if

 $\forall \ \varepsilon > 0 \ \exists \ \mathsf{elementary \ set} \ B \subset I: \ \mu^*(A \triangle B) < \varepsilon, \qquad A \triangle B := (A \setminus B) \cup (B \setminus A).$

• A measurable \Rightarrow Lebesgue measure $\mu(A) := \mu^*(A)$.

¹A.N. Kolmogorov, S.V. Fomin, "Elements of theory of functions and functional analysis"

Properties of Lebesgue measure

- 1. System of measurable sets is closed w.r.t. $\cup_{i=1}^{\infty}$, $\cap_{i=1}^{\infty}$, \setminus , \triangle
- 2. σ -additivity: A_i measurable $\Rightarrow \mu(\sqcup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}\mu(A_i)$.
- 3. Continuity: $A_1 \supset A_2 \supset \cdots$ measurable $\Rightarrow \mu(\cap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$
- 4. Open, closed sets are measurable.
- 5. There exist non-measurable sets (G. Vitali, 1905)
- 6. $A \subset \mathbb{R}$ is measurable if $\forall A \cap I_n$ is measurable, $I_n = (n, n+1]$, $n \in \mathbb{Z}$,

7.
$$\mu(A) := \sum_{n=-\infty}^{+\infty} \mu(A \cap I_n) \in [0, +\infty].$$

- 8. $\mu(A) = 0 \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists \text{ intervals: } \cup_{i=1}^{\infty} P_i \supset A, \ \sum_{i=1}^{\infty} m(P_i) < \varepsilon.$
- A property P holds almost everywhere (a.e.) on a set X if ∃ A ⊂ X, μ(A) = 0, s.t. P holds on X \ A.
- 10. $f : \mathbb{R} \to \mathbb{R}^m$ is *measurable* if $f^{-1}(O)$ is measurable for any open $O \subset \mathbb{R}^m$.

Banach-Tarski Paradox

Theorem 2 Let $B, B' \subset \mathbb{R}^3$ be balls of different radii. Then there exist decompositions

$$B = X_1 \sqcup \cdots \sqcup X_n, \qquad B' = X'_1 \sqcup \cdots \sqcup X'_n$$

such that

$$\exists f_i \in \mathsf{SE}(3) : f_i(X_i) = X'_i, \qquad i = 1, \ldots, n.$$

- Sets X_i, X'_i are not measurable.
- $n \geq 5$.
- B, B' can be replaced by any bounded subsets in \mathbb{R}^3 with nonempty interior.
- Similar theorem for \mathbb{R}^2 instead of \mathbb{R}^3 fails. Reason: SE(2) is solvable, while SE(3) is not: $[\mathfrak{se}(3), \mathfrak{se}(3)] = \mathfrak{so}(3), [\mathfrak{so}(3), \mathfrak{so}(3)] = \mathfrak{so}(3) \neq \{0\}.$

Lebesgue integral: Definition

- Let $\mu(X) < +\infty$. A function $f : X \to \mathbb{R}$ is simple if it is measurable and takes not more than countable number of values.
- Th.: A function f(x) taking not more than countable number of values y_1 , y_2 , ... is measurable iff al sets $f^{-1}(y_n)$ are measurable.
- Th.: A function f(x) is measurable iff it is a uniform limit of simple measurable functions.
- Let f be a simple measurable function taking values y₁, y₂, Let A ⊂ X be measurable. Then

$$\int_A f(x)d\mu := \sum_n y_n \mu(f^{-1}(y_n)).$$

A function f is called integrable on A if this series absolutely converges.

