Krener's theorem and Optimal control problem (Lecture 4)

Yuri L. Sachkov

yusachkov@gmail.com

¾Geometric control theory, nonholonomic geometry, and their applications¿ Lecture course in Dept. of Mathematics and Mechanics Lomonosov Moscow State University 23 October 2024

3. Seeing the Ox:

On a yonder branch perches a nightingale cheerfully singing;

The sun is warm, and a soothing breeze blows, on the bank the willows are

green;

The ox is there all by himself, nowhere is he to hide himself;

The splendid head decorated with stately horns what painter can reproduce him?

Pu-ming, "The Ten Oxherding Pictures"

Reminder: Plan of the previous lecture

- 1. The Orbit theorem.
- 2. Corollaries of the Orbit theorem:
	- Rashevskii-Chow theorem,
	- Lie algebra rank controllability condition,
	- Frobenius theorem.

Plan of this lecture

- 1. Krener's theorem
- 2. Statement of optimal control problem
- 3. Existence of optimal controls
- 4. Elements of symplectic geometry
- 5. Statement of Pontryagin maximum principle

Comparison of topologies of M and $M^{\mathcal{F}}$

Proposition

The "strong" topology of M^F is not weaker than the manifold topology of M.

Proof.

Take any open subset $S \subset M$. We have to show that S is open in $M^{\mathcal{F}}$, i.e., that S is a union of elements of the "strong" topology base $G_q(W_0)$. Take any $q \in S$, let $m=\dim \mathcal{O}_q$. Consider the mapping $G_q(t_1,\ldots,t_m)=e^{t_mV_m}\circ\cdots\circ e^{t_1V_1}(q)$, $\mathbb{R}^m\to M.$ Since the mappings $t_i\mapsto e^{t_iV_i}(q)$, $\mathbb{R}\to M$, are continuous, then

$$
\exists \varepsilon > 0 \ \forall t \in \mathbb{R}^m, \ |t| < \varepsilon \qquad G_q(t) \in S.
$$

Let $W_0=\{t\in\mathbb{R}^m\mid |t|<\varepsilon\}$, then $G_q(W_0)\subset S$. So $S=\bigcup_{q\in S}G_q(W_0)$ is open in $M^{\mathcal{F}}$

Exercises: 1) When the topology of $M^{\mathcal{F}}$ is stronger than the topology of M? 2) When the topology of \mathcal{O}_q induced by $M^{\mathcal{F}}$ is stronger than the topology of \mathcal{O}_q induced by M?

Attainable sets of full-rank systems

• Let $\mathcal{F} \subset \text{Vec}(M)$ be a full-rank system:

$$
\forall q \in M \qquad \text{Lie}_q(\mathcal{F}) = T_q M.
$$

The assumption of full rank is not very strong in the analytic case: if it is violated, we can consider the restriction of $\cal F$ to its orbit, and this restriction is full-rank.

- What is the possible structure of attainable sets of $\mathcal F$?
- It is easy to construct systems in the two-dimensional plane that have the following attainable sets:
	- a smooth full-dimensional manifold without boundary;
	- a full-dimensional manifold with smooth boundary;
	- a full-dimensional manifold with non-smooth boundary, with corner or cusp singularity.

Possible attainable sets of full-rank systems

Figure: Smooth manifold without boundary

Figure: Manifold with a corner singularity of the boundary

Figure: Manifold with smooth boundary

Figure: Manifold with a cusp singularity of the boundary $\frac{7}{30}$

Impossible attainable sets of full-rank systems

• But it is impossible to construct an attainable set that is:

- a lower-dimensional submanifold;
- a set whose boundary points are isolated from its interior points.

Figure: Forbidden attainable set: subset of lower dimension

Figure: Forbidden attainable set: subset with isolated boundary points

• These possibilities are forbidden respectively by the following theorem.

Krener's theorem

Theorem (Krener) Let $\mathcal{F} \subset \text{Vec}(M)$, and let Lie_g $\mathcal{F} = T_qM$ for any $q \in M$. Then: (1) int $A_q \neq \emptyset$ for any $q \in M$, (2) cl(int A_q) $\supset A_q$ for any $q \in M$.

