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Plan of previous lecture

1. Exterior di�erential

2. Lie derivative of di�erential forms

3. Liouville form and symplectic form

4. Hamiltonian vector �elds

5. Linear on �bers Hamiltonians
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Plan of this lecture

1. Geometric statement of PMP and discussion

2. Proof of the geometric statement of PMP with �xed terminal time

3. Geometric statement of PMP for free time

4. PMP for optimal control problems
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Pontryagin Maximum Principle
Geometric statement of PMP and discussion

• Consider an optimal control problem for a control system

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (1)

with the initial condition

q(0) = q0. (2)

• De�ne the following family of Hamiltonians:

hu(λ) = ⟨λ, fu(q)⟩, λ ∈ T ∗
qM, q ∈ M, u ∈ U.

• In terms of the previous lecture,

hu(λ) = f ∗u (λ).

• Fix an arbitrary instant t1 > 0.
• In Lecture 1 we reduced the optimal control problem to the study of boundary of

attainable sets.
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Reduction to Study of Attainable Sets

Theorem 1
Let qũ(t), t ∈ [0, t1], be an optimal trajectory in the optimal control problem with the

�xed terminal time t1. Then q̂ũ(t1) ∈ ∂Â(0,q0)(t1).

q

0

q

1

q

y

1

y

(y

1

; q

1

)

0

b

A

(0;q

0

)

(t

1

)

bq

~u

(t)
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• Now we give a necessary optimality condition in this geometric setting.

Theorem 2 (PMP)

Let ũ(t), t ∈ [0, t1], be an admissible control and q̃(t) = qũ(t) the corresponding

solution of Cauchy problem (1), (2). If q̃(t1) ∈ ∂Aq0(t1), then there exists a

Lipschitzian curve in the cotangent bundle

λt ∈ T ∗
q̃(t)M, 0 ≤ t ≤ t1,

such that

λt ̸= 0, (3)

λ̇t = h⃗ũ(t)(λt), (4)

hũ(t)(λt) = max
u∈U

hu(λt) (5)

for almost all t ∈ [0, t1].
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• If u(t) is an admissible control and λt a Lipschitzian curve in T ∗M such that

conditions (11)�(13) hold, then the pair (u(t), λt) is said to satisfy PMP

• In this case the curve λt is called an extremal, and its projection q̃(t) = π(λt) is
called an extremal trajectory.

Remark 1
If a pair (ũ(t), λt) satis�es PMP, then

hũ(t)(λt) = const, t ∈ [0, t1]. (6)

Indeed, since the admissible control ũ(t) is bounded, we can take maximum in (13)
over the compact {ũ(t) | t ∈ [0, t1]} = Ũ.
Further, the function φ(λ) = max

u∈Ũ hu(λ) is Lipschitzian w.r.t. λ ∈ T ∗M. We show

that this function has zero derivative.
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For optimal control ũ(t),

φ(λt) ≥ hũ(τ)(λt), φ(λτ ) = hũ(τ)(λτ ),

thus
φ(λt)− φ(λτ )

t − τ
≥

hũ(τ)(λt)− hũ(τ)(λτ )

t − τ
, t > τ.

Consequently,
d

d t

∣∣∣∣
t=τ

φ(λt) ≥ {hũ(τ), hũ(τ)} = 0

if τ is a di�erentiability point of φ(λt). Similarly,

φ(λt)− φ(λτ )

t − τ
≤

hũ(τ)(λt)− hũ(τ)(λτ )

t − τ
, t < τ,

thus
d

d t

∣∣∣∣
t=τ

φ(λt) ≤ 0. So

d

d t
φ(λt) = 0,

and identity (6) follows.
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• The Hamiltonian system of PMP

λ̇t = h⃗u(t)(λt) (7)

is an extension of the initial control system (1) to the cotangent bundle.

• Indeed, in canonical coordinates λ = (ξ, x) ∈ T ∗M, the Hamiltonian system yields

ẋ =
∂ hu(t)
∂ ξ

= fu(t)(x).

• That is, solutions λt to (7) are Hamiltonian lifts of solutions q(t) to (1):

π(λt) = qu(t).

• Before proving Pontryagin Maximum Principle, we discuss its statement.
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• First we give a heuristic explanation of the way the covector curve λt appears

naturally in the study of trajectories coming to boundary of the attainable set.

• Let

q1 = q̃(t1) ∈ ∂Aq0(t1). (8)

• The idea is to take a normal covector to the attainable set Aq0(t1) near q1, more

precisely � a normal covector to a kind of a convex tangent cone to Aq0(t1) at q1.

• By virtue of inclusion (8), this convex cone is proper.

