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Plan of the course

Examples and statements of control problems

Controllability of linear systems, local controllability of nonlinear systems.
Orbit theorem, Rashevsky-Chow, Frobenius, Krener theorems.
Pontryagin maximum principle on manifolds and Lie groups.
Sub-Riemannian geometry on Lie groups.

Applications in mechanics, robotics, vision, probability theory.
Measurable sets and functions, Carathéodory differential equations
Filippov's sufficient conditions for the existence of optimal control
Elements of chronological calculus by R.V.Gamkrelidze—A.A.Agrachev
Differential forms, elements of symplectic geometry

. Proof of Pontryagin maximum principle on manifolds: geometric form, optimal

control problems with different boundary conditions

. (Sub)Lorentzian problems on Lie groups.
. Almost Riemannian problems.
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Plan of lecture

1. Examples of optimal control problems
2. Statements of the main problems of this course:

2.1 controllability problem,
2.2 optimal control problem.

3. Smooth manifolds and vector fields.
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Examples of optimal control problems:
1. Stopping a train

Given:

® material point of mass m > 0 with coordinate x € R

e force F bounded by the absolute value by Fr. > 0

e initial position xp and initial velocity xp of the material point
Find:

e force F that steers the point to the origin with zero velocity, for a minimal time.

).(1 = X2, (X15X2) €R2,

).(2 = u, |U| < ]-7

(x1,%)(0) = (%0, %),  (x1,%)(t1) = (0,0),
t1 — min.
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2. Control of linear oscillator
Given:

e pendulum that performs small oscillations under the action of a force bounded by
the absolute value

Find:
e force that steers the pendulum from an arbitrary position and velocity to the stable
equilibrium for a minimum time.

X1 = X2, x = (x1,x) € R?,
X3 = —x1 + u, lul <1,
x(0) = X2, x(t1) =0,

t; — min.
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3. The Markov—Dubins car

Given:

® model of a car given by a unit vector attached at a point (x,y) € R?, with
orientation # € S?

® The car moves forward with the unit velocity and can simultaneously rotate with
an angular velocity |0 <1

® an initial and a terminal state of the car
Find:

® angular velocity in such a way that the time of motion is as minimum as possible.

x = cos ¥, q:(Xv)/ve)eR)z(,yXSGl:M’

y=sin,  |u <1,

0 =u,

q(O) = qo, q(tl) =dq1,
t1 — min.
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4. The sub-Riemannian problem on the group of motions of the plane

Given:

® model of a car in the plane that can move forward or backward with an arbitrary
linear velocity and simultaneously rotate with an arbitrary angular velocity

® state of the car is given by its position in the plane and orientation angle
® an initial and a terminal state of the car
Find:
® motion of the car from a given initial state to a given terminal state, so that the

length of the path in the space of positions and orientations is as minimum as
possible.

9/28



4. The sub-Riemannian problem on the group of motions of the plane

y

@ = (z1,91,01)

[

L

q0 = (20, Y0, 0o)

X = ucosf, qg=(x,y,0) e R? x S,
y = usinf, (u,v) € R?,

0=v,

q(0) = q,  q(t1) = a1,

t1
/:/ vV u? 4+ v2dt — min.
0
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5. Euler elasticae

Given:

® uniform elastic rod of length / in the plane

e the rod has fixed endpoints and tangents at endpoints
Find:

e the profile of the rod.
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5. Euler elasticae

x = cos0, qg=(x,y,0) € R? x S*,
y =sind, uelR,

0= u,

q(0) = qo,  q(t1) =,

t; = I is the length of the rod,

1 [h
J:/ u? dt — min.
2 Jo
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6. The plate-ball problem

Given:

Find:

e roll the sphere so that the length of the curve in the plane traced by the contact

uniform sphere roll without slipping or twisting on a horizontal plane

imagine: the sphere rolls between two horizontal planes, a fixed lower one and a
moving upper one

absence of slipping: the contact point of the sphere with the plane has zero
instantaneous velocity

absence of twisting means that the angular velocity vector of the sphere is
horizontal

admissible motions are obtained by horizontal motions of the upper plane

initial and terminal states of the sphere.

