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Plan of the course

1. Examples and statements of control problems

2. Controllability of linear systems, local controllability of nonlinear systems.

3. Orbit theorem, Rashevsky-Chow, Frobenius, Krener theorems.

4. Pontryagin maximum principle on manifolds and Lie groups.

5. Sub-Riemannian geometry on Lie groups.

6. Applications in mechanics, robotics, vision, probability theory.

7. Measurable sets and functions, Carath�eodory di�erential equations

8. Filippov's su�cient conditions for the existence of optimal control

9. Elements of chronological calculus by R.V.Gamkrelidze�A.A.Agrachev

10. Di�erential forms, elements of symplectic geometry

11. Proof of Pontryagin maximum principle on manifolds: geometric form, optimal

control problems with di�erent boundary conditions

12. (Sub)Lorentzian problems on Lie groups.

13. Almost Riemannian problems.
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Plan of lecture

1. Examples of optimal control problems

2. Statements of the main problems of this course:

2.1 controllability problem,

2.2 optimal control problem.

3. Smooth manifolds and vector �elds.
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Examples of optimal control problems:

1. Stopping a train
Given:

• material point of mass m > 0 with coordinate x ∈ R
• force F bounded by the absolute value by Fmax > 0
• initial position x0 and initial velocity ẋ0 of the material point

Find:

• force F that steers the point to the origin with zero velocity, for a minimal time.

ẋ1 = x2, (x1, x2) ∈ R2,

ẋ2 = u, |u| ≤ 1,

(x1, x2)(0) = (x0, ẋ0), (x1, x2)(t1) = (0, 0),

t1 → min .
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2. Control of linear oscillator
Given:

• pendulum that performs small oscillations under the action of a force bounded by

the absolute value

Find:

• force that steers the pendulum from an arbitrary position and velocity to the stable

equilibrium for a minimum time.

ẋ1 = x2, x = (x1, x2) ∈ R2,

ẋ2 = −x1 + u, |u| ≤ 1,

x(0) = x0, x(t1) = 0,

t1 → min .
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3. The Markov�Dubins car
Given:

• model of a car given by a unit vector attached at a point (x , y) ∈ R2, with

orientation θ ∈ S1

• The car moves forward with the unit velocity and can simultaneously rotate with

an angular velocity |θ̇| ≤ 1
• an initial and a terminal state of the car

Find:
• angular velocity in such a way that the time of motion is as minimum as possible.

ẋ = cos θ, q = (x , y , θ) ∈ R2
x ,y × S1

θ = M,

ẏ = sin θ, |u| ≤ 1,

θ̇ = u,

q(0) = q0, q(t1) = q1,

t1 → min .
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4. The sub-Riemannian problem on the group of motions of the plane

Given:

• model of a car in the plane that can move forward or backward with an arbitrary

linear velocity and simultaneously rotate with an arbitrary angular velocity

• state of the car is given by its position in the plane and orientation angle

• an initial and a terminal state of the car

Find:

• motion of the car from a given initial state to a given terminal state, so that the

length of the path in the space of positions and orientations is as minimum as

possible.
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4. The sub-Riemannian problem on the group of motions of the plane

q0 = (x0, y0, θ0)

q1 = (x1, y1, θ1)

θ

x

y

ẋ = u cos θ, q = (x , y , θ) ∈ R2 × S1,

ẏ = u sin θ, (u, v) ∈ R2,

θ̇ = v ,

q(0) = q0, q(t1) = q1,

l =

∫ t1

0

√
u2 + v2 dt → min .
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5. Euler elasticae

Given:

• uniform elastic rod of length l in the plane

• the rod has �xed endpoints and tangents at endpoints

Find:

• the pro�le of the rod.
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5. Euler elasticae

q0 = (a0, θ0)

x

y

γ(t) θ(t)

q1 = (a1, θ1)

ẋ = cos θ, q = (x , y , θ) ∈ R2 × S1,

ẏ = sin θ, u ∈ R,
θ̇ = u,

q(0) = q0, q(t1) = q1,

t1 = l is the length of the rod,

J =
1

2

∫ t1

0

u2 dt → min .
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6. The plate-ball problem
Given:

• uniform sphere roll without slipping or twisting on a horizontal plane

• imagine: the sphere rolls between two horizontal planes, a �xed lower one and a

moving upper one

• absence of slipping: the contact point of the sphere with the plane has zero

instantaneous velocity

• absence of twisting means that the angular velocity vector of the sphere is

horizontal

• admissible motions are obtained by horizontal motions of the upper plane

• initial and terminal states of the sphere.