Proof of Krener's theorem: 1/2

- Since item (2) implies item (1), we prove item (2): cl(int A_q) $\supset A_q$.
- We argue by induction on dimension of M. If dim $M = 0$, then $A_{q} = \{q\} = M$, and the statement is obvious. Let dim $M > 0$.
- Take any $q_1 \in A_q$, and fix any neighbourhood $q_1 \in W(q_1) \subset M$. We show that int $A_q \cap W(q_1) \neq \emptyset$.
- There exists $f_1 \in \mathcal{F}$ such that $f_1(q_1) \neq 0$, otherwise $\mathcal{F}(q_1)=\{0\}=\mathsf{Lie}_{q_1}(\mathcal{F})= \mathcal{T}_{q_1}M$, a contradiction. Consider the following set for a small $\varepsilon_1 > 0$:

$$
\mathsf{N}_1=\{e^{t_1f_1}(q_1)\mid 0
$$

• N_1 is a smooth 1-dimensional manifold. If dim $M=1$, then N_1 is open, thus $N_1 \subset \text{int } \mathcal{A}_q$, so int $\mathcal{A}_q \cap W(q_1) \neq \emptyset$. Since the neighbourhood $W(q_1)$ is arbitrary, $q_1 \in$ cl(int \mathcal{A}_q).

Proof of Krener's theorem: 2/2

- $\bullet\,$ Let dim $M>1$. There exist $q_2=e^{t^1_1f_1}(q_1)\in N_1\cap\,W(q_1)$ and $f_2\in\mathcal{F}$ such that $f_2(q_2)\not\in \mathcal{T}_{q_2}\mathcal{N}_1$. Otherwise $\dim \mathcal{F}(q_2)=\dim \mathrm{Lie}_{q_2}(\mathcal{F})=\dim \mathcal{T}_{q_2}\mathcal{M}=1$ for any $q_2 \in N_2 \cap W$, and dim $M = 1$.
- Consider the following set for a small $\varepsilon_2 > 0$:

$$
\mathsf{N}_2=\{e^{t_2f_2}\circ e^{t_1f_1}(q_1)\mid t_1^1
$$

- N_2 is a smooth 2-dimensional manifold.
- If dim $M = 2$, then N_2 is open, thus $N_2 \subset \text{int } \mathcal{A}_q \cap W(q_1) \neq \emptyset$ and $q_1 \in \text{cl}(\text{int } A_\alpha)$.
- If dim $M > 2$, we proceed by induction.

A control system $\mathcal{F} \subset \text{Vec}(M)$ is called *accessible* at a point $q \in M$ if int $\mathcal{A}_q \neq \emptyset$. In the analytic case the accessibility property is equivalent to the full-rank condition (exercise).

П

Example: Stopping a train (1/2)

• The control system has the form

$$
\dot{x} = f_1(x) + uf_2(x), \qquad x = (x_1, x_2) \in \mathbb{R}^2, \quad |u| \le 1,
$$

$$
f_1 = x_2 \frac{\partial}{\partial x_1}, \qquad f_2 = \frac{\partial}{\partial x_2}.
$$

• We have $[f_1,f_2]=-\frac{\partial}{\partial x}$ $\frac{\partial}{\partial x_1}$, whence the system $\mathcal{F} = \{f_1+uf_2 \mid u \in [-1,1]\}$ is full-rank: Lie $_{\mathsf{x}}(\mathcal{F})=$ span $\left(\frac{\partial}{\partial s}\right)$ $\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x}$ ∂x₂ $\Big) \, (x) = \, {\mathcal T}_x {\mathbb R}^2 \qquad \forall x \in {\mathbb R}^2.$ • Thus

$$
\mathcal{O}_x = \mathbb{R}^2 \qquad \forall x \in \mathbb{R}^2.
$$

 \bullet In order to find the attainable sets, we compute trajectories of the system with a constant control $u \neq 0$: they are the parabolas

$$
\frac{x_2^2}{2} = ux_1 + C.
$$

Example: Stopping a train (1/2)

Figure: Reaching the origin from an arbitrary initial point

• Now it is visually obvious that the system is controllable.