A measurable function f is called *integrable* on A ⊂ X if there exist a sequence of simple integrable on A functions {f_n} that converges uniformly to f. Then

$$\int_{\mathcal{A}} f(x) d\mu := \lim_{n \to \infty} \int_{\mathcal{A}} f_n(x) d\mu.$$

12/35

Lebesgue integral: Properties

1. $\int_{A} 1 d\mu = \mu(A)$. 2. Linearity: $\int_{\Lambda} (af(x) + bg(x)) d\mu = a \int_{\Lambda} f(x) d\mu + b \int_{\Lambda} g(x) d\mu$. 3. f(x) bounded on $A \Rightarrow f(x)$ integrable on A. 4. Monotonicity: $f(x) \leq g(x) \Rightarrow \int_A f(x) d\mu \leq \int_A g(x) d\mu$. 5. $\mu(A) = 0 \implies \int_A f(x) d\mu = 0.$ 6. f(x) = g(x) a.e. $\Rightarrow \int_{A} f(x) d\mu = \int_{A} g(x) d\mu$. 7. g(x) integrable on A and |f(x)| < g(x) a.e. $\Rightarrow f(x)$ integrable on A. 8. Functions f and |f| are integrable or non-integrable simultaneously. 9. σ -additivity: if $A = \bigsqcup_n A_n$ then $\int_A f(x) d\mu = \sum_n \int_A f(x) d\mu$. 10. Absolute continuity: f in integrable on $A \Rightarrow \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t.}$ $\left|\int_{E} f(x) d\mu\right| < \varepsilon$ for any measurable $E \subset A$, $\mu(E) < \varepsilon$. 11. $\mu(X) = \infty, X = \bigcup_n X_n, X_n \subset X_{n+1}, \mu(X_n) < \infty \Rightarrow$ $\int_{X} f(x) d\mu := \lim_{n \to \infty} \int_{X} f(x) d\mu.$

Spaces of integrable functions

- $f : X
 ightarrow \mathbb{R}$ measurable.
 - 1. $L_p(X,\mu) = \{f \mid ||f||_p < \infty\}, ||f||_p = (\int_X |f(x)|^p d\mu)^{1/p}, p \in [1,+\infty).$
 - 2. $L_{\infty}(X,\mu) = \{f \mid ||f||_{\infty} < \infty\}, ||f||_{\infty} = \operatorname{ess\,sup}_{x \in X} |f(x)|.$
 - 3. $1 \leq p_1 < p_2 \leq \infty \quad \Rightarrow \quad L_{p_1} \supseteq L_{p_2}.$
 - 4. $L_{p}, \ p \in [1, +\infty]$, are Banach spaces (= complete normed spaces).
 - 5. L_2 is a Hilbert space (= complete Euclidean infinite-dimensional space), $(f,g) = \int_X f(x)g(x)d\mu$.

Carathéodory ODEs: C. Carathéodory, 1873–1950²

- Carathéodory conditions: let for a domain $D \subset \mathbb{R}^{1+n}_{t,x}$
 - 1. f(t, x) is defined and continuous in x for almost all t
 - 2. f(t,x) is measurable in t for any x
 - 3. $|f(t,x)| \le m(t)$, where m(t) is Lebesgue integrable on any segment
- Carathéodory ODE: $\dot{x} = f(t, x)$, where $f : D \to \mathbb{R}^n$ satisfies conditions 1–3.
- Solution to Carathéodory ODE: $x : |a, b| \to \mathbb{R}^n$, $x(t) = x(t_0) + \int_{t_0}^t f(s, x(s)) ds$, $t_0 \in |a, b|$.
- Existence: Solutions exist on sufficiently small segments $[t_0, t_0 + \varepsilon], \ \varepsilon > 0.$
- Uniqueness: If $|f(t,x) f(t,y)| \le l(t)|x y|$, l(t) Lebesgue integrable, then a solution is unique.
- Extension: Any solution in compact D can be extended in both sides up to ∂D .

²A.F. Filippov, "Differential equations with discontinuous right-hand side"

Optimal Control Problem Statement

$$\dot{q} = f_u(q), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,$$
 (11)

$$q(0)=q_0, \qquad (12)$$

$$q(t_1) = q_1, \tag{13}$$

$$J(u) = \int_0^{t_1} \varphi(q, u) dt \to \min.$$
 (14)

 $q = q_u(\cdot)$ — solution to Cauchy problem (11), (12) corresponding to an admissible control $u(\cdot)$.

