Orbit theorem (Lecture 3)

Yuri L. Sachkov

yusachkov@gmail.com

¾Geometric control theory, nonholonomic geometry, and their applications¿ Lecture course in Dept. of Mathematics and Mechanics Lomonosov Moscow State University 16 October 2024

2. Seeing the Traces:

By the stream and under the trees, scattered are the traces of the lost; The sweet-scented grasses are growing thick $-$ did he find the way? However remote over the hills and far away the beast may wander, His nose reaches the heavens and none can conceal it.

Pu-ming, The Ten Oxherding Pictures

Reminder: Plan of the previous lecture

- 1. Lie groups, Lie algebras, and left-invariant optimal control problems
- 2. Controllability of linear systems
- 3. Local controllability of nonlinear systems
- 4. Orbit of a control system

Plan of this lecture

- 1. Preliminaries.
- 2. The Orbit theorem.
- 3. Corollaries of the Orbit theorem:
	- Orbit and Lie algebra of the system
	- Rashevskii-Chow theorem,
	- Lie algebra rank condition,
	- Frobenius theorem

Orbit of a control system

- A control system on a smooth manifold M is an arbitrary set of vector fields $\mathcal{F} \subset \text{Vec}(M)$.
- The *attainable set* of the system F from a point $q_0 \in M$.

$$
\mathcal{A}_{q_0} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1}(q_0) \mid t_i \geq 0, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.
$$

• The *orbit* of the system F through the point q_0 :

Action of diffeomorphisms on tangent vectors and vector fields

- Let $V \in \text{Vec}(M)$, and let $\Phi: M \to N$ be a *diffeomorphism*, i.e., a smooth bijective mapping with a smooth inverse.
- The vector field $\Phi_*V \in \text{Vec}(N)$ is defined as

$$
\Phi_*V|_{\Phi(q)}=\left.\frac{d}{dt}\right|_{t=0}\quad \Phi\circ e^{tV}(q)=\Phi_{*q}(V(q)).
$$

• Thus we have a mapping Φ_* : Vec(M) \to Vec(N), push-forward of vector fields from the manifold M to the manifold N under the action of the diffeomorphism Φ .

Immersed submanifolds

- A subset W of a smooth manifold M is called a k-dimensional *immersed* submanifold of M if there exists a k-dimensional manifold N and a smooth mapping $F: N \rightarrow M$ such that:
	- \bullet *F* is injective
	- Ker $F_{*q} = 0$ for any $q \in N$
	- $W = F(N)$.
- Example: Figure of eight is a 1-dimensional immersed submanifold of the 2-dimensional plane.

Example: Irrational winding of the torus

- Torus $\mathbb{T}^2 = \mathbb{R}^2/(2\pi\,\mathbb{Z}^2) = \{ (x,y) \in \mathcal{S}^1 \times \mathcal{S}^1 \}$
- $\bullet\,$ Vector field $\,V=p\frac{\partial}{\partial x}+q\frac{\partial}{\partial y}$ $\frac{\partial}{\partial y} \in \mathsf{Vec}(\mathbb{T}^2)$, $p^2 + q^2 \neq 0$.
- $\bullet\,$ The orbit $\mathcal O_0$ of V through the origin $0\in\mathbb{T}^2$ may have two different types:
	- (1) $p/q \in \mathbb{Q} \cup \{\infty\}$. Then cl $\mathcal{O}_0 = \mathcal{O}_0$.
	- (2) $p/q \in \mathbb{R} \backslash \mathbb{Q}$. Then cl $\mathcal{O}_0 = \mathbb{T}^2$. In this case the orbit \mathcal{O}_0 is called the *irrational* winding of the torus.
- In the both cases the orbit \mathcal{O}_0 is an immersed submanifold of the torus, but in the second case it is not embedded.
- So even for one vector field the orbit may be an immersed submanifold, but not an embedded one
- An immersed submanifold $N = F(W) \subset M$ is called *embedded* if $F : W \to N$ is a homeomorphism in the topology induced by the inclusion $N \subset M$. In case (2) the topology of the orbit induced by the inclusion $\mathcal{O}_0\subset\mathbb{R}^2$ is weaker than the topology of the orbit induced by the immersion $t\mapsto e^{tV}(0),\quad \mathbb{R}\to \mathcal{O}_0.$