Example: Markov-Dubins car $(1/2)$

• The control system has the form

$$
\dot{q} = f_1(q) + uf_2(q), \qquad q = (x, y, \theta) \in M = \mathbb{R}^2 \times S^1, \quad |u| \le 1,
$$

$$
f_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \qquad f_2 = \frac{\partial}{\partial \theta}.
$$

• We have

$$
[f_1, f_2] = \sin \theta \frac{\partial}{\partial x} - \cos \theta \frac{\partial}{\partial y} =: f_3.
$$

• Thus the system $\mathcal{F} = \{f_1 + uf_2 \mid u \in [-1,1]\}$ is full-rank:

$$
\mathsf{Lie}_q(\mathcal{F}) = \mathsf{span}(f_1(q), f_2(q), f_3(q)) = T_qM \qquad \forall q \in M,
$$

consequently,

$$
\mathcal{O}_q = M \qquad \forall q \in M.
$$

• In order to describe the attainable sets, we replace the initial system $\mathcal F$ by a restricted system $\mathcal{F}_1 = \{f_1 \pm f_2\} \subset \mathcal{F}$ and prove that \mathcal{F}_1 is controllable (then $\mathcal F$ is controllable as well).

Example: Markov-Dubins car $(2/2)$

 $\bullet\,$ Trajectories of the restricted system $\dot{x}=\cos\theta,\ \dot{y}=\sin\theta,\ \dot{\theta}=\pm1,$ have the form

$$
\theta = \theta_0 \pm t, \qquad x = x_0 \pm (\sin(\theta_0 \pm t) - \sin \theta_0), \qquad y = y_0 \pm (\cos \theta_0 - \cos(\theta_0 \pm t)).
$$

- These trajectories are periodic: $e^{(t+2\pi n)(f_1\pm f_2)} = e^{t(f_1\pm f_2)}, \qquad t \in \mathbb{R}, \quad n \in \mathbb{Z}$. So a shift along the fields $f_1 \pm f_2$ in the negative time can be obtained as a shift in the positive time.
- Consequently, if we introduce the system $\mathcal{F}_2 = \{f_1 \pm f_2, -f_1 \pm f_2\}$, then we get

$$
\mathcal{A}_q(\mathcal{F}_2)=\mathcal{A}_q(\mathcal{F}_1), \qquad q\in M.
$$

• But the system \mathcal{F}_2 is symmetric and full-rank, thus $\mathcal{A}_a(\mathcal{F}_2) = \mathcal{O}_a(\mathcal{F}_2) = M$, whence

$$
\mathcal{A}_q(\mathcal{F}) = \mathcal{A}_q(\mathcal{F}_1) = M \text{ for all } q \in M.
$$

That is, the Markov–Dubins car is completely controllable in the space $\mathbb{R}^2\times S^1.$

Statement of optimal control problem

• We consider the following optimal control problem:

$$
\dot{q}=f(q,u), \qquad q\in M, \quad u\in U\subset \mathbb{R}^m, \qquad (1)
$$

$$
q(0) = q_0, \qquad q(t_1) = q_1,
$$
 (2)

$$
J[u] = \int_0^{t_1} \varphi(q, u) dt \to \min,
$$
 (3)

 t_1 fixed or free.

- A solution $q(t)$, $t \in [0, t_1]$, to this problem is said to be (globally) optimal.
- The following assumptions are made for the dynamics $f(q, u)$:
	- the mapping $q \mapsto f(q, u)$ is smooth for any $u \in U$,
	- the mapping $(q, u) \mapsto f(q, u)$ is continuous for any $q \in M$, $u \in cl(U)$,
	- $\bullet\,$ the mapping $(q,u)\mapsto \frac{\partial f}{\partial q}(q,u)$ is continuous for any $q\in M$, $u\in$ cl $(U).$
- The same assumptions are made for the function $\varphi(q, u)$ that determines the cost functional J.
- Admissible control is $u \in L^{\infty}([0, t_1], U)$.

Reduction to the study of attainable sets

• In order to include the functional J into dynamics of the system, introduce a new variable equal to the running value of the cost functional along a trajectory $q_u(t)$:

$$
y(t)=\int_0^t\varphi(q,u)\,dt.
$$

 \bullet Respectively, we introduce an extended state $\widehat{q} = \left(\begin{array}{c} y \ q \end{array} \right)$ q $\Big) \in \mathbb{R} \times M$ that satisfies an extended control system

$$
\frac{d\widehat{q}}{dt} = \begin{pmatrix} \dot{y} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} \varphi(q, u) \\ f(q, u) \end{pmatrix} =: \widehat{f}(\widehat{q}, u).
$$

• The boundary conditions for this system are

$$
\widehat{q}(0) = \left(\begin{array}{c} 0 \\ q_0 \end{array}\right), \qquad \widehat{q}(t_1) = \left(\begin{array}{c} J \\ q_1 \end{array}\right).
$$

Reduction to the study of attainable sets

• A trajectory $q_{\tilde{u}}(t)$ is optimal for the optimal control problem with fixed time t_1 if and only if the corresponding trajectory $\hat{q}_{\tilde{\mu}}(t)$ of the extended system comes to a point (y_1, q_1) of the attainable set $\mathcal{A}_{(0,q_0)}(t_1)$ such that

$$
\widehat{\mathcal{A}}_{(0,q_0)}(t_1)\cap\{(y,q_1)\mid y
$$

• For the problem with free terminal time an analogous condition is written for the attainable set $\mathcal{A}_{(0,q_0)}$.