• Thus it has a hyperplane of support, i.e., a linear hyperplane in Tq1M bounding a

half-space that contains the cone.
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• Further, the hyperplane of support is a kernel of a normal covector λt1 ∈ T ∗
q1M,

λt1 ̸= 0, see �g. below:
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Figure: Hyperplane of support and normal covector to attainable

set Aq0(t1) at the point q1

• The covector λt1 is an analog of Lagrange multipliers.
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• In order to construct the whole curve λt , t ∈ [0, t1], consider the �ow generated by

the control ũ(·):

Pt,t1 =
−→
exp

∫ t1

t
fũ(τ) dτ, t ∈ [0, t1].

• It is easy to see that

Pt,t1(Aq0(t)) ⊂ Aq0(t1), t ∈ [0, t1].

• Indeed, if a point q ∈ Aq0(t) is reachable from q0 by a control u(τ), τ ∈ [0, t],
then the point Pt,t1(q) is reachable from q0 by the control

v(τ) =

{
u(τ), τ ∈ [0, t],
ũ(τ), τ ∈ [t, t1].

• Further, the di�eomorphism Pt,t1 : M → M satis�es the condition

Pt,t1(q̃(t)) = q̃(t1) = q1, t ∈ [0, t1].
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• Thus if q̃(t) ∈ intAq0(t), then q1 ∈ intAq0(t1).

• By contradiction, inclusion (8) implies that

q̃(t) ∈ ∂Aq0(t), t ∈ [0, t1].

• The tangent cone to Aq0(t) at the point q̃(t) = Pt1,t(q1) has the normal covector

λt = P∗
t,t1(λt1).

• By the previous lecture, the curve λt , t ∈ [0, t1], is a trajectory of the Hamiltonian

vector �eld h⃗ũ(t), i.e., of the Hamiltonian system of PMP.
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• One can easily get the maximality condition of PMP as well.

• The tangent cone to Aq0(t1) at q1 should contain the in�nitesimal attainable set

from the point q1:
fU(q1)− fũ(t1)(q1),

i.e., the set of vectors obtained by variations of the control ũ near t1.

• Thus the covector λt1 should determine a hyperplane of support to this set:

⟨λt1 , fu − fũ(t1)⟩ ≤ 0, u ∈ U.

• In other words,

hu(λt1) = ⟨λt1 , fu⟩ ≤ ⟨λt1 , fũ(t1)⟩ = hũ(t1)(λt1), u ∈ U.

• Translating the covector λt1 by the �ow P∗
t,t1 , we arrive at the maximality

condition of PMP:

hu(λt) ≤ hũ(t)(λt), u ∈ U, t ∈ [0, t1].
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• The following statement shows the power of PMP.

Proposition 1

Assume that the maximized Hamiltonian of PMP

H(λ) = max
u∈U

hu(λ), λ ∈ T ∗M,

is de�ned and C 2-smooth on T ∗M \ {λ = 0}.
If a pair (ũ(t), λt), t ∈ [0, t1], satis�es PMP, then

λ̇t = H⃗(λt), t ∈ [0, t1]. (9)

Conversely, if a Lipschitzian curve λt ̸= 0 is a solution to the Hamiltonian system (9),
then one can choose an admissible control ũ(t), t ∈ [0, t1], such that the pair (ũ(t), λt)
satis�es PMP.

• That is, in the favorable case when the maximized Hamiltonian H is C 2-smooth,

PMP reduces the problem to the study of solutions to just one Hamiltonian

system (9).
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• From the point of view of dimension, this reduction is the best one we can expect.

• Indeed, for a full-dimensional attainable set (dimAq0(t1) = n) we have
dim ∂Aq0(t1) = n − 1, i.e., we need an (n − 1)-parameter family of curves to

describe the boundary ∂Aq0(t1).

• On the other hand, the family of solutions to Hamiltonian system (9) with the

initial condition π(λ0) = q0 is n-dimensional.

• Taking into account that the Hamiltonian H is homogeneous:

H(cλ) = cH(λ), c > 0,

thus

etH⃗(cλ0) = cetH⃗(λ0), π ◦ etH⃗(cλ0) = π ◦ etH⃗(λ0),

we obtain the required (n − 1)-dimensional family of curves.

• Now we prove Proposition 1.
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Proof.

• We show that if an admissible control ũ(t) satis�es the maximality condition (13),
then

h⃗ũ(t)(λt) = H⃗(λt), t ∈ [0, t1]. (10)

• By de�nition of the maximized Hamiltonian H,

H(λ)− hũ(t)(λ) ≥ 0 λ ∈ T ∗M, t ∈ [0, t1].

• On the other hand, by the maximality condition of PMP (13), along the extremal

λt this inequality turns into equality:

H(λt)− hũ(t)(λt) = 0, t ∈ [0, t1].

• That is why

dλtH = dλthũ(t), t ∈ [0, t1].

