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6. Coming Home on the Oz’s Back:

Riding on the animal, he leisurely wends his way home:

Enveloped in the evening mist, how tunefully the flute vanishes away!
Singing a ditty, beating time, his heart is filled with a joy indescribable!
That he is now one of those who know, need it be told?

Pu-ming, “The Ten Ozherding Pictures”
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Reminder: Plan of the previous lecture

1. Sub-Riemannian problems

2. The sub-Riemannian problem on the Heisenberg group.
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Plan of this lecture

1. Proof of Pontryagin maximum principle for sub-Riemannian problems
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Optimal control problem

At this lecture we prove Pontryagin maximum principle for the sub-Riemannian optimal
control problem:

k
g=>Y uifi(q)=:fuq), qgeM, u=(u,...,u)€RK,
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Statement of PMP for SR problem
Theorem 1 (PMP for SR problems)

Let g € Lip([0, t1], M) be a SR minimizer for which the corresponding control u(t)
k

satisfies the condition " U?(t) = const. Then there exists a curve
i=1
At € Lip([0, t1], T*M), w(A¢) = q(t), such that for almost all t € [0, t1]

and one of the conditions hold:
(N) hi(Ae) =Ti(t), i=1,....k, or
(A) hi(A) =0, i=1,....k, A#0 Vte[0n].

® In conditions (N), (A) corresponding to the normal and abnormal cases, as always,

hi(\) = (\F), i=1,... k
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Reduction to Theorems 2, 3

Theorem 1 follows from the next two theorems.

Theorem 2
Let the hypotheses of Theorem 1 hold. For any t € [0, t1], let Py : M — M denote the
k

flow of the nonautonomous vector field fy,y = > Ui(t)f; from the time 0 to the time t.
i=1
Then there exists \g € TgM such that the curve

A= (P1) (M) € TygM (2)
satisties one of conditions (N), (A) of Theorem 1.

Theorem 3
Let the hypotheses of Theorems 1 and 2 hold. Then ODE (1) follows from identity (2).
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Flow of nonautonomous vector field

In Theorem 2, the flow P; : M — M of the nonautonomous field f5() from the
time 0 to the time t is given as follows:

P(q)zﬁ() ge M, tel0,t],

Z (B)f@(),  a0)=aq.

Further, in Theorem 2 we use the mapping (P, ) T* M — Ti‘(t)l\/l, recall the
necessary definition. If F: M — N is a smooth mapping between smooth
manifolds and g € M, then there is defined the differential

F*q : Tq/\/l — TF(q)N,
and the dual mapping of cotangent spaces:
(Fr(A),v) = (X, Fau(v)), veTgM, Ae TEyN.

8/28



Reduction to the study of attainable sets

k k
Replace the length / = [;*(> u?)Y/2 dt by the energy J = 3 Z 2 dt.
i=1 i=1
In order to include the functional J into dynamics of the system, introduce a new

variable equal to the running value of the cost functional along a trajectory q,(t):

y(t) =3 fo Z u? dt.
Respectively, we introduce an extended state g = ( )c; > € R x M that satisfies
an extended control system

k
dq _ (v \_ [ 229 | _f5
dt - ( q ) - =1 — (q> U).

f(q,u
The boundary conditions for this system are

qo=(2). aw=(72)
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Reduction to the study of attainable sets

e A trajectory gz(t) is optimal for the optimal control problem with fixed time t; if
and only if the corresponding trajectory qi(t) of the extended system comes to a

point (y1,q1) of the attainable set g 4,)(t1) such that

o~

H0,60) (1) N {(y, 1) |y <y} =0.

)

Y1 (1, q1)

q0 q
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Proof of Theorem 2: 1/11

1/2
t1 k
The curve g(t) is a minimizer of the length functional / = / (Z u,2> dt of
0 :

constant velocity, thus it is a minimizer of the energy functional
k
1 tl 2 -
J(u) = 2/0 ;U,(t) dt for a fixed 1.

Take any control u(-) =a(-)+ v(-) € L([0, t1],R¥) and consider the
corresponding Cauchy problem

q(t) = fury(a(t) = D ui(t)fi(a(®)),  q(0) = qo.

i=1

Recall that P; : M — M is the flow of the nonautonomous vector field f;(;) from
the time 0 to the time t.