The Orbit theorem

Theorem (Orbit theorem, Nagano-Sussmann) Let $\mathcal{F} \subset \text{Vec}(M)$, and let $q_0 \in M$. (1) The orbit ${\cal O}_{q_0}$ is a connected immersed submanifold of M. (2) For any $q \in \mathcal{O}_{q_0}$

$$
T_qO_{q_0} = \text{span}(\mathcal{P}_*\mathcal{F})(q) = \text{span}\{(P_*V)(q) \mid P \in \mathcal{P}, \quad V \in \mathcal{F}\},
$$

$$
\mathcal{P} = \{e^{t_Nf_N} \circ \cdots \circ e^{t_1f_1} \mid t_i \in \mathbb{R}, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.
$$

Proof of the Orbit theorem: 1/7

Proof.

• Introduce a vector space important in the sequel

$$
\Pi_q = \text{span}(\mathcal{P}_* \mathcal{F})(q) \subset T_q M, \qquad q \in M,
$$

this is a candidate tangent space to the orbit $\mathcal{O}_{\bm{q_0}}$.

- \bullet 1) We prove that for all $q\in\mathcal{O}_{q_0}$ we have $\dim\Pi_q=\dim\Pi_{q_0}.$
- $\bullet\,$ Choose any point $q\in{\mathcal O}_{q_0},$ then $q=Q(q_0),\ Q\in{\mathcal P}$. Let us show that $Q_*^{-1}(\Pi_q)\subset \Pi_{q_0}.$
- Choose any element $(P_*f)(q) \in \Pi_q$, $P \in \mathcal{P}$, $f \in \mathcal{F}$. Then

$$
Q_*^{-1}[(P_*f)(q)] = (Q_*^{-1} \circ P_*f)(Q^{-1}(q))
$$

= [(Q⁻¹ \circ P)_*f](q₀) \in (P_*F)(q₀) \subset \Pi_{q₀.

Thus $\mathsf{Q}^{-1}_*(\Pi_q)\subset \Pi_{q_0},$ whence $\dim \Pi_q\leq \dim \Pi_{q_0}.$ Interchanging in this arguments q and q_0 , we get dim $\Pi_{q_0} \le$ dim Π_{q_0} .

 $\bullet\,$ Finally we have dim $\Pi_q=\mathsf{dim}\,\Pi_{q_0},\ q\in\mathcal{O}_{q_0}.$

Proof of the Orbit theorem: 2/7

- 2) For any point $q \in M$ denote $m = \dim \Pi_q$, and choose such vector fields $V_1, \ldots, V_m \in \mathcal{P}_* \mathcal{F}$ that $\Pi_q = \text{span}(V_1(q), \ldots, V_m(q)).$
- Further, define a mapping

$$
G_q:(t_1,\ldots,t_m)\mapsto e^{t_mV_m}\circ\cdots\circ e^{t_1V_1}(q),\qquad\mathbb{R}^m\to M.
$$

- We have $\frac{\partial G_q}{\partial t_i}(0)=V_i(q)$, thus the vectors $\frac{\partial G_q}{\partial t_1}(0),\ldots,\frac{\partial G_q}{\partial t_m}$ $\frac{\partial \mathbf{G}_q}{\partial t_m}(0)$ are linearly independent.
- Consequently, the restriction of G_a to a sufficiently small neighbourhood $W₀$ of the origin in \mathbb{R}^m is a submersion.
- 3) The image $G_q(W₀)$ is an (embedded) submanifold of M, may be, for a smaller neighbourhood W_0 .

