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3. Seeing the Ox:

On a yonder branch perches a nightingale cheerfully singing;

The sun is warm, and a soothing breeze blows, on the bank the willows are

green;

The ox is there all by himself, nowhere is he to hide himself;

The splendid head decorated with stately horns what painter can reproduce

him?

Pu-ming, �The Ten Oxherding Pictures�
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Reminder: Plan of the previous lecture

1. The Orbit theorem.

2. Corollaries of the Orbit theorem:
• Rashevskii�Chow theorem,
• Lie algebra rank controllability condition,
• Frobenius theorem.
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Plan of this lecture

1. Krener's theorem

2. Statement of optimal control problem

3. Existence of optimal controls

4. Elements of symplectic geometry

5. Statement of Pontryagin maximum principle
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Comparison of topologies of M and MF

Proposition

The �strong� topology of MF is not weaker than the manifold topology of M.

Proof.
Take any open subset S ⊂ M. We have to show that S is open in MF , i.e., that S is a

union of elements of the �strong� topology base Gq(W0). Take any q ∈ S , let
m = dimOq. Consider the mapping Gq(t1, . . . , tm) = etmVm ◦ · · · ◦ et1V1(q), Rm → M.
Since the mappings ti 7→ etiVi (q), R → M, are continuous, then

∃ε > 0 ∀t ∈ Rm, |t| < ε Gq(t) ∈ S .

Let W0 = {t ∈ Rm | |t| < ε}, then Gq(W0) ⊂ S . So S =
⋃

q∈S Gq(W0) is open in

MF .

Exercises: 1) When the topology of MF is stronger than the topology of M? 2) When

the topology of Oq induced by MF is stronger than the topology of Oq induced by M?
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Attainable sets of full-rank systems

• Let F ⊂ Vec(M) be a full-rank system:

∀q ∈ M Lieq(F) = TqM.

The assumption of full rank is not very strong in the analytic case: if it is violated,

we can consider the restriction of F to its orbit, and this restriction is full-rank.

• What is the possible structure of attainable sets of F ?

• It is easy to construct systems in the two-dimensional plane that have the following
attainable sets:

• a smooth full-dimensional manifold without boundary;
• a full-dimensional manifold with smooth boundary;
• a full-dimensional manifold with non-smooth boundary, with corner or cusp

singularity.
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Possible attainable sets of full-rank systems
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Impossible attainable sets of full-rank systems

• But it is impossible to construct an attainable set that is:
• a lower-dimensional submanifold;
• a set whose boundary points are isolated from its interior points.

M M

Figure: Forbidden attainable set:

subset of lower dimension

Figure: Forbidden attainable set:

subset with isolated boundary points

• These possibilities are forbidden respectively by the following theorem.
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Krener's theorem

Theorem (Krener)

Let F ⊂ Vec(M), and let Lieq F = TqM for any q ∈ M. Then:

(1) intAq ̸= ∅ for any q ∈ M,

(2) cl(intAq) ⊃ Aq for any q ∈ M.
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Proof of Krener's theorem: 1/2

• Since item (2) implies item (1), we prove item (2): cl(intAq) ⊃ Aq.

• We argue by induction on dimension of M. If dimM = 0, then Aq = {q} = M,

and the statement is obvious. Let dimM > 0.

• Take any q1 ∈ Aq, and �x any neighbourhood q1 ∈ W (q1) ⊂ M. We show that

intAq ∩W (q1) ̸= ∅.

• There exists f1 ∈ F such that f1(q1) ̸= 0, otherwise
F(q1) = {0} = Lieq1(F) = Tq1M, a contradiction. Consider the following set for

a small ε1 > 0:

N1 = {et1f1(q1) | 0 < t1 < ε1} ⊂ W (q1) ∩ Aq.

• N1 is a smooth 1-dimensional manifold. If dimM = 1, then N1 is open, thus

N1 ⊂ intAq, so intAq ∩W (q1) ̸= ∅. Since the neighbourhood W (q1) is
arbitrary, q1 ∈ cl(intAq).
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Proof of Krener's theorem: 2/2

• Let dimM > 1. There exist q2 = et
1
1 f1(q1) ∈ N1 ∩W (q1) and f2 ∈ F such that

f2(q2) ̸∈ Tq2N1. Otherwise dimF(q2) = dimLieq2(F) = dimTq2M = 1 for any

q2 ∈ N2 ∩W , and dimM = 1.

• Consider the following set for a small ε2 > 0:

N2 = {et2f2 ◦ et1f1(q1) | t11 < t1 < t11 + ε2, 0 < t2 < ε2} ⊂ W (q1) ∩ Aq.

• N2 is a smooth 2-dimensional manifold.