Consider the curve x(t) = P;(q(t)) and derive an ODE for x(t).
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Proof of Theorem 2: 2/11
e \We differentiate the identity g(t) = P:(x(t)) and get

q(t) = fa(e)(Pe(x(1))) + (Pt)«x(2),

whence

#[a(t) = fa(ey (Pe(x(1)))]
[(Fuqey = Fage))(Pe(x(1)))]
e )x(fu(oy—a()](x(1))
e )+ ()] (x(1)).
* We denote the nonautonomous vector field gt = (P;1).f, and get the required
ODE
£(8) = g5 (x(1),  x(0) = Py (q0) = o- 3)
® Notice that f, is linear in v, thus gl is linear in v.
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Proof of Theorem 2: 3/11

e For any v € L*([0, t;], R¥), consider a mapping

x(t1; U + sv)

R95H< J(T+ sv)

)EMX]R,

where x(t1; T + sv) is the solution to Cauchy problem (3) corresponding to the
control T + sv, and J(T + sv) is the corresponding energy.

Lemma 4 B _
There exists a covector A € (TgoM ® R)*, X\ # 0, such that for any v € L=([0, t;], R¥)

there holds the equality
>> 0. @)
s=0

</\ (8x(t1;u + sv) 0J(T + sv)
13 /28
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® Denote

Proof of Theorem 2: 4/11, Proof of Lemma 4
_ [(Ox(t1; T+ sv) 0J(T + sv)
*v) = < Os o Os

s:0> ,
®: L([0, 1], R¥) — TuM @ R.

e \We compute the derivatives in the definition of the mapping ®. It is easy to see

that
/ Z (t)vi(t) d (5)

(‘9J(u+sv

Indeed, this follows from the expansion

1 [n
J(@+sv) = 2/ T+ sv|? dt
0

1
:2/0 <u2+252 +s2|v) dt.
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Proof of Theorem 2: 5/11, Proof of Lemma 4

® Further, we show that

Ox(t1; T+ sv)
0s

_ /0 gty (d0) dt = / Z )(@)vi(t)dt.  (6)

® The ODE x(t; T+ sv) = g, (x(t; T+ sv)) implies in local coordinates that

s=0

[51
X4 sv) = a0t [ ghgle(tiat sv))de
0

t1
= do +5/ g‘f(t)(X(t;H‘i‘SV)) dt
0
since g w(t) = sg‘f(t), whence

Ox(t1; T + sv)
Os

t1
s=0 0

t1 k

— et de= [ S (P A @ d



Proof of Theorem 2: 6/11, Proof of Lemma 4

® One can see from (5), (6) that the mapping ® is linear in v. We show that it is
not surjective.

® By contradiction, let Im® = T, M @ R, then there exist
VO v e L2([0, t1], R¥) such that &(v0), ..., ®(v") are linearly independent,
i.e., the vectors

Ox(t1;u+sv0)

Ox(t1;U+sv")
Js

—0 Js

9J(u+sv0) oot dJ(u+sv") =0
Js <=0 Js <=0
are linearly independent.
e Consider the mapping
n .
X (tl;u+ > s,-v’>
F : (soy...,5n) — i=0 , R™ - M x R.

J <U+ Z S,'Vi)
i=0
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Proof of Theorem 2: 7/11, Proof of Lemma 4

The mapping F is smooth near the point 0 € R"*1 and has a nondegenerate
Jacobian at this point.

Thus there exists a neighbourhood Oy C R™"! such that the restriction F|o, is a
diffeomorphism.

Consequently,

o ()~ ()

Thus there exists a control v(-) = 3 s;v/(-) for which
i=0

x(t1; T+ v) = qo, J(@+v) < J(0).
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Proof of Theorem 2: 8/11, Proof of Lemma 4

¢ Consider the corresponding trajectory t — q(t;u + v). We have

q(0; 7+ v) = qo,
q(t1; T+ v) = Py (x(t1;u+ v)) = Py (q0) = q1-

® So the curve g(t; U + v) connects the points go and g; with a lesser value of the
functional J than the optimal trajectory q(t) = q(t; 7).

® The contradiction obtained completes the proof of Lemma 4.
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Proof of Theorem 2: 9/11

We continue the proof of Theorem 2.
By the previous lemma, there exists a covector 0 # \ € (T4, M ® R)* such that for
any v € L>([0, t;], R¥) we have
-+
s=0

< ( Ox(t1; T+ sv)

A —
Os

It is obvious thit if this condition holds for some covector ), then it also holds for

any covector a\, a # 0.