Proof of the Orbit theorem: 3/7

- 4) We show that $G_q(W_0) \subset \mathcal{O}_q$.
- We have $G_q(W_0) = \{e^{t_m V_m} \circ \cdots \circ e^{t_1 V_1}(q) \mid t = (t_1, \ldots, t_m) \in W_0\}.$
- Since $V_1 = P_* f, P \in \mathcal{P}, f \in \mathcal{F}$, we get

$$
e^{t_1V_1}(q)=e^{t_1P_*f}(q)=P\circ e^{t_1f}\circ P^{-1}(q)\in \mathcal{O}_q.
$$

Exercise: prove that

$$
e^{tP_*f}(q) = P \circ e^{tf} \circ P^{-1}(q), \qquad f \in \text{Vec}(M), \quad P \in \text{Diff}(M), \quad t \in \mathbb{R}. \tag{1}
$$

 $\bullet\,$ We conclude similarly that $e^{t_2V_2}\circ e^{t_1V_1}(q)\in{\mathcal O}_q$ etc. Finally we have $G_q(t)\in{\mathcal O}_q,$ $t \in W_0$.

Proof of the Orbit theorem: 4/7

 $\bullet \;$ 5) We show that $\mathit{G}_{q_{*}}(\mathit{T}_{t}\mathbb{R}^{m})=\Pi_{\mathit{G}_{q}(t)},\;t\in\mathit{W}_{0}.$ We have $\dim G_{q_*}(\mathcal{T}_t\mathbb{R}^m)=m=\dim \Pi_{G_q(t)},$ thus it suffices to prove the inclusion ∂Gq $\frac{\partial G_q}{\partial t_i}(t) \in \Pi_{G_q(t)}, \qquad t \in W_0.$

• Let us compute this partial derivative:

$$
\frac{\partial G_q}{\partial t_i} = \frac{\partial}{\partial t_i} e^{t_m V_m} \circ \cdots \circ e^{t_i V_i} \circ \cdots \circ e^{t_1 V_1}(q)
$$

denote $R=e^{t_m V_m}\circ\cdots\circ e^{t_{i+1} V_{i+1}},\ q'=e^{t_{i-1} V_{i-1}}\circ\cdots\circ e^{t_1 V_1}(q),$

$$
=\frac{\partial}{\partial t_i}R\circ e^{t_iV_i}(q')=R_*V_i(e^{t_iV_i}(q'))\\=(R_*V_i)[R\circ e^{t_iV_i}\circ\cdots\circ e^{t_1V_1}(q)]\\=(R_*V_i)(G_q(t))\in (\mathcal{P}_*\mathcal{F})(G_q(t))\subset \Pi_{G_q(t)}.
$$

 \bullet Thus $G_{q_*}(\mathcal{T}_t\mathbb{R}^m)=\Pi_{G_q(t)},$ i.e., the space $\Pi_{G_q(t)}$ is a tangent space to the smooth manifold $G_{\sigma}(W_0)$ at the point $G_{\sigma}(t)$.

Proof of the Orbit theorem: 5/7

- 6) We prove that the sets $G_q(W_0)$ form a base of a ("strong") topology on M.
- 6a) It is obvious that any point $q \in M$ is contained in the set $G_q(W_0)$.
- 6b) Let us show that for any point $\widehat{q}\in\mathcal{G}_{q}(W_{0})\cap\mathcal{G}_{\widetilde{q}}(\widetilde{W_{0}})$ there exists a set $G_{\widetilde{\sigma}}(\widehat{W}_0) \subset G_{\sigma}(W_0) \cap G_{\widetilde{\sigma}}(\widetilde{W}_0).$
- Take any point $\widehat{q} \in G_q(W_0) \cap G_{\widetilde{q}}(W_0)$ and consider $G_{\widehat{q}}(t) = e^{t_mV_m} \circ \cdots \circ e^{t_1V_1}(\widehat{q})$.
- For any point $q'\in G_q(W_0)$ we have $\widehat{V}_1(q')\in (\mathcal{P}_*\mathcal{F})(q')\subset \Pi_{q'}$. But $G_q(W_0)$ is a submanifold with the tangent space $\mathcal{T}_{q'}G_q(W_0)=\Pi_{q'}.$ The vector field V_1 is tangent to this submanifold, thus $e^{t_1V_1}(\widehat{q}) \in G_q(W_0)$ for small $|t_1|$. We conclude similarly that $e^{t_2 V_2} \circ e^{t_1 V_1}(\widehat{q}) \in \mathcal{G}_q(W_0)$ for small $|t_1|, |t_2|$ etc. Finally we get