Find:

• roll the sphere so that the length of the curve in the plane traced by the contact

point was the minimum possible.
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6. The plate-ball problem

e1

e2

e3

f1

f2

f3

(x0, y0)

(x1, y1)l → min

ẋ = u, ẏ = v , (u, v) ∈ R2,

Ṙ = R

0 0 −u
0 0 −v
u v 0

 ,

q = (x , y ,R) ∈ R2 × SO(3),

q(0) = q0, q(t1) = q1,

l =

∫ t1

0

√
u2 + v2 dt → min .
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7. Anthropomorphic curve reconstruction

Given:

• greyscale image as a set of isophotes (level lines of brightness)

• image corrupted in some domain.

Find:

• anthropomorphic reconstruction of the image.
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7. Anthropomorphic curve reconstruction
• D. Hubel and T. Wiesel (1981 Nobel Prize): a human brain stores curves not as

sequences of planar points (xi , yi ), but as sequences of positions and orientations

(xi , yi , θi )
• model of the primary visual cortex V 1 of the human brain by J. Petitot, G. Citti

and A. Sarti: corrupted curves of images are reconstructed according to a

variational principle
• human brain lifts images (x(t), y(t)) from the plane to the space of positions and

orientations (x(t), y(t), θ(t)).

ẋ = u cos θ, ẏ = u sin θ, θ̇ = v ,

J =

∫ t1

0

(u2 + v2) dt → min ⇔ l =

∫ t1

0

√
u2 + v2 dt → min,

• Optimal trajectories for the sub-Riemannian problem on the group of motions of

the plane solve the problem of anthropomorphic curve reconstruction!
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8. Dido's problem

Given:

• points a0, a1 ∈ R2

• Lipschitzian curve γ ⊂ R2

connecting a1 with a0
• number S ∈ R.

Find:

• the shortest Lipschitzian

curve γ ⊂ R2 connecting

a0 with a1 for which the

closed curve γ ∪ γ bounds

a domain in R2 of the

algebraic area S .

a0

a1

S1

S2

S3

γ

γ
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8. Dido's problem
• coordinates x , y in the plane R2 with the origin a0. Then a0 = (0, 0),

a1 = (x1, y1), γ(t) = (x(t), y(t)), t ∈ [0, t1], γ(t) = (x(t), y(t)), t ∈ [0, t1].
• closed curve γ̂ = γ ∪ γ and a domain bounded by it: D ⊂ R2, ∂D = γ̂

S(D) =
1

2

∮
γ̂
x dy − y dx =

1

2

∫ t1

0

(xẏ − y ẋ) dt − I ,

ẋ(t) =: u1(t), ẏ(t) =: u2(t), ż(t) =
1

2
(xu2 − yu1).

q̇ = u1X1(q) + u2X2(q), u = (u1, u2) ∈ R2, q = (x , y , z) ∈ R3,

X1 =
∂

∂ x
− y

2

∂

∂ z
, X2 =

∂

∂ y
+

x

2

∂

∂ z
,

q(0) = q0 = (0, 0, 0), q(t1) = q1 = (x1, y1, z1),

l(γ) =

∫ t1

0

√
ẋ2 + ẏ2 dt =

∫ t1

0

√
u21 + u22 dt → min .
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Dynamical systems and control systems
• smooth dynamical system, or an ordinary di�erential equation:

q̇ = f (q), q ∈ M

• deterministic: given an initial condition q(0) = q0 and a time t > 0, there exists a

unique solution q(t)

• control system:

q̇ = f (q, u), q ∈ M, u ∈ U. (1)

• control function u = u(t) ∈ U ⇒ a nonautonomous ODE

q̇ = f (q, u(t)). (2)

• Together with an initial condition q(0) = q0, ODE (2) determines a unique

solution � a trajectory qu(t).

• Regularity assumptions for controls u(·): piecewise constant, piecewise continuous,
L∞, L1, . . .
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Attainable sets

• Attainable set of control system (1) from a point q0 for arbitrary times:

Aq0 = {qu(t) | qu(0) = q0, u ∈ L∞([0, t],U), t ≥ 0}.

• attainable set from the point q0 for a time t1 ≥ 0:

Aq0(t1) = {qu(t1) | qu(0) = q0, u ∈ L∞([0, t1],U)},

• attainable set from the point q0 for times not greater than t1 ≥ 0:

Aq0(≤ t1) =

t1⋃
t=0

Aq0(t).
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Controllability problem

A control system (1) is called:

• globally (completely) controllable if Aq0 = M for any q0 ∈ M

• globally controllable from a point q0 ∈ M if Aq0 = M

• locally controllable at q0 if q0 ∈ intAq0

• small time locally controllable (STLC) at q0 if q0 ∈ intAq0(≤ t1) for any t1 > 0

• Local controllability problem: necessary conditions and su�cient conditions of

STLC for arbitrary dimension of the state space M, but local controllability tests

are available only for the case dimM = 2.