Attainable sets

- Fix an initial point $q_0 \in M$.
- Attainable set of control system (11) for time $t \ge 0$ from q_0 with measurable locally bounded controls is defined as follows:

$$\mathcal{A}_{q_0}(t) = \{q_u(t) \mid u \in L_{\infty}([0, t], U)\}.$$

• Similarly, one can consider the attainable sets for time not greater than t:

$$\mathcal{A}_{q_0}^t = igcup_{0 \leq au \leq t} \mathcal{A}_{q_0}(au)$$

and for arbitrary nonnegative time:

$$\mathcal{A}_{q_0} = igcup_{0 \leq au < \infty} \mathcal{A}_{q_0}(au).$$

Extended system

• Optimal control problems on *M* can be reduced to the study of attainable sets of some auxiliary control systems on the extended state space

$$\widehat{M} = \mathbb{R} imes M = \{ \widehat{q} = (y,q) \mid y \in \mathbb{R}, \ q \in M \}.$$

• Consider the following extended control system on \widehat{M} :

$$\frac{d\,\widehat{q}}{d\,t} = \widehat{f}_u(\widehat{q}), \qquad \widehat{q} \in \widehat{M}, \ u \in U, \tag{15}$$

with the right-hand side

$$\widehat{f}_u(\widehat{q}) = \left(egin{array}{c} arphi(q,u) \ f_u(q) \end{array}
ight), \qquad q \in M, \quad u \in U,$$

where φ is the integrand of the cost functional J, see (14).

• Denote by $\hat{q}_u(t)$ the solution of the extended system (15) with the initial conditions

$$\widehat{q}_u(0) = \left(egin{array}{c} y(0) \\ q(0) \end{array}
ight) = \left(egin{array}{c} 0 \\ q_0 \end{array}
ight)$$

Reduction to Study of Attainable Sets

Theorem 3

Let $q_{\widetilde{u}}(t)$, $t \in [0, t_1]$, be an optimal trajectory in the problem (11)–(14) with the fixed terminal time t_1 . Then $\widehat{q}_{\widetilde{u}}(t_1) \in \partial \widehat{\mathcal{A}}_{(0,q_0)}(t_1)$.

Figure: $q_{\widetilde{u}}(t)$ optimal

Proof.

• Solutions $\widehat{q}_u(t)$ of the extended system are expressed through solutions $q_u(t)$ of the original system (11) as

$$\widehat{q}_u(t) = \left(egin{array}{c} J_t(u) \ q_u(t) \end{array}
ight), \qquad J_t(u) = \int_0^t \varphi(q_u(\tau), u(\tau)) \, d\tau.$$

• Thus attainable sets of the extended system (15) have the form

$$\widehat{\mathcal{A}}_{(0,q_0)}(t) = \{ (J_t(u), q_u(t)) \mid u \in L_\infty([0,t], U) \} \,.$$

- The set $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)$ should not intersect the ray $\left\{(y,q_1)\in \widehat{M} \mid y < J_{t_1}(\widetilde{u})
 ight\}$.
- Indeed, suppose that there exists a point $(y,q_1)\in \widehat{\mathcal{A}}_{(0,q_0)}(t_1), \quad y < J_{t_1}(\widetilde{u}).$
- Then the trajectory of the extended system $\widehat{q}_u(t)$ that steers $(0, q_0)$ to (y, q_1) :

$$\widehat{q}_u(0)=\left(egin{array}{c} 0 \ q_0 \end{array}
ight),\qquad \widehat{q}_u(t_1)=\left(egin{array}{c} y \ q_1 \end{array}
ight),$$

gives a trajectory $q_u(t)$, $q_u(0) = q_0$, $q_u(t_1) = q_1$, with $J_{t_1}(u) = y < J_{t_1}(\widetilde{u})$, a contradiction to optimality of \widetilde{u} .

Existence of optimal trajectories for problems with fixed t_1

Theorem 4

Let $q_1 \in \mathcal{A}_{q_0}(t_1)$. If $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)$ is compact, then there exists an optimal trajectory in the problem (11)–(14) with the fixed terminal time t_1 .

Proof.

