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4. Catching the Ox:

With the energy of his whole being, the boy has at last taken hold of the

ox:

But how wild his will, how ungovernable his power!

At times he struts up a plateau,

When lo! he is lost again in a misty unpenetrable mountain-pass.

Pu-ming, �The Ten Oxherding Pictures�
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Reminder: Plan of the previous lecture

1. Krener's theorem

2. Statement of optimal control problem

3. Existence of optimal controls

4. Elements of symplectic geometry

5. Statement of Pontryagin maximum principle

3 / 28



Plan of this lecture

1. Statement of Pontryagin maximum principle

2. Solution to examples of optimal control problems

3. Sub-Riemannian problems

4. Optimality conditions
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Hamiltonians of Pontryagin maximum principle

• Optimal control problem

q̇ = f (q, u), q ∈ M, u ∈ U ⊂ Rm,

q(0) = q0, q(t1) = q1,

J =

∫ t1

0

φ(q, u) dt → min,

t1 �xed or free.

• De�ne a family of Hamiltonians of PMP

hνu(λ) = ⟨λ, f (q, u)⟩+ νφ(q, u), ν ∈ R, u ∈ U, λ ∈ T ∗M, q = π(λ).
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Statement of Pontryagin maximum principle

Theorem (PMP)

If a control u(t) and the corresponding trajectory q(t), t ∈ [0, t1], are optimal in the

problem with �xed t1, then there exist a curve λt ∈ Lip([0, t1],T
∗M), λt ∈ T ∗

q(t)M,

and a number ν ≤ 0 such that the following conditions hold for almost all t ∈ [0, t1]:

(1) λ̇t = h⃗νu(t)(λt),

(2) hνu(t)(λt) = max
w∈U

hνw (λt),

(3) (λt , ν) ̸= (0, 0).

If the terminal time t1 is free, then the following condition is added to (1)�(3):

(4) hνu(t)(λt) ≡ 0.

A curve λt that satis�es PMP is called an extremal, a curve q(t) � an extremal

trajectory, a control u(t) � an extremal control.
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Time-optimal problem

• Let us apply PMP to the time-optimal problem

q̇ = f (q, u), q ∈ M, u ∈ U,

q(0) = q0, q(t1) = q1,

t1 =

∫ t1

0

1 dt → min .

• The Hamiltonian of PMP has the form hνu(λ) = ⟨λ, f (q, u)⟩+ ν. Introduce the
shortened Hamiltonian gu(λ) = ⟨λ, f (q, u)⟩.

• Then the statement of PMP for the time-optimal problem takes the form:

(1) λ̇t = h⃗νu(t)(λt) = g⃗u(t)(λt),

(2) hνu(t)(λt) = max
w∈U

hνw (λt) ⇔ gu(t)(λt) = max
w∈U

gw (λt),

(3) λt ̸= 0,

(4) hνu(t)(λt) ≡ 0 ⇔ gu(t)(λt) ≡ const ≥ 0.
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The case of smooth maximized Hamiltonian

Denote the maximized normal Hamiltonian of PMP

H(λ) = max
u∈U

h−1
u (λ), λ ∈ T ∗M.

Theorem
Let H ∈ C 2(T ∗M). Then a curve λt is a normal extremal i� it is a trajectory of the

Hamiltonian system λ̇t = H⃗(λt).

Proof.
See A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint,

À.À. Àãðà÷åâ, Þ. Ë. Ñà÷êîâ, Ãåîìåòðè÷åñêàÿ òåîðèÿ óïðàâëåíèÿ.
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Example: Stopping a train (1/4)
• We have the time-optimal problem

ẋ1 = x2, ẋ2 = u, x = (x1, x2) ∈ R2, |u| ≤ 1,

x(0) = x0, x(t1) = x1 = (0, 0), t1 → min .

• The right-hand side of the control system f (x , u) = (x2, u) satis�es the bound

|f (x , u)| =
√

x22 + u2 ≤
√
x22 + 1 ≤ |x |+ 1,

thus r = x2 satis�es the di�erential inequality

ṙ = 2⟨x , ẋ⟩ = 2⟨x , f (x , u)⟩ ≤ 2(r + 1). By Gronwall's lemma
r(t) + 1 ≤ e2t(r0 + 1), thus attainable sets satisfy the a priori bound

Ax0(≤ t) ⊂
{
x ∈ R2 | |x | ≤ et

√
(x0)2 + 1

}
.