• Global controllability problem: global controllability conditions only for very

symmetric systems (linear systems, left-invariant systems on Lie groups).
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Optimal control problem

• Let q1 ∈ Aq0(t1). Then typically q0, q1 are connected by continuum of trajectories

• Cost functional to be minimized:

J =

∫ t1

0

φ(q, u) dt.

• Optimal control problem:

q̇ = f (q, u), q ∈ M, u ∈ U,

q(0) = q0, q(t1) = q1,

J =

∫ t1

0

φ(q, u) dt → min .

• Other important mathematical control problems: equivalence, stabilization,

observability, etc., which we do not touch upon.
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Smooth manifolds
A smooth k-dimensional submanifold M ⊂ Rn is usually de�ned by one of the following

equivalences:

(a) implicitly by a system of regular equations:

f1(x) = · · · = fn−k(x) = 0, x ∈ Rn,

rank

(
∂f1
∂x

, . . . ,
∂fn−k

∂x

)
= n − k ,

(b) or by a regular parametrization:

x = Φ(y), y ∈ Rk , x ∈ Rn,

rank
∂Φ

∂y
= k .

An abstract smooth manifold M (not embedded into Rn) is de�ned via a system of

charts (local coordinates) that mutually agree.
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Tangent vectors and spaces

A mapping between smooth manifolds is called smooth if it is smooth (of class C∞) in

local coordinates.

The tangent space to a smooth submanifold M ⊂ Rn at a point x ∈ M is de�ned as

follows for the two de�nitions above of a submanifold:

(a) TxM = Ker ∂f
∂x (x),

(b) TxM = Im ∂Φ
∂y (y), x = Φ(y).

Given a smooth mapping F : M → N between smooth manifolds, for any q ∈ M the

di�erential F∗q : TqM → TF (q)N is de�ned as follows:

F∗qv =
d

dt

∣∣∣∣
t=0

F (γ(t)),

where γ : (−ε, ε) → M is a smooth curve such that γ(0) = q, γ̇(0) = v .
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Smooth vector �elds and their commutativity
• A smooth vector �eld on a manifold M is a smooth mapping

M ∋ q 7→ V (q) ∈ TqM. Notation: V ∈ Vec(M).
• A trajectory of a vector �eld V through a point q0 ∈ M is a solution to the

Cauchy problem q̇(t) = V (q(t)), q(0) = q0.
• Suppose that a trajectory q(t) exists for all times t ∈ R, then we denote

etV (q0) := q(t). The one-parameter group of di�eomorphisms etV : M → M is

the �ow of the vector �eld V .
• We say that vector �elds V and W commute if their �ows commute:

etV ◦ esW = esW ◦ etV , t, s ∈ R.
• In the general case vector �elds V and W do not commute and the curve

φ(t) = e−tW ◦ e−tV ◦ etW ◦ etV (q0)
satis�es the inequality φ(t) ̸= q0, t ∈ R.

• The leading nontrivial term of the Taylor expansion of φ(t), t → 0, is taken as the

measure of noncommutativity of vector �elds V and W .
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Lie brackets of vector �elds
• The commutator (Lie bracket) of the vector �elds V ,W at the point q0 is de�ned

as [V ,W ](q0) :=
1
2 φ̈(0), so that

φ(t) = q0 + t2[V ,W ](q0) + o(t2), t → 0.

q0

etV

etW

e−tV

e−tW

ϕ(t)

[V,W ](q0)

• In local coordinates [V ,W ] = ∂W
∂x V − ∂V

∂x W .
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Exercises 1

1. Describe the attainable sets Aq0 for examples 1�5, 8. Which of these systems are

controllable?

2. Describe in example 6:

Lieq(X1,X2)

= span(X1(q),X2(q), [X1,X2](q), [X1, [X1,X2]](q), [X2, [X1,X2]](q), . . . ),

where X1 and X2 are the vector �elds in the right-hand side of system in slide 13:

q̇ = u1X1 + u2X2, q ∈ R2 × SO(3).

3. When a second-order curve {(x1, x2) ∈ R2 |
∑

0≤i1+i2≤2 ci1i2x
i1
1 x

i2
2 = 0} is a

smooth manifold? Compute its dimension.
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Exercises 2

4. Show that the two-dimensional sphere S2 and the group SO(3) of rotations of the
3-space are smooth manifolds. Compute their tangent spaces.

5. Prove in example 7:

l =

∫ t1

0

√
u21 + u22 dt → min ⇔ J =

∫ t1

0

(u21 + u22) dt → min

for a �xed terminal time t1.

6. Prove the formula [V ,W ] = ∂W
∂x V − ∂V

∂x W .
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