• If dimM = 2, then N2 is open, thus N2 ⊂ intAq ∩W (q1) ̸= ∅ and

q1 ∈ cl(intAq).

• If dimM > 2, we proceed by induction.

A control system F ⊂ Vec(M) is called accessible at a point q ∈ M if intAq ̸= ∅. In
the analytic case the accessibility property is equivalent to the full-rank condition

(exercise).
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Example: Stopping a train (1/2)
• The control system has the form

ẋ = f1(x) + uf2(x), x = (x1, x2) ∈ R2, |u| ≤ 1,

f1 = x2
∂

∂x1
, f2 =

∂

∂x2
.

• We have [f1, f2] = − ∂
∂x1

, whence the system F = {f1 + uf2 | u ∈ [−1, 1]} is

full-rank: Liex(F) = span
(

∂
∂x1

, ∂
∂x2

)
(x) = TxR2 ∀x ∈ R2.

• Thus

Ox = R2 ∀x ∈ R2.

• In order to �nd the attainable sets, we compute trajectories of the system with a

constant control u ̸= 0: they are the parabolas

x22
2

= ux1 + C .
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Example: Stopping a train (1/2)
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Figure: Reaching the origin from an arbitrary

initial point

• Now it is visually obvious that the system is controllable.
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Example: Markov�Dubins car (1/2)
• The control system has the form

q̇ = f1(q) + uf2(q), q = (x , y , θ) ∈ M = R2 × S1, |u| ≤ 1,

f1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, f2 =

∂

∂θ
.

• We have

[f1, f2] = sin θ
∂

∂x
− cos θ

∂

∂y
=: f3.

• Thus the system F = {f1 + uf2 | u ∈ [−1, 1]} is full-rank:

Lieq(F) = span(f1(q), f2(q), f3(q)) = TqM ∀q ∈ M,

consequently,

Oq = M ∀q ∈ M.

• In order to describe the attainable sets, we replace the initial system F by a

restricted system F1 = {f1 ± f2} ⊂ F and prove that F1 is controllable (then F is

controllable as well).
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Example: Markov�Dubins car (2/2)
• Trajectories of the restricted system ẋ = cos θ, ẏ = sin θ, θ̇ = ±1, have the form

θ = θ0± t, x = x0± (sin(θ0± t)− sin θ0), y = y0± (cos θ0− cos(θ0± t)).

• These trajectories are periodic: e(t+2πn)(f1±f2) = et(f1±f2), t ∈ R, n ∈ Z. So
a shift along the �elds f1 ± f2 in the negative time can be obtained as a shift in the

positive time.

• Consequently, if we introduce the system F2 = {f1 ± f2, −f1 ± f2}, then we get

Aq(F2) = Aq(F1), q ∈ M.

• But the system F2 is symmetric and full-rank, thus Aq(F2) = Oq(F2) = M,
whence

Aq(F) = Aq(F1) = M for all q ∈ M.

That is, the Markov�Dubins car is completely controllable in the space R2 × S1.
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Statement of optimal control problem
• We consider the following optimal control problem:

q̇ = f (q, u), q ∈ M, u ∈ U ⊂ Rm, (1)

q(0) = q0, q(t1) = q1, (2)

J[u] =

∫ t1

0

φ(q, u) dt → min, (3)

t1 �xed or free.

• A solution q(t), t ∈ [0, t1], to this problem is said to be (globally) optimal.
• The following assumptions are made for the dynamics f (q, u):

• the mapping q 7→ f (q, u) is smooth for any u ∈ U,
• the mapping (q, u) 7→ f (q, u) is continuous for any q ∈ M, u ∈ cl(U),
• the mapping (q, u) 7→ ∂f

∂q (q, u) is continuous for any q ∈ M, u ∈ cl(U).
• The same assumptions are made for the function φ(q, u) that determines the cost

functional J.
• Admissible control is u ∈ L∞([0, t1],U).
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Reduction to the study of attainable sets
• In order to include the functional J into dynamics of the system, introduce a new

variable equal to the running value of the cost functional along a trajectory qu(t):

y(t) =

∫ t

0

φ(q, u) dt.

• Respectively, we introduce an extended state q̂ =

(
y
q

)
∈ R×M that satis�es

an extended control system

dq̂

dt
=

(
ẏ
q̇

)
=

(
φ(q, u)
f (q, u)

)
=: f̂ (q̂, u).

• The boundary conditions for this system are

q̂(0) =

(
0

q0

)
, q̂(t1) =

(
J
q1

)
.
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Reduction to the study of attainable sets
• A trajectory qũ(t) is optimal for the optimal control problem with �xed time t1 if

and only if the corresponding trajectory q̂ũ(t) of the extended system comes to a

point (y1, q1) of the attainable set Â(0,q0)(t1) such that

Â(0,q0)(t1) ∩ {(y , q1) | y < y1} = ∅.
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(t)

• For the problem with free terminal time an analogous condition is written for the

attainable set Â(0,q0). 18 / 30



Filippov's theorem

Corollary

If the attainable set Â(0,q0)(t1) is compact and q1 ∈ Aq0(t1), then the optimal control

problem (1)�(3) with �xed time t1 has a solution.