• Therefore we can assume that there exists a compact set K ⊂ R2 such that the

right-hand side of the control system vanishes outside of K (one of conditions of
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Example: Stopping a train (2/4)
• As we showed, x1 = (0, 0) ∈ Ax0 for any x0 ∈ R2.
• The set of control parameters U is compact, and the set of admissible velocity

vectors f (x ,U) is convex for any x ∈ R2. All hypotheses of the Filippov theorem

are satis�ed, thus optimal control exists.
• We apply PMP using the canonical coordinates (p1, p2, x1, x2) on T ∗R2. We

decompose a covector λ = p1 dx1 + p2 dx2 ∈ T ∗R2, then the shortened

Hamiltonian of PMP reads hu(λ) = p1x2 + p2u, and the Hamiltonian system

λ̇ = h⃗u(λ) reads

ẋ1 = x2, ṗ1 = 0,

ẋ2 = u, ṗ2 = −p1.

• The maximality condition of PMP has the form

hu(λ) = p1x2 + p2u → max
|u|≤1

,

and the nontriviality condition is (p1(t), p2(t)) ̸= (0, 0).
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Example: Stopping a train (3/4)
• The maximality condition yields:

p2(t) > 0 ⇒ u(t) = 1, p2(t) < 0 ⇒ u(t) = −1.
• Thus extremal trajectories are the parabolas

x1 = ±x22
2

+ C ,

and the number of switchings (discontinuities) of control is not greater than 1.
• Let us construct such trajectories backward in time, starting from x1 = (0, 0):

• the controls u = 1 and u = −1 generate two half-parabolas terminating at x1:

x1 =
x2
2

2
, x2 ≤ 0 and x1 = −x2

2

2
, x2 ≥ 0,

• denote the union of these half-parabolas as Γ,
• after one switching, parabolic arcs with u = 1 terminating at the half-parabola

x1 = − x2
2

2
, x2 ≥ 0, �ll the part of the plane R2 below the curve Γ,

• similarly, after one switching, parabolic arcs with u = −1 �ll the part of the plane

over the curve Γ.
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Example: Stopping a train (4/4)
• So through each point of the plane R2 passes a unique extremal trajectory. In view

of existence of optimal controls, the extremal trajectories are optimal.
• The optimal control found has explicit dependence on the current point of the

plane: if x1 =
x22
2 , x2 ≤ 0, or if the point (x1, x2) lies below the curve Γ, then

u(x1, x2) = 1, otherwise, u(x1, x2) = −1.

x

y

• Such a dependence u(x) of optimal control on the current point x of the state

space is called an optimal synthesis, it is the best possible form of solution to an

optimal control problem. 12 / 28



Example: The Markov-Dubins car (1/4)

• We have a time-optimal problem

ẋ = cos θ, q = (x , y , θ) ∈ R2
x ,y × S1

θ = M,

ẏ = sin θ, |u| ≤ 1,

θ̇ = u,

q(0) = q0 = (0, 0, 0), q(t1) = q1,

t1 → min .

• The system is completely controllable.

• All conditions of the Filippov theorem are satis�ed: U is compact, f (q,U) are
convex, the bound |f (q, u)| ≤ 2 implies a priori bound of the attainable set. Thus

optimal control exists.

• We apply PMP.
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Example: The Markov-Dubins car (2/4)
• The vector �elds

f0 = cos θ
∂

∂x
+ sin θ

∂

∂y
,

f1 =
∂

∂θ
,

f2 = [f0, f1] = sin θ
∂

∂x
− cos θ

∂

∂y

form a frame in TqM.

• De�ne the corresponding linear on �bers of T ∗M Hamiltonians:

hi (λ) = ⟨λ, fi ⟩, i = 0, 1, 2.

• The shortened Hamiltonian of PMP is

hu(λ) = ⟨λ, f0 + uf1⟩ = h0 + uh1.
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Example: The Markov-Dubins car (3/4)
• The functions h0, h1, h2 form a coordinate system on T ∗

qM, and we write the

Hamiltonian system of PMP in the non-canonical parametrization (h0, h1, h2, q) of
T ∗M:

ḣ0 = h⃗uh0 = {h0 + uh1, h0} = u⟨λ, [f1, f0]⟩ = u⟨λ,−f2⟩ = −uh2, (1)

ḣ1 = {h0 + uh1, h1} = ⟨λ, [f0, f1]⟩ = ⟨λ, f2⟩ = h2, (2)

ḣ2 = {h0 + uh1, h2} = u⟨λ, [f1, f2]⟩ = u⟨λ, f0⟩ = uh0, (3)

q̇ = f0 + uf1.