Filippov's theorem

Corollary

If the attainable set $\mathcal{A}_{(0,q_0)}(t_1)$ is compact and $q_1 \in \mathcal{A}_{q_0}(t_1)$, then the optimal control problem $(1)-(3)$ $(1)-(3)$ $(1)-(3)$ $(1)-(3)$ $(1)-(3)$ with fixed time t_1 has a solution.

Theorem (Filippov)

Suppose that control system (1) (1) (1) satisfies the hypotheses:

- (1) the set U is compact,
- (2) the set $f(q, U)$ is convex for all $q \in M$,
- (3) there exists a compact set $K \subset M$ such that for all $q \in M \setminus K$, $u \in U$ there holds the equality $f(q, u) = 0$.

Then the attainable sets $\mathcal{A}_{q_0}(t)$, $\mathcal{A}_{q_0}(\leq t)$ are compact for any $q_0 \in M$, $t > 0$.

Proof.

See A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint, А.А. Аграчев, Ю. Л. Сачков, *Геометрическая теория управления*.

Existence of optimal controls in optimal control problem

Corollary

Let the optimal control problem $(1)-(3)$ $(1)-(3)$ $(1)-(3)$ $(1)-(3)$ $(1)-(3)$ satisfy the hypotheses:

\n- (1) the set
$$
U
$$
 is compact,
\n- (2) the set $\left\{ \begin{array}{c} \varphi(q, u) \\ f(q, u) \end{array} \right\}$ is convex for all $q \in M$,
\n- (3) there exists a compact set $K \subset \mathbb{R} \times M$ such that $\widehat{A}_{(0, q_0)}(t_1) \subset K$,
\n- (4) $q_1 \in \mathcal{A}_{q_0}(t_1)$.
\n- Then the problem $(1)-(3)$ with fixed time t_1 has a solution.
\n

Proof of the existence conditions for optimal control problem

• Proof. There exists a compact set $K' \subset \mathbb{R} \times M$ such that $K \subset \mathop{\mathsf{int}} K'$. Take a function $a \in C^\infty(\mathbb{R} \times M)$ such that

$$
a|_K \equiv 1, \qquad a|_{(\mathbb{R} \times M) \setminus K'} \equiv 0.
$$

• Consider a new extended control system:

$$
\frac{d\widehat{q}}{dt}=a(\widehat{q})\widehat{f}(\widehat{q},u),\qquad \widehat{q}\in\mathbb{R}\times M,\quad u\in U.
$$

- This system has compact attainable sets for time t_1 , which coincide with the corresponding attainable sets of the extended system.
- Then optimal control problem $(1)-(3)$ $(1)-(3)$ $(1)-(3)$ has a solution (by Filippov's theorem).

 \Box

Existence of solutions to time-optimal problem

Now consider a *time-optimal problem*

$$
\dot{q} = f(q, u), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,
$$

\n
$$
q(0) = q_0, \qquad q(t_1) = q_1,
$$

\n
$$
t_1 \rightarrow \min.
$$

\n(6)

Corollary

Let the following conditions hold:

- (1) the set U is compact,
- (2) the set $f(q, U)$ is convex for all $q \in M$,
- (3) there exist $t_1 > 0$ and a compact set $K \subset M$ such that

 $q_1 \in \mathcal{A}_{q_0}(\leq t_1) \subset \mathcal{K}.$

Then time-optimal problem $(4)-(6)$ $(4)-(6)$ $(4)-(6)$ $(4)-(6)$ $(4)-(6)$ has a solution.

• Let M be an n-dimensional smooth manifold. Then the disjoint union of its tangent spaces $\mathcal{TM}=\begin{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \tau_qM=\{(q,\nu)\mid q\in M,\,\,\nu\in\mathcal{T}_qM\}\end{bmatrix}$ is called its q∈M

tangent bundle.