 $G_{\widehat{\sigma}}(t) \in G_{\sigma}(W_0)$ for small $|t|$.

• Similarly $G_{\widehat{g}}(t) \in G_{\widetilde{g}}(\widetilde{W_0})$ for small $|t|.$ Thus $G_{\widehat{g}}(\widehat{W_0}) \subset G_q(W_0) \cap G_{\widetilde{g}}(\widetilde{W_0})$ for some neighbourhood \widehat{W}_0 , and property 6b) is proved.

Figure: Intersection of neighborhoods in topology base

Figure: Intersection of neighborhoods not in topology base

Proof of the Orbit theorem: 6/7

- It follows from properties 6a) and 6b) that the sets $G_a(W₀)$ form a base of topology on the set M. Denote the corresponding topological space as $M^{\mathcal{F}}$.
- 7) We show that for any $q_0 \in M$ the orbit \mathcal{O}_{q_0} is connected, open and closed in the space $M^{\mathcal{F}}$.
- \bullet The mappings $t_i\mapsto e^{t_if_i}(q)$ are continuous in $M^\mathcal{F}$, thus \mathcal{O}_{q_0} is connected.
- Any point $q\in{\mathcal O}_{q_0}$ is contained in the neighbourhood $\mathit{G}_q(\mathit{W}_0)\subset{\mathcal O}_q={\mathcal O}_{q_0},$ thus the orbit is open in $M^{\mathcal{F}}$.
- Finally, any orbit is a complement in M to orbits with which it does not intersect. Thus any orbit is closed in $M^{\mathcal{F}}$.
- \bullet So any orbit ${\cal O}_{q_0}$ is a connected component of the topological space $M^{\cal F}$.

Proof of the Orbit theorem: 7/7

- 8) Introduce a smooth structure on Oq⁰ as follows:
	- the sets $G_q(W_0)$ are called coordinate neighbourhoods
	- $\bullet\,$ the mappings $\,\dot{\mathcal{G}}^{-1}_q:\mathcal{G}_q(W_0)\rightarrow W_0$ are called coordinate mappings.
- It is easy to see that these coordinate neighbourhoods and mappings agree: for any intersecting neighbourhoods $G_{q}(W_{0})$ and $G_{\widetilde{q}}(W_{0})$ the composition

$$
G_{\widetilde{q}}\circ G_q\,:\; G_q^{-1}(G_q(W_0)\cap G_{\widetilde{q}}(\widetilde{W_0}))\rightarrow G_{\widetilde{q}}^{-1}(G_q(W_0)\cap G_{\widetilde{q}}(\widetilde{W_0}))
$$

is a diffeomorphism.

- \bullet Thus the orbit \mathcal{O}_{q_0} is a smooth manifold.
- Moreover, $\mathcal{O}_{q_0}\subset M$ is an immersed submanifold of dimension $m=\dim \Pi_{q_0}$.
- 9) It follows from item 5) above that the smooth manifold \mathcal{O}_{q_0} has a tangent space

$$
T_q \mathcal{O}_{q_0} = \Pi_q = \text{span}(\mathcal{P}_* \mathcal{F})(q), \qquad q \in \mathcal{O}_{q_0}.
$$

• The Orbit theorem is proved.