- The intersection $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)\cap\{(y,q_1)\in\widehat{M}\}$ is nonempty and compact.
- Denote $\widetilde{J} = \min\{y \in \mathbb{R} \mid (y,q_1) \in \widehat{\mathcal{A}}_{(0,q_0)}(t_1)\}.$
- $(\widetilde{J},q_1)\in \widehat{\mathcal{A}}_{(0,q_0)}(t_1).$
- There exists an admissible control \tilde{u} such that $q_{\tilde{u}}$ steers q_0 to q_1 for time t_1 with the cost \tilde{J} .
- The trajectory $q_{\widetilde{u}}$ is optimal.

Existence of optimal trajectories for problems with free t_1

Theorem 5

Let $q_1 \in \mathcal{A}_{q_0}$. Let $\widehat{\mathcal{A}}_{(0,q_0)}^t$, t > 0, be compact. Let there extist $\overline{u} \in L_{\infty}[0,\overline{t}_1]$ that steers q_0 to q_1 such that for any $u \in L_{\infty}[0, t_1]$ that steers q_0 to q_1 :

$$t_1 > \overline{t}_1 \quad \Rightarrow \quad J(u) > J(\overline{u}).$$

Then there exists an optimal trajectory in the problem (11)-(14) with the free t_1 . Proof.

• Denote
$$I^t = \left\{ y \in \mathbb{R} \mid (y,q_1) \in \widehat{\mathcal{A}}^t_{(0,q_0)} \right\}$$
, $J^t = \min I^t$.

- Since $q_1 \in \mathcal{A}_{q_0}(t_1)$ for some $t_1 > 0$, then $I^{t_1}
 eq \emptyset$.
- Let $T = \max(t_1, \overline{t}_1)$. We have $I^T \neq \emptyset$. Denote $\widetilde{J} = J^T$.
- There exists $\widetilde{u} \in L_{\infty}[0, \widetilde{t}_1]$ that steers q_0 to q_1 with the cost $\widetilde{J} = J(\widetilde{u})$.
- The control \widetilde{u} is optimal in the problem with the free t_1 .

Compactness of attainable sets

Theorem 6 (Filippov)

Let the space of control parameters $U \Subset \mathbb{R}^m$ be compact. Let there exist a compact $K \Subset M$ such that $f_u(q) = 0$ for $q \notin K$, $u \in U$. Moreover, let the velocity sets

$$f_U(q) = \{f_u(q) \mid u \in U\} \subset T_q M, \qquad q \in M,$$

be convex. Then the attainable sets $A_{q_0}(t)$ and $A_{q_0}^t$ are compact for all $q_0 \in M$, t > 0. Remark 1

The condition of convexity of the velocity sets $f_U(q)$ is natural: the flow of the ODE

$$\dot{q} = lpha(t) f_{u_1}(q) + (1 - lpha(t)) f_{u_2}(q), \qquad 0 \le lpha(t) \le 1,$$

can be approximated by flows of the systems of the form

$$\dot{q}=f_{v}(q), \hspace{0.3cm}$$
 where $\hspace{0.3cm} v(t)\in\{u_{1}(t),\,u_{2}(t)\}.$

Sketch of the proof of Filippov's Theorem: 1/5

- All nonautonomous vector fields $f_u(q)$ with admissible controls u have a common compact support, thus are complete.
- Under hypotheses of the theorem, velocities $f_u(q)$, $q \in M$, $u \in U$, are uniformly bounded, thus all trajectories q(t) of control system (11) starting at q_0 are Lipschitzian with the same Lipschitz constant.
- Embed the manifold M into a Euclidean space \mathbb{R}^N , then the space of continuous curves q(t) becomes endowed with the uniform topology of continuous mappings from $[0, t_1]$ to \mathbb{R}^N .
- The set of trajectories q(t) of control system (11) starting at q_0 is uniformly bounded:

$$\|q(t)\| \leq C$$

and equicontinous:

$$\forall \varepsilon > 0 \,\, \exists \delta > 0 \,\, \forall q(\cdot) \,\, \forall |t_1 - t_2| < \delta \quad \|q(t_1) - q(t_2)\| < \varepsilon.$$

Sketch of the proof of Filippov's Theorem: 2/5

Theorem 7 (Arzelà-Ascoli)

Consider a family of mappins $\mathcal{F} \subset C([0, t_1], M)$, where M is a complete metric space. If \mathcal{F} is uniformly bounded and equicontinuous, then it is precompact:

 $\forall \{q_n\} \subset \mathcal{F} \exists$ a converging subsequence $q_{n_k} \rightarrow q \in C([0, t_1], M)$.