• But a Hamiltonian vector �eld is obtained from di�erential of the Hamiltonian by a

standard linear transformation, thus equality (10) follows.
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• Conversely, let λt ̸= 0 be a trajectory of the Hamiltonian system λ̇t = H⃗(λt).

• In the same way as in the proof of Filippov's theorem, one can choose an

admissible control ũ(t) that realizes maximum along λt :

H(λt) = hũ(t)(λt) = max
u∈U

hu(λt).

• As we have shown above, then there holds equality (10). So the pair (ũ(t), λt)
satis�es PMP.

□
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The geometric statement of PMP with �xed terminal time

Theorem 1 (PMP)

Let ũ(t), t ∈ [0, t1], be an admissible control and q̃(t) = qũ(t) the corresponding

solution of Cauchy problem (1), (2). If q̃(t1) ∈ ∂Aq0(t1), then there exists a

Lipschitzian curve in the cotangent bundle

λt ∈ T ∗
q̃(t)M, 0 ≤ t ≤ t1,

such that

λt ̸= 0, (11)

λ̇t = h⃗ũ(t)(λt), (12)

hũ(t)(λt) = max
u∈U

hu(λt) (13)

for almost all t ∈ [0, t1].
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Proof of the geometric statement of PMP with �xed terminal time
• We start from two auxiliary lemmas.
• Denote the positive orthant in Rm as

Rm
+ = {(x1, . . . , xm) ∈ Rm | xi ≥ 0, i = 1, . . . ,m}.

Lemma 2
Let a vector-function F : Rm → Rn be Lipschitzian, F (0) = 0, and di�erentiable at 0:

∃ F ′
0 =

d F

d x

∣∣∣∣
0

.

Assume that

F ′
0(Rm

+) = Rn.

Then for any neighborhood of the origin O0 ⊂ Rm

0 ∈ intF (O0 ∩ Rm
+).
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Remark 2
The statement of this lemma holds if the orthant Rm

+ is replaced by an arbitrary convex

cone C ⊂ Rm. In this case the proof given below works without any changes.

Proof of Lemma 2.

• Choose points y0, . . . , yn ∈ Rn that generate an n-dimensional simplex centered at

the origin:
1

n + 1

n∑
i=0

yi = 0.

• Since the mapping F ′
0 : Rm

+ → Rn is surjective and the positive orthant Rm
+ is a

convex cone, it is easy to show that restriction to the interior F ′
0|intRm

+
is also

surjective:

∃ vi ∈ intRm
+ such that F ′

0vi = yi , i = 0, . . . , n.

• The points y0, . . . , yn are a�nely independent in Rn, thus their preimages

v0, . . . , vn are also a�nely independent in Rm.
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• The mean

v =
1

n + 1

n∑
i=0

vi

belongs to intRm
+ and satis�es the equality

F ′
0v = 0.

• Further, the subspace

W = span{vi − v | i = 0, . . . , n} ⊂ Rm

is n-dimensional.

• Since v ∈ intRm
+, we can �nd an n-dimensional ball Bδ ⊂ W of a su�ciently small

radius δ centered at the origin such that

v + Bδ ⊂ intRm
+.

• Since F ′
0(vi − v) = F ′

0vi , then F ′
0W = Rn, i.e., the linear mapping F ′

0 : W → Rn

is invertible.
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• Consider the following family of mappings:

Gα : Bδ → Rn, α ∈ [0, α0),

Gα(w) =
1

α
F (α(v + w)), α > 0,

G0(w) = F ′
0w .

• By the hypotheses of this lemma,

F (x) = F ′
0x + o(x), x ∈ Rm, x → 0,

thus

Gα(w) =
1

α
(F ′

0(α(v + w)) + o(α(v + w))) = F ′
0w + o(1), α → 0, w ∈ Bδ.

(14)

• Since the mapping F is Lipschitzian, all mappings Gα are Lipschitzian with a

common constant.
• Thus the family Gα is equicontinuous. Equality (14) means that uniformly in

w ∈ Bδ we have Gα → G0, α → 0.
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• So the continuous mapping Gα ◦ G−1
0 : G0(Bδ) → Rn is uniformly close to the

identity mapping, hence the di�erence Id−Gα ◦ G−1
0 is uniformly close to the zero

mapping.

• For any x̃ ∈ Rn su�ciently close to the origin, the continuous mapping

Id−Gα ◦ G−1
0 + x̃

transforms the set G0(Bδ) into itself.

• By Brower's �xed point theorem, this mapping has a �xed point x ∈ G0(Bδ):

x − Gα ◦ G−1
0 (x) + x̃ = x ,

i.e.,

Gα ◦ G−1
0 (x) = x̃ .

• It follows that intGα(Bδ) ∋ 0, consequently, intF (α(v + Bδ)) ∋ 0 for small α > 0.