Statement of the Orbit theorem

Theorem (Orbit theorem, Nagano-Sussmann) Let $\mathcal{F} \subset \text{Vec}(M)$, and let $q_0 \in M$. (1) The orbit ${\cal O}_{q_0}$ is a connected immersed submanifold of M. (2) For any $q \in \mathcal{O}_{q_0}$

$$
T_q O_{q_0} = \text{span}(\mathcal{P}_* \mathcal{F})(q) = \text{span}\{(P_* V)(q) \mid P \in \mathcal{P}, \quad V \in \mathcal{F}\},
$$

$$
\mathcal{P} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1} \mid t_i \in \mathbb{R}, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.
$$

Corollary: Orbit and Lie algebra of the system

Corollary

For any $q_0 \in M$ and any $q \in \mathcal{O}_{q_0}$ we have $\text{Lie}_q(\mathcal{F}) \subset T_q\mathcal{O}_{q_0},$ where

Lie_q (F) = span $\{[f_N, [\ldots, [f_2, f_1] \ldots]](q) \mid f_i \in F, N \in \mathbb{N}\} \subset T_aM$.

• Proof Let
$$
q_0 \in M
$$
, $q \in \mathcal{O}_{q_0}$.

 \bullet Take any $f\in\mathcal{F}$. Then $\varphi(t)=e^{tf}(q)\in\mathcal{O}_{q_0},$ thus $\dot{\varphi}(0)=f(q)\in\mathcal{T}_q\mathcal{O}_{q_0}.$ It follows that $\mathcal{F}(q)\subset \mathcal{T}_q\mathcal{O}_{q_0}$.

• Further, take any $f_1,f_2\in\mathcal{F}$, then $\varphi(t)=e^{-tf_2}\circ e^{-tf_1}\circ e^{tf_2}\circ e^{tf_1}(q)\in\mathcal{O}_{q_0}$. Thus

$$
\left.\frac{d}{dt}\right|_{t=0} \varphi(\sqrt{t})=[f_1,f_2](q)\in \mathcal{T}_q\mathcal{O}_{q_0}.
$$

It follows that $[\mathcal{F},\mathcal{F}](q)\subset \mathcal{T}_q\mathcal{O}_{q_0}.$

• We prove similarly that $[[\mathcal{F},\mathcal{F}],\mathcal{F}](q)\subset \mathcal{T}_q\mathcal{O}_{q_0},$ and by induction that $\mathsf{Lie}_q(\mathcal{F}) \subset \mathcal{T}_q\mathcal{O}_{q_0}.$

П

Analytic and non-analytic cases

 $\bullet\,$ In the analytic case the inclusion $\mathsf{Lie}_q(\mathcal{F})\subset \mathcal{T}_q\mathcal{O}_{q_0}$ turns into an equality. **Proposition**

Let M and F be real-analytic. Then for any $q_0 \in M$ and any $q \in \mathcal{O}_{q_0}$

$$
\mathsf{Lie}_q(\mathcal{F}) = T_q \mathcal{O}_{q_0}.
$$

- But in a smooth non-analytic case the inclusion Lie_g(\mathcal{F}) $\subset T_q\mathcal{O}_{q_0}$ may become strict.
- Example: Orbit of non-analytic system.
	- \bullet let $M=\mathbb{R}^2_{x,y}$, $\mathcal{F}=\{f_1,f_2\}$, $f_1=\frac{\partial}{\partial x}$, $f_2=a(x)\frac{\partial}{\partial y}$, where $a\in C^\infty(\mathbb{R})$, $a(x)=0$ for $x < 0$, $a(x) > 0$ for $x > 0$.
	- $\bullet \ \;$ It is easy to see that $\mathcal{O}_q = \mathbb{R}^2$ for any $q = (x,y) \in \mathbb{R}^2.$
	- Although, for $x < 0$ we have

$$
\mathsf{Lie}_q(\mathcal{F}) = \mathsf{span}(f_1(q)) \neq \mathcal{T}_q\mathcal{O}_q.
$$

Corollary: Rashevskii-Chow theorem

• A system $F \subset \text{Vec}(M)$ is called *completely nonholonomic* (full-rank, bracket-generating) if $\text{Lie}_{a}(\mathcal{F}) = \mathcal{T}_{a}M \quad \forall q \in M$.