- Thus the set of admissible trajectories is precompact in the topology of uniform convergence.
- For any sequence $q_n(t)$ of admissible trajectories:

$$\dot{q}_n(t) = f_{u_n}(q_n(t)), \qquad 0 \le t \le t_1, \quad q_n(0) = q_0,$$

there exists a uniformly converging subsequence, we denote it again by $q_n(t)$:

$$q_n(\cdot) o q(\cdot)$$
 in $C([0,t_1],M)$ as $n o \infty$.

• Now we show that q(t) is an admissible trajectory of control system (11).

Sketch of the proof of Filippov's Theorem: 3/5

- Fix a sufficiently small $\varepsilon > 0$.
- Then in local coordinates

$$rac{1}{arepsilon}(q_n(t+arepsilon)-q_n(t))=rac{1}{arepsilon}\int_t^{t+arepsilon}f_{u_n}(q_n(au))\,d au\ \in {
m conv}igcup_{ au\in[t,t+arepsilon]}f_U(q_n(au))\subset {
m conv}igcup_{q\in O_{q(t)}(carepsilon)}f_U(q),$$

where c is the doubled Lipschitz constant of admissible trajectories.

• We pass to the limit $n o \infty$ and obtain

$$rac{1}{arepsilon}(q(t+arepsilon)-q(t))\in {
m conv}igcup_{q\in O_{q(t)}(carepsilon)}f_U(q).$$

• Now let arepsilon o 0. If t is a point of differentiability of q(t), then

$$\dot{q}(t)\in f_U(q)$$

since $f_U(q)$ is convex.

Sketch of the proof of Filippov's Theorem: 4/5

- In order to show that q(t) is an admissible trajectory of control system (11), we should find a measurable selection $u(t) \in U$ that generates q(t).
- We do this via the lexicographic order on the set $U = \{(u_1, \ldots, u_m)\} \subset \mathbb{R}^m$.
- The set

$$V_t = \{v \in U \mid \dot{q}(t) = f_v(q(t))\}$$

is a compact subset of U, thus of \mathbb{R}^m .

• There exists a vector $v^{\min}(t) \in V_t$ minimal in the sense of lexicographic order. To find $v^{\min}(t)$, we minimize the first coordinate on V_t :

$$v_1^{\min} = \min\{ v_1 \mid v = (v_1, \ldots, v_m) \in V_t \},$$

then minimize the second coordinate on the compact set found at the first step:

$$v_2^{\min} = \min\{ v_2 \mid v = (v_1^{\min}, v_2, \dots, v_m) \in V_t \}, \quad \dots, \\ v_m^{\min} = \min\{ v_m \mid v = (v_1^{\min}, \dots, v_{m-1}^{\min}, v_m) \in V_t \}.$$

Sketch of the proof of Filippov's Theorem: 5/5

- The control $v^{\min}(t) = (v_1^{\min}(t), \dots, v_m^{\min}(t))$ is measurable, thus q(t) is an admissible trajectory of system (11) generated by this control.
- The proof of compactness of the attainable set $\mathcal{A}_{q_0}(t)$ is complete.
- Compactness of $\mathcal{A}_{q_0}^t$ is proved similarly.

Discussion on completeness

- In Filippov's theorem, the hypothesis of common compact support of the vector fields in the right-hand side is essential to ensure the uniform boundedness of velocities and completeness of vector fields.
- On a manifold, sufficient conditions for completeness of a vector field cannot be given in terms of boundedness of the vector field and its derivatives: a constant vector field is not complete on a bounded domain in \mathbb{R}^n .
- Nevertheless, one can prove compactness of attainable sets for many systems without the assumption of common compact support. If for such a system we have a priori bounds on solutions, then we can multiply its right-hand side by a cut-off function, and obtain a system with vector fields having compact support.
- We can apply Filippov's theorem to the new system. Since trajectories of the initial and new systems coincide in a domain of interest for us, we obtain a conclusion on compactness of attainable sets for the initial system.