Thus intF (O0 ∩ Rm
+) ∋ 0 for a small neighborhood O0 ∈ Rm. □
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• Now we start to compute a convex approximation of the attainable set Aq0(t1) at
the point q1 = q̃(t1) corresponding to a reference control ũ(·).

• Take any admissible control u(t) and express the endpoint of a trajectory via

Variations Formula:

qu(t1) = q0◦
−→
exp

∫ t1

0

fu(τ) dτ = q0◦
−→
exp

∫ t1

0

fũ(τ) + (fu(τ) − fũ(τ)) dτ

= q0◦
−→
exp

∫ t1

0

fũ(τ) dτ◦
−→
exp

∫ t1

0

(
Pt1
τ

)
∗ (fu(τ) − fũ(τ)) dτ

= q1◦
−→
exp

∫ t1

0

(
Pt1
τ

)
∗ (fu(τ) − fũ(τ)) dτ.

• Introduce the following vector �eld depending on two parameters:

gτ,u =
(
Pt1
τ

)
∗ (fu − fũ(τ)), τ ∈ [0, t1], u ∈ U. (15)

• We showed that

qu(t1) = q1◦
−→
exp

∫ t1

0

gτ,u(τ) dτ. (16)

• Notice that gτ,ũ(τ) ≡ 0, τ ∈ [0, t1]. 25 / 29



Lemma 3
Let T ⊂ [0, t1] be the set of Lebesgue points of the control ũ(·). If

cone{gτ,u(q1) | τ ∈ T , u ∈ U} = Tq1M,

then q1 ∈ intAq0(t1).

Remark 3
The set cone{gτ,u(q1) | τ ∈ T , u ∈ U} ⊂ Tq1M is a local convex approximation of the

attainable set Aq0(t1) at the point q1 corresponding to a reference control ũ(·).
• Recall that a point τ ∈ [0, t1] is called a Lebesgue point of a function u ∈ L1[0, t1]

if lim
t→τ

1

|t − τ |

∫ t

τ
|u(θ)− u(τ)| dθ = 0.

• At Lebesgue points of u, the integral

∫ t

0

u(θ) dθ is di�erentiable and

d

d t

(∫ t

0

u(θ) dθ

)
= u(t).
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• The set of Lebesgue points has the full measure in the domain [0, t1].

Proof of Lemma 3.

• We can choose vectors

gτi ,ui (q1) ∈ Tq1M, τi ∈ T , ui ∈ U, i = 1, . . . , k ,

that generate the whole tangent space as a positive convex cone:

cone {gτi ,ui (q1) | i = 1, . . . , k} = Tq1M,

moreover, we can choose points τi distinct: τi ̸= τj , i ̸= j .
• Indeed, if τi = τj for some i ̸= j , we can �nd a su�ciently close Lebesgue point

τ ′j ̸= τj such that the di�erence gτ ′j ,uj (q1)− gτj ,uj (q1) is as small as we wish.

• This is possible since for any τ ∈ T and any ε > 0

1

|t − τ |
meas{t ′ ∈ [τ, t] | |u(t ′)− u(τ)| ≤ ε} → 1 as t → τ.

• We suppose that τ1 < τ2 < · · · < τk .
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• We de�ne a family of variations of controls that follow the reference control ũ(·)
everywhere except neighborhoods of τi , and follow ui near τi (such variations are

called needle-like).
• More precisely, for any s = (s1, . . . , sk) ∈ Rk

+ consider a control of the form

us(t) =

{
ui , t ∈ [τi , τi + si ],
ũ(t), t ̸∈ ∪k

i=1[τi , τi + si ].
(17)

• For small s, the segments [τi , τi + si ] do not overlap since τi ̸= τj , i ̸= j .
• In view of formula (16), the endpoint of the trajectory corresponding to the control

constructed is expressed as follows:

qus (t1) = q0◦
−→
exp

∫ t1

0

fus(t) dt

= q1◦
−→
exp

∫ τ1+s1

τ1

gt,u1 dt ◦ −→
exp

∫ τ2+s2

τ2

gt,u2 dt ◦ · · ·

◦ −→
exp

∫ τk+sk

τk

gt,uk dt.
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• The mapping

F : s = (s1, . . . , sk) 7→ qus (t1)

is Lipschitzian, di�erentiable at s = 0, and

∂ F

∂ si

∣∣∣∣
s=0

= gτi ,ui (q1).

• By Lemma 2,

F (0) = q1 ∈ intF (O0 ∩ Rk
+)

for any neighborhood O0 ⊂ Rk .

• But the curve qus (t), t ∈ [0, t1], is an admissible trajectory for small s ∈ Rk
+, thus

F (O0 ∩ Rk
+) ⊂ Aq0(t1) and q1 ∈ intAq0(t1).

□
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