Theorem (Rashevskii-Chow)

If $\mathcal{F} \subset \text{Vec}(M)$ is full-rank and M is connected, then $\mathcal{O}_q = M \qquad \forall q \in M$. Proof.

- Take any $q \in M$ and any $q_1 \in \mathcal{O}_q$.
- We have $T_{q_1} \mathcal{O}_q \supset \mathsf{Lie}_{q_1}(\mathcal{F}) = T_{q_1} M$, thus $\dim \mathcal{O}_q = \dim M$, i.e., \mathcal{O}_q is open in M .
- On the other hand, any orbit is closed as a complement to the union of all other orbits.
- Thus any orbit is a connected component of M. Since M is connected, each orbit coincides with M.

Corollary: Lie algebra rank condition

Corollary (Lie algebra rank condition, LARC)

If a manifold M is connected, and a system $\mathcal{F} \subset \text{Vec}(M)$ is symmetric and completely nonholonomic, then it is globally controllable on M.

Distributions

• A distribution on a smooth manifold M is a smooth mapping

$$
\Delta: q \mapsto \Delta_q \subset T_qM, \quad q \in M,
$$

where the vector subspaces Δ_q have the same dimension called the rank of Δ .

- An immersed submanifold $N \subset M$ is called an *integral manifold* of a distribution Δ if $\forall q \in N$ $T_qN = \Delta_q$.
- A distribution Δ on M is called *integrable* if for any point $q \in M$ there exists an integral manifold $N_a \ni q$.
- Denote by $\bar{\Delta} = \{f \in \text{Vec}(M) \mid f(q) \in \Delta_q \mid \forall q \in M\}$ the set of vector fields tangent to ∆.
- A distribution Δ is called *holonomic* if $[\bar{\Delta}, \bar{\Delta}] \subset \bar{\Delta}$.

Corollary: Frobenius theorem

Theorem (Frobenius)

A distribution is integrable iff it is holonomic.

Proof:

• *Necessity*. Take any $f, g \in \bar{\Delta}$. Let $q \in M$, and let $N_q \ni q$ be the integral manifold of Δ through q.

• Then

$$
\varphi(t)=e^{-tg}\circ e^{-tf}\circ e^{tg}\circ e^{tf}(q)\in N_q,
$$

thus

$$
\left. \frac{d}{dt} \right|_{t=0} \varphi(\sqrt{t}) = [f,g](q) \in T_q N_q = \Delta_q.
$$

• So $[f, g] \in \bar{\Delta}$, and the inclusion $[\bar{\Delta}, \bar{\Delta}] \subset \bar{\Delta}$ follows.

Frobenius theorem

- Sufficiency We consider only the analytic case.
- We have

$$
[\bar{\Delta},\bar{\Delta}] \subset \bar{\Delta}, \qquad [[\bar{\Delta},\bar{\Delta}],\bar{\Delta}] \subset [\bar{\Delta},\bar{\Delta}] \subset \bar{\Delta}.
$$

\n- Inductively Lie_q(
$$
\bar{\Delta}
$$
) $\subset \bar{\Delta}_q = \Delta_q$.
\n

● The reverse inclusion is obvious, thus Lie ${}_{q}({\bar\Delta})=\Delta_{q},\;q\in M.$ Denote $N_a = \mathcal{O}_a(\bar{\Delta})$ and prove that N_a is an integral manifold of Δ :

$$
T_{q'}N_q=T_{q'}(\mathcal{O}_q(\bar{\Delta}))=\mathsf{Lie}_{q'}(\bar{\Delta})=\Delta_{q'},\quad q'\in N_q.
$$

• So $N_a \ni q$ is the integral manifold of Δ , and Δ is integrable.