• The maximality condition hu(λ) = h0 + uh1 → max
|u|≤1

implies that if h1(λt) ̸= 0,

then u(t) = sgn h1(λt).
• Consider the case where the control is not determined by PMP: h1(λt) ≡ 0 (this

case is called singular). Then (2) gives h2(λt) ≡ 0, thus h0(λt) ̸= 0 by the

nontriviality condition of PMP, so u(t) ≡ 0 by (3). The corresponding extremal

trajectory (x(t), y(t)) is a straight line.
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Example: The Markov-Dubins car (4/4)
• If u(t) = ±1, then the extremal trajectory (x(t), y(t)) is an arc of a unit circle.
• One can show that optimal trajectories have one of the following two types:

1. arc of unit circle + line segment + arc of unit circle

2. concatenation of three arcs of unit circles; in this case, if a, b, c are the times along

the �rst, second, and third arc respectively, then π < b < 2π, min{a, c} < b, and
max{a, c} < b.

• If boundary conditions are far one from another, then the optimal trajectory has

type 1 and can explicitly be constructed as shown below.
• The optimal synthesis for the Markov-Dubins car is known, but it is rather

complicated. _x(0)x(0) x(t1)_x(t1)
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Example: Control of linear oscillator
• Optimal trajectories are concatenations of circular arcs.
• The optimal synthesis (exercise):

x1

x2

u = −1

u = 1
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Sub-Riemannian structures and minimizers
• A sub-Riemannian structure on a smooth manifold M is a pair (∆, g), where

∆ = {∆q ⊂ TqM | q ∈ M},

is a distribution on M and

g = {gq inner product in ∆q | q ∈ M}

is an inner product (nondegenerate positive de�nite quadratic form) on ∆.
• The vector subspaces ∆q and inner products gq depend smoothly on q ∈ M, and

dim∆q ≡ const.
• A curve q ∈ Lip([0, t1],M) is called horizontal (admissible) if

q̇(t) ∈ ∆q(t) for almost all t ∈ [0, t1].

• The sub-Riemannian length of a horizontal curve q(·) is de�ned as

l(q(·)) =
∫ t1

0

√
g(q̇, q̇) dt.
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Sub-Riemannian structures and minimizers
• The sub-Riemannian (Carnot�Carath�eodory) distance between points q0, q1 ∈ M is

d(q0, q1) = inf{l(q(·)) | q(·) horizontal, q(0) = q0, q(t1) = q1}.
• A horizontal curve q(·) is called a sub-Riemannian length minimizer if

l(q(·)) = d(q(0), q(t1)).

• Thus length minimizers are solutions to a sub-Riemannian optimal control problem:

q̇(t) ∈ ∆q(t),

q(0) = q0, q(t1) = q1,

l(q(·)) → min .

• Suppose that a sub-Riemannian structure (∆, g) has a global orthonormal frame

f1, . . . , fk ∈ Vec(M):

∆q = span(f1(q), . . . , fk(q)), q ∈ M, g(fi , fj) = δij , i , j = 1, . . . , k .
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Sub-Riemannian structures and minimizers
• Then the optimal control problem for sub-Riemannian minimizers takes the

standard form:

q̇ =
k∑

i=1

ui fi (q), q ∈ M, u = (u1, . . . , uk) ∈ Rk , (4)

q(0) = q0, q(t1) = q1, (5)

l =

∫ t1

0

(
k∑

i=1

u2i

)1/2

dt → min . (6)

• The sub-Riemannian length does not depend on parametrization of a horizontal

curve q(t). Namely, if

q̃(s) = q(t(s)), t( · ) ∈ Lip([0, s1], [0, t1]), t ′(s) > 0,

is a reparametrization of a curve q(t), then l(q̃( · )) = l(q( · )) (exercise).
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Sub-Riemannian structures and minimizers

• Along with the length functional, it is convenient to consider the energy functional

J(q(·)) = 1

2

∫ t1

0

g(q̇, q̇) dt.