A priori bound in \mathbb{R}^n

- For control systems on M = Rⁿ, there exist well-known sufficient conditions for completeness of vector fields.
- If the right-hand side grows at infinity not faster than a linear field, i.e.,

$$|f_u(x)| \leq C(1+|x|), \qquad x \in \mathbb{R}^n, \quad u \in U, \tag{16}$$

for some constant C, then the nonautonomous vector fields $f_u(x)$ are complete (here $|x| = \sqrt{x_1^2 + \cdots + x_n^2}$ is the norm of a point $x = (x_1, \dots, x_n) \in \mathbb{R}^n$).

• These conditions provide an a priori bound for solutions: any solution x(t) of the control system

$$\dot{x} = f_u(x), \qquad x \in \mathbb{R}^n, \quad u \in U,$$
(17)

with the right-hand side satisfying (16) admits the bound

$$|x(t)| \le e^{2Ct} (|x(0)| + 1), \qquad t \ge 0.$$

Compactness of attainable sets in \mathbb{R}^n

• Filippov's theorem plus the previous remark imply the following sufficient condition for compactness of attainable sets for systems in \mathbb{R}^n .

Corollary 8

Let system (17) have a compact space of control parameters $U \Subset \mathbb{R}^m$ and convex velocity sets $f_U(x)$, $x \in \mathbb{R}^n$.

Suppose moreover that the right-hand side of the system satisfies a sublinear bound of the form (16).

Then the attainable sets $\mathcal{A}_{x_0}(t)$ and $\mathcal{A}^t_{x_0}$ are compact for all $x_0 \in \mathbb{R}^n$, t > 0.

Time-optimal problem

• Given a pair of points $q_0 \in M$ and $q_1 \in A_{q_0}$, the *time-optimal problem* consists in minimizing the time of motion from q_0 to q_1 via admissible controls of control system (11):

$$\min_{u} \{ t_1 \mid q_u(t_1) = q_1 \}.$$
(18)

- That is, we consider the optimal control problem with the integrand $\varphi(q, u) \equiv 1$ and free terminal time t_1 .
- Reduction of optimal control problems to the study of attainable sets and Filippov's Theorem yield the following existence result.

Corollary 9

Under the hypotheses of Filippov's Theorem 6, time-optimal problem (11), (18) has a solution for any points $q_0 \in M$, $q_1 \in A_{q_0}$.

Example of a time-optimal problem: Stopping a train

Given:

- material point of mass m>0 with coordinate $x\in\mathbb{R}$
- force F bounded by the absolute value by $F_{\max}>0$
- initial position x_0 and initial velocity \dot{x}_0 of the material point

Find:

• force F that steers the point to the origin with zero velocity, for a minimal time.

$$\begin{split} \dot{x}_1 &= x_2, \qquad (x_1, x_2) \in \mathbb{R}^2, \\ \dot{x}_2 &= u, \qquad |u| \le 1, \\ (x_1, x_2)(0) &= (x_0, \dot{x}_0), \qquad (x_1, x_2)(t_1) = (0, 0), \\ t_1 &\to \min. \end{split}$$

Example: Stopping a train

- Trajectories of the system with a constant control $u \neq 0$ are the parabolas $\frac{x_2^2}{2} = ux_1 + C:$
- Now it is visually obvious that $(0,0)\in \mathcal{A}_{(x_1,x_2)}$ for any $(x_1,x_2)\in \mathbb{R}^2.$
- The set of control parameters U = [-1, 1] is compact, the set of admissible velocity vectors f(x, U) = {(x₂, u) | u ∈ [-1, 1]} is convex for any x ∈ ℝ², and the right-hand side of the control system has sublinear growth: |f(x, u)| ≤ C(|x| + 1).
- All hypotheses of the Filippov theorem are satisfied, thus optimal control exists.

Plan of lecture

- 1. Optimal Control Problem Statement
- 2. Lebesgue measurable sets and functions
- 3. Lebesgue integral
- 4. Carathéodory ODEs
- 5. Reduction of Optimal Control Problem to Study of Attainable Sets
- 6. Filippov's theorem: Compactness of Attainable Sets
- 7. Time-Optimal Problem