Theorem (Filippov)

Suppose that control system (1) satis�es the hypotheses:

(1) the set U is compact,

(2) the set f (q,U) is convex for all q ∈ M,

(3) there exists a compact set K ⊂ M such that for all q ∈ M\K , u ∈ U there holds

the equality f (q, u) = 0.

Then the attainable sets Aq0(t), Aq0(≤ t) are compact for any q0 ∈ M, t > 0.

Proof.
See A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint,

À.À. Àãðà÷åâ, Þ. Ë. Ñà÷êîâ, Ãåîìåòðè÷åñêàÿ òåîðèÿ óïðàâëåíèÿ.
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Existence of optimal controls in optimal control problem

Corollary

Let the optimal control problem (1)�(3) satisfy the hypotheses:

(1) the set U is compact,

(2) the set

{ (
φ(q, u)
f (q, u)

)
| u ∈ U

}
is convex for all q ∈ M,

(3) there exists a compact set K ⊂ R×M such that Â(0,q0)(t1) ⊂ K ,

(4) q1 ∈ Aq0(t1).

Then the problem (1)�(3) with �xed time t1 has a solution.
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Proof of the existence conditions for optimal control problem

• Proof. There exists a compact set K ′ ⊂ R×M such that K ⊂ intK ′. Take a
function a ∈ C∞(R×M) such that

a|K ≡ 1, a|(R×M)\K ′ ≡ 0.

• Consider a new extended control system:

dq̂

dt
= a(q̂)f̂ (q̂, u), q̂ ∈ R×M, u ∈ U.

• This system has compact attainable sets for time t1 , which coincide with the

corresponding attainable sets of the extended system.

• Then optimal control problem (1)�(3) has a solution (by Filippov's theorem).
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Existence of solutions to time-optimal problem
Now consider a time-optimal problem

q̇ = f (q, u), q ∈ M, u ∈ U ⊂ Rm, (4)

q(0) = q0, q(t1) = q1, (5)

t1 → min . (6)

Corollary

Let the following conditions hold:

(1) the set U is compact,

(2) the set f (q,U) is convex for all q ∈ M,

(3) there exist t1 > 0 and a compact set K ⊂ M such that

q1 ∈ Aq0(≤ t1) ⊂ K .

Then time-optimal problem (4)�(6) has a solution.
22 / 30



Elements of symplectic geometry
• Let M be an n-dimensional smooth manifold. Then the disjoint union of its

tangent spaces TM =
⊔

q∈M
TqM = {(q, v) | q ∈ M, v ∈ TqM} is called its

tangent bundle.
• If (q1, . . . , qn) are local coordinates on M, then any tangent vector v ∈ TqM has a

decomposition v =
∑n

i=1 vi
∂
∂qi

. So (q1, . . . , qn; v1, . . . , vn) are local coordinates
on TM, which is thus a 2n-dimensional smooth manifold.

• For any point q ∈ M, the dual space (TqM)∗ = T ∗
qM is called the cotangent

space to M at q. Thus T ∗
qM consists of linear forms on TqM. The disjoint union

T ∗M =
⊔

q∈M
T ∗
qM = {(q, p) | q ∈ M, p ∈ T ∗

qM} is called the cotangent bundle.

• If (q1, . . . , qn) are local coordinates on M, then any covector λ ∈ T ∗M has a

decomposition λ =
∑n

i=1 pi dqi . Thus (q1, . . . , qn; p1, . . . , pn) are local
coordinates on T ∗M called the canonical coordinates. So T ∗M is a smooth

2n-dimensional manifold.
• The canonical projection is the mapping π : T ∗M → M, T ∗

qM ∋ λ 7→ q ∈ M.
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Elements of symplectic geometry
• The Liouville (tautological) di�erential 1-form s ∈ Λ1(T ∗M) is de�ned as follows:

⟨sλ,w⟩ = ⟨λ, π∗w⟩, λ ∈ T ∗M, w ∈ Tλ(T
∗M).

In the canonical coordinates on T ∗M, s = p dq.

• The canonical symplectic structure on T ∗M is the di�erential 2-form

σ = ds ∈ Λ2(T ∗M). In the canonical coordinates σ = dp ∧ dq =
∑n

i=1 dpi ∧ dqi .

• A Hamiltonian (Hamiltonian function) is an arbitrary function h ∈ C∞(T ∗M).