point was the minimum possible.
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6. The plate-ball problem

X=u, y=
_ 0 0
R=R[0 0 —v|,
u v O

= (x,y,R) € R? x SO(3),

q(0) =qo, q(t1) = q,

t1
/:/ VI 1 V2 dt s min.
0
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7. Anthropomorphic curve reconstruction

Given:
® greyscale image as a set of isophotes (level lines of brightness)
® image corrupted in some domain.

Find:

® anthropomorphic reconstruction of the image.
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7. Anthropomorphic curve reconstruction

D. Hubel and T. Wiesel (1981 Nobel Prize): a human brain stores curves not as
sequences of planar points (x;, y;), but as sequences of positions and orientations
(xi, yi» 0)

model of the primary visual cortex V1 of the human brain by J. Petitot, G. Citti
and A. Sarti: corrupted curves of images are reconstructed according to a
variational principle

human brain lifts images (x(t), y(t)) from the plane to the space of positions and
orientations (x(t), y(t), 6(t)).

x=ucosf, y=usinf, 0=v,

t1 t
J:/ (B’ +v?)dt - min & /:/ Vu? + v2dt — min,
0 0

Optimal trajectories for the sub-Riemannian problem on the group of motions of
the plane solve the problem of anthropomorphic curve reconstruction!
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Given:
® points ap, a; € R?
e Lipschitzian curve 7 C R?
connecting a; with ag
® number S € R.
Find:
® the shortest Lipschitzian
curve v C R? connecting
ag with a; for which the
closed curve v U# bounds

a domain in R? of the
algebraic area S.

8. Dido’s problem
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8. Dido’s problem

® coordinates x, y in the plane R? with the origin ag. Then ag = (0,0),
a1 = (x1,y1), (1) = (x(1), ¥(¢)). t € [0, 1], 7(t) = (X(¢),¥(¢)), t € [0, ta].
e closed curve ¥ = v U7 and a domain bounded by it: D c R?, 9D =7

5
) . ) 1
x(t) =: w(t), y(t) =: up(t), z(t) = E(xuz — yur).
q:UIXI(Q)+U2X2(Q)a U:(Ul,U2)€R27 q:(X7y72)6R37
0 y 0 0 x 0
ox 202 Ty taar

q(O) =4qo = (070»0)7 q(tl) =qL = (Xla_ylvzl)a

t1 t
I(fy):/0 \/>'<2+)'/2dt:/0 \/ U2 + u? dt — min.
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Dynamical systems and control systems
smooth dynamical system, or an ordinary differential equation:
q= f(q)a geM

deterministic: given an initial condition g(0) = qo and a time t > 0, there exists a
unique solution g(t)
control system:

g =f(q,u), geM, ucl. (1)
control function u = u(t) € U = a nonautonomous ODE
g = f(q,u(t)). (2)

Together with an initial condition g(0) = qo, ODE (2) determines a unique
solution — a trajectory q,(t).

Regularity assumptions for controls u(-): piecewise constant, piecewise continuous,
L, 11, ...
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Attainable sets

e Attainable set of control system (1) from a point go for arbitrary times:
Age = {qu(t) | qu(0) = qo, we L™([0,t],U), t=0}

® attainable set from the point gg for a time t; > 0:

Ago(t1) = {qu(t1) [ qu(0) = qo, w € L([0, ta], U)},

® attainable set from the point gq for times not greater than ¢, > 0:

t1

Aqo(g tl) = U AQO(t)'

t=0
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Controllability problem

A control system (1) is called:

globally (completely) controllable if Aq, = M for any qo € M

globally controllable from a point qg € M if Agy = M

locally controllable at qo if go € int Ag,

small time locally controllable (STLC) at qo if go € int Agy(< t1) for any t; >0

Local controllability problem: necessary conditions and sufficient conditions of
STLC for arbitrary dimension of the state space M, but local controllability tests
are available only for the case dim M = 2.