0J(u + sv)
<0 Os

Consequently, we can choose a covector \ of the form

X = ()\0, —1) or A= ()\0,0)7 )\0 75 0.
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Proof of Theorem 2: 10/11

® Thus there exists a covector \g € T; M such that for any v € L°({0, t1], R¥)
0J(t + sv) B <)\0’ Ox(t1; T+ sv) > 0 )
s=0 s=0

Js Os
). dro (8)
s=0

or

Ox(t1; T+ sv)
=\ s

¢ Consider the case (7).
® Equalities (5) and (6) imply that for any v € L>([0, t;],R¥)

/Z t)v;(t) dt = /Z Ao, (( (q0)) vi(t) dt

/ Z Mo, £(G(0))vi(t) dt /Otl S hi(Awi(t) dt.

i=1
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Proof of Theorem 2: 11/11

e Since the functions v; € L*°[0, t;] are arbitrary, we get in case (7)
(N) Ti(t) = hi(A), i=1,... k.

e Similarly, in case (8) we get the condition
(A) 0=hi(N), i=1,....k; A #0,
exercise.

® Theorem 2 is proved.
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Proof of Theorem 3: 1/7

® Now we prove Theorem 3.

* Recall: we should show that the curve \; = (P;1)*)\o € oM satisfies the ODE
k

Ae = 2 Ti(t)hi( ).
i=1
® Now we prove this for the flow of an autonomous vector field.
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Proof of Theorem 3: 2/7, Proof of Lemma 5

Lemma 5
Let X € Vec(M), Pr = eX. Then the curve \; = (P;})*\q satisfies the ODE
Ae = hx(Ae).

* We set o(t) = (P;1)*(\o), then we have to prove that

() = hx(p(1)) € T (T*M).
e A function a € C°(T*M) is called constant on fibers of T*M if it has the form
a = a o for some function aw € C>°(M). Notation: a € CR(T*M).

¢ A function hy € C*(T*M) is called linear on fibers of T*M if
hy(X) = (X, Y(q)), g=m(\), AeT'M,
for some vector field Y € Vec(M). Notation: hy € Coo(T*M).

lin
® An affine on fibers of T*M function is a sum of a constant on fibers and a linear

on fibers functions:

H(TM) = CS(T*M) + G (T*M).

cst
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Proof of Theorem 3: 3/7, Proof of Lemma 5
® Remark: Let v,w € Ty(T*M). The equality v = w holds if and only if

vg = wg Vg € Cx(T™M).

Indeed, the value vg = (d\g, v) depends only on the first order Taylor polynomial
of the function g.

* So we check the required equality ¢(t) = hx(¢(t)) for affine on fibers of T*M
functions.

o Leta=aome CZ(T*M), we check the equality ¢(t)a = hxa. We have

cst

8hx Oa
th B {hX7a} Z dpi 0q; IZ_: 8‘71

plt)a = %a«a(t)) = & 00 e (an) = (Xa)(e(1),

and the required equality is proved for functions a € C(T*M).
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Proof of Theorem 3: 4/7, Proof of Lemma 5
® Now let hy € Cg9(T*M), we check the equality ¢(t)hy = hxhy. We have
hxhy = {hx, hy} = hix v}-
® On the other hand,

d d
- = —h O = — h (@] T
o(t)hy g o(t) o . yop(t+T)

-7 by o (e o (7))

% (™) 0 (™) (M), Y ()X (q0)))
7=0
_ d Xy (oTX o otX
= (0. 5| eV o (a)

= <<p(t), [X, Y](etX(qo))> = hix v ((1))-
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Proof of Theorem 3: 5/7, Proof of Lemma 5

® In the penultimate transition we used the equality
d

= e XY (e™(q)) = [X, Y1(q), (9)
Tlr=0
which we prove now.
e \We have
d —7X X 0 —rX Y X
el Xy (T _ T s T )
e I (e(a)) = 555 e oe’ oe™(q)

® We compute Taylor expansions of the compositions in the right-hand side:

e™(q) = g+ 7X(q) + o(7),

e o™ = e (g +7X(q) + o(7))
= q+7X(q) + o(r) + sY(q + 7X(q) + o(7)) + o(s)

oY
= q—i-TX(q)—l—sY(q)—&-sra—qX(q)—l—...,
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Proof of Theorem 3: 6/7, Proof of Lemma 5

e Consequently,

oY
e X oeY 0e™(q) =q+7X(q) +sY(q) + STa—qX(q)

—7X(q) - ng); Y(q) +

=q+sY(q)+s7[X,Y](q) + ...,

thus
82

O710s | _g 50

e X oe” 0e™(q) =X, Y](q),

and equality (9) follows.

® Lemma 5 is proved.
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Proof of Theorem 3: 7/7

Similarly to Lemma 5 for an autonomous vector field X, one proves the equality

. k 5

Ae = S Ti(t)hi(Ae) for a curve Ay = (P;1)* g in the case of a nonautonomous
i=1

vector field fg(,) (Exercise.)

This completes the proof of Theorem 3.
As we noticed above, Theorem 1 follows from Theorems 2 and 3.

The Pontryagin maximum principle for sub-Riemannian problems is proved.
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