• The Hamiltonian vector �eld h⃗ ∈ Vec(T ∗M) with the Hamiltonian function h is

de�ned by the equality dh = σ( · , h⃗). In the canonical coordinates:

h = h(q, p),

h⃗ =
∂h

∂p

∂

∂q
− ∂h

∂q

∂

∂p
=

n∑
i=1

(
∂h

∂pi

∂

∂qi
− ∂h

∂qi

∂

∂pi

)
.
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Elements of symplectic geometry
• The corresponding Hamiltonian system of ODEs is

λ̇ = h⃗(λ), λ ∈ T ∗M.

• In the canonical coordinates:
q̇ =

∂h

∂p
,

ṗ = −∂h

∂q
,

or


q̇i =

∂h

∂pi
,

ṗi = − ∂h

∂qi
, i = 1, . . . , n.

• The Poisson bracket of Hamiltonians h, g ∈ C∞(T ∗M) is the Hamiltonian

{h, g} ∈ C∞(T ∗M) de�ned by the equalities

{h, g} = h⃗g = σ(h⃗, g⃗).

• In the canonical coordinates:

{h, g} =
∂h

∂p

∂g

∂q
− ∂h

∂q

∂g

∂p
=

n∑
i=1

(
∂h

∂pi

∂g

∂qi
− ∂h

∂qi

∂g

∂pi

)
.
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Elements of symplectic geometry

Lemma
Let a, b, c ∈ C∞(T ∗M) and α, β ∈ R. Then:
(1) {a, b} = −{b, a},
(2) {a, a} = 0,

(3) {{a, b}, c}+ {{b, c}, a}+ {{c , a}, b} = 0,

(4) {αa+ βb, c} = α{a, c}+ β{b, c},
(5) {ab, c} = {a, c}b + a{b, c},
(6) [a⃗, b⃗] = d⃗ , d = {a, b}.

Theorem (Noether)

Let a, h ∈ C∞(T ∗M). Then

a(eth⃗(λ)) ≡ const ⇔ {h, a} = 0.
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Elements of symplectic geometry
Now we describe the last construction of symplectic geometry necessary for us � linear

on �bers of T ∗M Hamiltonians. Let X ∈ Vec(M). The corresponding linear on �bers

of T ∗M Hamiltonian is de�ned as follows: hX (λ) = ⟨λ,X (q)⟩, q = π(λ).
In the canonical coordinates:

X =
n∑

i=1

Xi
∂

∂qi
, hX (q, p) =

n∑
i=1

piXi .

Lemma
Let X ,Y ∈ Vec(M). Then:

(1) {hX , hY } = h[X ,Y ],

(2) [h⃗X , h⃗Y ] = h⃗[X ,Y ],

(3) π∗h⃗X = X .

The vector �eld h⃗X ∈ Vec(T ∗M) is called the Hamiltonian lift of the vector �eld

X ∈ Vec(M).
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Hamiltonians of Pontryagin maximum principle

• Return to the optimal control problem

q̇ = f (q, u), q ∈ M, u ∈ U ⊂ Rm,

q(0) = q0, q(t1) = q1,

J =

∫ t1

0

φ(q, u) dt → min,

t1 �xed.

• De�ne a family of Hamiltonians of PMP

hνu(λ) = ⟨λ, f (q, u)⟩+ νφ(q, u), ν ∈ R, u ∈ U, λ ∈ T ∗M, q = π(λ).
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Statement of Pontryagin maximum principle

Theorem (PMP)

If a control u(t) and the corresponding trajectory q(t), t ∈ [0, t1], are optimal, then

there exist a curve λt ∈ Lip([0, t1],T
∗M), λt ∈ T ∗

q(t)M, and a number ν ≤ 0 such that

the following conditions hold for almost all t ∈ [0, t1]:

(1) λ̇t = h⃗νu(t)(λt),

(2) hνu(t)(λt) = max
w∈U

hνw (λt),

(3) (λt , ν) ̸= (0, 0).

If the terminal time t1 is free, then the following condition is added to (1)�(3):

(4) hνu(t)(λt) ≡ 0.

A curve λt that satis�es PMP is called an extremal, a curve q(t) � an extremal

trajectory, a control u(t) � an extremal control.
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Exercises

1. When the topology of MF is stronger than the topology of M?

2. When the topology of Oq induced by MF is stronger than the topology of Oq

induced by M

3. Construct examples of control systems having an attainable set of the following
structure:

• a smooth manifold without boundary,
• a manifold with a smooth boundary,
• a manifold with boundary having an angle singularity,
• a manifold with boundary having a cusp singularity.

4. Prove in detail the induction step in Krener's theorem.

5. Prove that in the analytic case the accessibility property is equivalent to the

full-rank condition.

6. Infer existence of time-optimal trajectories from Filippov's theorem.
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