Corollary: Frobenius condition

• Consider a local frame of ∆:

 $\Delta_q = \text{span}(f_1(q), \ldots, f_k(q)), \quad q \in S \subset M, \quad f_1, \ldots, f_k \in \text{Vec}(S), \quad k = \dim \Delta_q,$

where S is an open subset of M .

• Then the inclusion $[\bar \Delta, \bar \Delta] \subset \bar \Delta$ takes the form

$$
[f_i, f_j](q) = \sum_{l=1}^k c_{ij}^l(q) f_l(q), \qquad q \in S, \quad c_{ij}^l \in C^\infty(S).
$$

• This equality is called the *Frobenius condition*.

Example:

The sub-Riemannian problem on the group of motions of the plane

• The control system has the following form:

$$
\mathcal{F} = \{u_1 f_1 + u_2 f_2 \mid (u_1, u_2) \in \mathbb{R}^2\} \subset \text{Vec}(\mathbb{R}^2 \times S^1), \nf_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \qquad f_2 = \frac{\partial}{\partial \theta}.
$$

- The system is symmetric: $\mathcal{F} = -\mathcal{F}$.
- Compute its Lie algebra:

$$
[f_1, f_2] = \sin \theta \frac{\partial}{\partial x} - \cos \theta \frac{\partial}{\partial y} =: f_3,
$$

\n
$$
\text{Lie}_q(\mathcal{F}) = \text{span}(f_1(q), f_2(q), f_3(q)) = T_q(\mathbb{R}^2 \times S^1).
$$

• The system F is completely nonholonomic, thus controllable.

Example: Orbits of different dimensions

• Let $M = \mathbb{R}_{x}$, $\mathcal{F} = \begin{cases} x \frac{\partial}{\partial x} \end{cases}$ ∂x $\Big\} \subset \text{Vec}(M).$ • We have:

$$
\begin{aligned}\nx_0 > 0 &\Rightarrow \quad \mathcal{O}_{x_0} &= \{x > 0\}, \\
x_0 &= 0 &\Rightarrow \quad \mathcal{O}_{x_0} &= \{x = 0\}, \\
x_0 < 0 &\Rightarrow \quad \mathcal{O}_{x_0} &= \{x < 0\},\n\end{aligned}
$$

• Thus the system has two one-dimensional orbits and one zero-dimensional orbit.

Example: More orbits of different dimensions

 \bullet Let

$$
M = \mathbb{R}^3_{x,y,z}, \qquad \mathcal{F} = \left\{ x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}, \ y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}, \ z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right\} \subset \text{Vec}(M).
$$

• Then for any point $q \in \mathbb{R}^3$

$$
\mathcal{O}_q = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = |q|^2 \},\
$$

- This is a sphere for $q \neq 0$ and a point for $q = 0$.
- An orbit of a control system is a generalisation of a trajectory of a vector field to the case of more than one vector field.

Exercises

- 1. Prove formula ([1](#page-11-0)).
- 2. Let $N \subset M$ be an immersed submanifold. Prove that if a vector field $f \in \text{Vec}(M)$ satisfies the condition $f(q)\in \mathcal{T}_q N$ for all $q\in \mathcal{N},$ then $e^{tf}(q)\in \mathcal{N}$ for all $q\in \mathcal{N},$ $|t| < \varepsilon$
- 3. Study integrability of the distribution $\Delta = \text{span}(f_1, f_2)$, $f_1 = z \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ $rac{\partial}{\partial z}$, $f_2 = z \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}$ $\frac{\partial}{\partial z}$, $(x,y,z)\in\mathbb{R}^3$, $z\neq 0$. If it is integrable, describe its integral manifolds.
- 4. Prove that the mappings $t_i\mapsto e^{t_if_i}(q)$ are continuous in the topology of $M^\mathcal{F};$ see item 7) of the proof of the Orbit Theorem.
- 5. Fill the gaps in item 8) of the proof of the Orbit Theorem.