- If (q_1, \ldots, q_n) are local coordinates on M, then any tangent vector $v \in T_qM$ has a decomposition $v = \sum_{i=1}^{n} v_i \frac{\partial}{\partial c}$ $\frac{\partial}{\partial q_i}$ So $(q_1,\ldots,q_n;\;\nu_1,\ldots,\nu_n)$ are local coordinates on TM , which is thus a $2n$ -dimensional smooth manifold.
- For any point $q\in M$, the dual space $({\mathcal T}_qM)^*={\mathcal T}_q^*M$ is called the $\emph{cotangent}$ space to M at q. Thus T_q^*M consists of linear forms on T_qM . The disjoint union $T^*M = \bigsqcup T_q^*M = \{(q, p) \mid q \in M, p \in T_q^*M\}$ is called the *cotangent bundle*. q∈M
- \bullet If (q_1,\ldots,q_n) are local coordinates on M , then any covector $\lambda\in T^*M$ has a decomposition $\lambda=\sum_{i=1}^n p_i\,dq_i$. Thus $(q_1,\ldots,q_n;\,\,p_1,\ldots,p_n)$ are local coordinates on T^*M called the *canonical coordinates*. So T^*M is a smooth 2n-dimensional manifold.
- The canonical projection is the mapping $\pi\colon T^*M\to M, \quad T_q^*M\ni \lambda\mapsto q\in M.$

 $\bullet\,$ The *Liouville (tautological) differential 1-form* $\bm{s}\in\Lambda^1(\,T^\ast M)$ *is defined as follows:*

 $\langle s_\lambda, w \rangle = \langle \lambda, \pi_* w \rangle, \quad \lambda \in \mathcal{T}^*M, \quad w \in \mathcal{T}_\lambda(\mathcal{T}^*M).$

In the canonical coordinates on T^*M , $s = p dq$.

- The canonical *symplectic structure* on T^{*}M is the differential 2-form $\sigma = d\mathsf{s} \in \Lambda^2(\mathcal{T}^*\mathcal{M})$. In the canonical coordinates $\sigma = d\rho \wedge d\mathsf{q} = \sum_{i=1}^n d\rho_i \wedge d\mathsf{q}_i$.
- A Hamiltonian (Hamiltonian function) is an arbitrary function $h \in C^{\infty}(T^*M)$.
- The *Hamiltonian vector field* $\vec{h} \in \mathsf{Vec}(\mathcal{T}^*M)$ with the Hamiltonian function h is defined by the equality $dh = \sigma(\,\cdot\,,\vec{h})$. In the canonical coordinates:

$$
h = h(q, p),
$$

\n
$$
\vec{h} = \frac{\partial h}{\partial p} \frac{\partial}{\partial q} - \frac{\partial h}{\partial q} \frac{\partial}{\partial p} = \sum_{i=1}^{n} \left(\frac{\partial h}{\partial p_i} \frac{\partial}{\partial q_i} - \frac{\partial h}{\partial q_i} \frac{\partial}{\partial p_i} \right)
$$

.

• The corresponding Hamiltonian system of ODEs is

$$
\dot{\lambda} = \vec{h}(\lambda), \qquad \lambda \in \mathcal{T}^*M.
$$

• In the canonical coordinates:

$$
\begin{cases}\n\dot{q} = \frac{\partial h}{\partial p}, \\
\dot{p} = -\frac{\partial h}{\partial q},\n\end{cases}\n\quad \text{or} \quad\n\begin{cases}\n\dot{q}_i = \frac{\partial h}{\partial p_i}, \\
\dot{p}_i = -\frac{\partial h}{\partial q_i}, \\
i = 1, \ldots, n.\n\end{cases}
$$

• The *Poisson bracket* of Hamiltonians $h, g \in C^{\infty}(T^{*}M)$ is the Hamiltonian $\{h,g\}\in C^\infty(\mathcal{T}^*M)$ defined by the equalities

$$
\{h,g\}=\vec{h}g=\sigma(\vec{h},\vec{g}).
$$

• In the canonical coordinates:

$$
\{h,g\}=\frac{\partial h}{\partial p}\frac{\partial g}{\partial q}-\frac{\partial h}{\partial q}\frac{\partial g}{\partial p}=\sum_{i=1}^n\left(\frac{\partial h}{\partial p_i}\frac{\partial g}{\partial q_i}-\frac{\partial h}{\partial q_i}\frac{\partial g}{\partial p_i}\right).
$$

Lemma
\nLet
$$
a, b, c \in C^{\infty}(T^*M)
$$
 and $\alpha, \beta \in \mathbb{R}$. Then:
\n(1) { a, b } = -{ b, a },
\n(2) { a, a } = 0,
\n(3) { a, b }, c } + { b, c }, a } + { c, a }, b } = 0,
\n(4) { $\alpha a + \beta b, c$ } = α { a, c } + β { b, c },
\n(5) { ab, c } = { a, c } b + a { b, c },
\n(6) [\vec{a}, \vec{b}] = \vec{d}, d = { a, b }.