Global controllability problem: global controllability conditions only for very
symmetric systems (linear systems, left-invariant systems on Lie groups).
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Optimal control problem

Let g1 € Ag,(t1). Then typically qo, g1 are connected by continuum of trajectories

Cost functional to be minimized:

t1
J= / ©(q, u) dt.
0
Optimal control problem:

q=f(q,u), geM, uveU,
q(0) = qo, q(t1) = a1,

t1
J:/ ©(gq, u) dt — min.
0

Other important mathematical control problems: equivalence, stabilization,
observability, etc., which we do not touch upon.
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Smooth manifolds

A smooth k-dimensional submanifold M C R" is usually defined by one of the following
equivalences:

(a) implicitly by a system of regular equations:

A(x)=---=f_x(x) =0, x e R",
o0f Ofak\
rank(ax,..., I )n—k,

(b) or by a regular parametrization:
x=o(y), yeRK xeR"

oP
k— = k.
rank

An abstract smooth manifold M (not embedded into R") is defined via a system of
charts (local coordinates) that mutually agree.
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Tangent vectors and spaces

A mapping between smooth manifolds is called smooth if it is smooth (of class C*°) in
local coordinates.

The tangent space to a smooth submanifold M C R” at a point x € M is defined as
follows for the two definitions above of a submanifold:

(a) TxM = Ker g—i(x),

(b) TM=Im%P(y), x = &(y).

Given a smooth mapping F : M — N between smooth manifolds, for any g € M the
differential Fiq : TqM — Trg(q)N is defined as follows:

d
Frgv = —
T t=0

F((2)),
where v : (—¢,¢) — M is a smooth curve such that v(0) = g, ¥(0) = v.
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Smooth vector fields and their commutativity

A smooth vector field on a manifold M is a smooth mapping

M > q— V(q) € T¢M. Notation: V € Vec(M).

A trajectory of a vector field V through a point gy € M is a solution to the
Cauchy problem ¢(t) = V(q(t)), ¢q(0) = qo.

Suppose that a trajectory g(t) exists for all times t € R, then we denote

etV (qo) := q(t). The one-parameter group of diffeomorphisms etV': M — M is
the flow of the vector field V.

We say that vector fields V and W commute if their flows commute:

tv w w 14

eV oe =eWoe, t,s € R.

In the general case vector fields V and W do not commute and the curve
go(t) — eftW tV tW o etV(

ceVoe %)
satisfies the inequality p(t) # qo, t € R.

The leading nontrivial term of the Taylor expansion of ¢(t), t — 0, is taken as the

measure of noncommutativity of vector fields V and W.



Lie brackets of vector fields

® The commutator (Lie bracket) of the vector fields V, W at the point qp is defined
as [V, W](qo) := 5¢(0), so that

o(t) = qo + t2[V, W](qo) + o(t?), t— 0.

tW
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Exercises 1

. Describe the attainable sets A, for examples 1-5, 8. Which of these systems are
controllable?

. Describe in example 6:

Lieq(Xl,Xz)
= Span(Xl(q)v X2(q)v [X17X2](q)7 [X17 [X17X2]](q)7 [X27 [X17X2]](q)7 s )7

where X1 and X; are the vector fields in the right-hand side of system in slide 13:
g = w1 X1+ wpXa, g € R? x SO(3).

. When a second-order curve {(x1,x2) € R? | Y i i <p CuinX(' X7 = 0} is a
smooth manifold? Compute its dimension.
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Exercises 2

. Show that the two-dimensional sphere S? and the group SO(3) of rotations of the
3-space are smooth manifolds. Compute their tangent spaces.

. Prove in example 7:
t1 t1
/:/ U2 + u3dt — min & J:/ (v + u3) dt — min
0 0

for a fixed terminal time t;.

. Prove the formula [V, W] = %{VV — %*‘,{W-
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