• Denote ∥q̇∥ =
√
g(q̇, q̇).
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Sub-Riemannian structures and minimizers

Lemma
Let the terminal time t1 be �xed. Then minimizers of energy are exactly length

minimizers of constant velocity:

J(q( · )) → min ⇔ l(q( · )) → min, ∥q̇∥ = const .

Proof.
By the Cauchy�Schwarz inequality,

(l(q( · )))2 =
(∫ t1

0

∥q̇∥ · 1 dt
)2

≤
∫ t1

0

∥q̇∥2 dt ·
∫ t1

0

12 dt = 2J(q( · )) t1,

moreover, equality is attained here only for ∥q̇∥ ≡ const.
It is obvious that on constant velocity curves the problems l → min and J → min are

equivalent. And for ∥q̇∥ ̸≡ const we have l < 2t1J, i.e., J does not attain minimum.
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Sub-Riemannian optimal control problem

q̇ =
k∑

i=1

ui fi (q), q ∈ M, u = (u1, . . . , uk) ∈ Rk ,

q(0) = q0, q(t1) = q1,

l =

∫ t1

0

(
k∑

i=1

u2i

)1/2

dt → min,

or, which is equivalent,

J =
1

2

∫ t1

0

k∑
i=1

u2i dt → min .
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The Lie algebra rank condition for SR problems

• The system F =
{∑k

i=1 ui fi | ui ∈ R
}
is symmetric, thus Aq = Oq for any

q ∈ M.

• Assume that M and F are real-analytic, and M is connected.

• Then for any point q0 ∈ M, by Lie algebra rank condition,

Aq0 = M ⇔ Oq0 = M

⇔ Lieq(F) = Lieq(f1, . . . , fk) = TqM ∀q ∈ M.
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The Filippov theorem for SR problems

• We can equivalently rewrite the optimal control problem for SR minimizers as the

following time-optimal problem:

q̇ =
k∑

i=1

ui fi (q),
k∑

i=1

u2i ≤ 1, q ∈ M,

q(0) = q0, q(t1) = q1,

t1 → min .

• Let us check hypotheses of the Filippov theorem for this problem.

• The set of control parameters U = {u ∈ Rk |
∑k

i=1 u
2
i ≤ 1} is compact, and the

sets of admissible velocities
{∑k

i=1 ui fi (q) | u ∈ U
}
⊂ TqM are convex.

• If we prove an a priori estimate for the attainable sets Aq0(≤ t1), then the Filippov

theorem guarantees existence of length minimizers.
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The Pontryagin maximum principle for SR problems
• Introduce the linear on �bers of T ∗M Hamiltonians hi (λ) = ⟨λ, fi ⟩, i = 1, . . . , k .
Then the Hamiltonian of PMP for SR problem takes the form

hνu(λ) =
k∑

i=1

uihi (λ) +
ν

2

k∑
i=1

u2i .

• The normal case: Let ν = −1.
• The maximality condition

∑k
i=1 uihi −

1
2

∑k
i=1 u

2
i → max

ui∈R
yields ui = hi , then the

Hamiltonian takes the form

h−1
u (λ) =

1

2

k∑
i=1

h2i (λ) =: H(λ).

• The function H(λ) is called the normal maximized Hamiltonian. Since it is

smooth, in the normal case extremals satisfy the Hamiltonian system λ̇ = H⃗(λ).
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The abnormal case
• Let ν = 0.

• The maximality condition
k∑

i=1

uihi → max
ui∈R

implies that hi (λt) ≡ 0, i = 1, . . . , k .

• Thus abnormal extremals satisfy the conditions:

λ̇t =
k∑

i=1

ui (t)h⃗i (λt),

h1(λt) = · · · = hk(λt) ≡ 0.

• Normal length minimizers are projections of solutions to the smooth Hamiltonian

system λ̇ = H⃗(λ), thus they are smooth. An important open question of

sub-Riemannian geometry is whether abnormal length minimizers are smooth.
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Exercises

1. Infer PMP for time-optimal problem (slide 7) from the general statement of PMP.

2. Construct the optimal synthesis for the linear oscillator.

3. Prove that the sub-Riemannian length does not depend on parametrization of a

horizontal curve.
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