Theorem (Noether) Let $a, h \in C^{\infty}(T^{*}M)$. Then

$$
a(e^{t\vec{h}}(\lambda))\equiv \text{const} \quad \Leftrightarrow \quad \{h,a\}=0.
$$

Now we describe the last construction of symplectic geometry necessary for us $-$ linear on fibers of T^*M Hamiltonians. Let $X \in \text{Vec}(M)$. The corresponding linear on fibers of \mathcal{T}^*M Hamiltonian is defined as follows: $h_X(\lambda)=\langle \lambda,X(q) \rangle, \qquad q=\pi(\lambda).$ In the canonical coordinates:

$$
X=\sum_{i=1}^n X_i\frac{\partial}{\partial q_i},\qquad h_X(q,p)=\sum_{i=1}^n p_iX_i.
$$

Lemma

Let $X, Y \in \text{Vec}(M)$. Then:

 $(1) \quad \{h_X, h_Y\} = h_{[X, Y]},$ (2) $[\vec{h}_X, \vec{h}_Y] = \vec{h}_{[X, Y]},$ (3) $\pi_* \vec{h}_X = X$.

The vector field $\vec{h}_X \in \mathsf{Vec}(\mathcal{T}^*\mathcal{M})$ is called the *Hamiltonian lift* of the vector field $X \in \text{Vec}(M)$.

Hamiltonians of Pontryagin maximum principle

• Return to the optimal control problem

$$
\dot{q} = f(q, u), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,
$$

\n
$$
q(0) = q_0, \qquad q(t_1) = q_1,
$$

\n
$$
J = \int_0^{t_1} \varphi(q, u) dt \to \min,
$$

\n
$$
t_1 \text{ fixed.}
$$

• Define a family of Hamiltonians of PMP

 $h''_u(\lambda) = \langle \lambda, f(q, u) \rangle + \nu \varphi(q, u), \qquad \nu \in \mathbb{R}, \quad u \in U, \quad \lambda \in \mathcal{T}^*M, \quad q = \pi(\lambda).$

Statement of Pontryagin maximum principle

Theorem (PMP)

If a control $u(t)$ and the corresponding trajectory $q(t), t \in [0, t_1]$, are optimal, then there exist a curve $\lambda_t\in\textsf{Lip}([0,t_1],\textsf{T}^*M)$, $\lambda_t\in\textsf{T}_{q(t)}^*M$, and a number $\nu\leq 0$ such that the following conditions hold for almost all $t \in [0, t_1]$:

(1) $\lambda_t = \vec{h}_{u(t)}^{\nu}(\lambda_t)$, (2) $h_{u(t)}^{\nu}(\lambda_t) = \max_{w \in U} h_w^{\nu}(\lambda_t),$ (3) $(\lambda_t, \nu) \neq (0, 0)$.

If the terminal time t_1 is free, then the following condition is added to $(1)-(3)$:

$$
(4) \quad h_{u(t)}^{\nu}(\lambda_t) \equiv 0.
$$

A curve λ_t that satisfies PMP is called an extremal, a curve $q(t)$ – an extremal trajectory, a control $u(t)$ — an extremal control.

Exercises

- 1. When the topology of $M^{\mathcal{F}}$ is stronger than the topology of M?
- 2. When the topology of \mathcal{O}_q induced by M^F is stronger than the topology of \mathcal{O}_q induced by M
- 3. Construct examples of control systems having an attainable set of the following structure:
	- a smooth manifold without boundary,
	- a manifold with a smooth boundary,
	- a manifold with boundary having an angle singularity,
	- a manifold with boundary having a cusp singularity.
- 4. Prove in detail the induction step in Krener's theorem.
- 5. Prove that in the analytic case the accessibility property is equivalent to the full-rank condition.
- 6. Infer existence of time-optimal trajectories from Filippov's theorem.