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Plan of previous lecture

Exterior differential
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Plan of this lecture

. Geometric statement of PMP and discussion
. Proof of the geometric statement of PMP with fixed terminal time
. Geometric statement of PMP for free time

. PMP for optimal control problems
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Pontryagin Maximum Principle
Geometric statement of PMP and discussion

Consider an optimal control problem for a control system
g = fu(q), geM, veUCR™, (1)

with the initial condition
q(0) = qo (2)
Define the following family of Hamiltonians:

PN = (M @), AETIM, g€ M, ue U.

In terms of the previous lecture,

Fix an arbitrary instant t; > 0.
In Lecture 1 we reduced the optimal control problem to the study of boundary of
attainable sets.
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Reduction to Study of Attainable Sets

Theorem 1
Let q5(t), t € [0, t1], be an optimal trajectory in the optimal control problem with the
fixed terminal time t1. Then qg(t1) € 0A(0,q0)(t1)-

Y1 o+

Figure: gz(t) optimal
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® Now we give a necessary optimality condition in this geometric setting.

Theorem 2 (PMP)

Let u(t), t € [0, t1], be an admissible control and q(t) = q(t) the corresponding
solution of Cauchy problem (1), (2). If q(t1) € 0.Ag,(t1), then there exists a
Lipschitzian curve in the cotangent bundle

)\te Tg(t)M, Ogtgt]_,
such that
/\t # 07 (3)
At = hg(e)(Ae), (4)
b () = ma hu(\) )

for almost all t € [0, t1].
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e If u(t) is an admissible control and A; a Lipschitzian curve in T*M such that
conditions (11)—(13) hold, then the pair (u(t), A¢) is said to satisfy PMP

® In this case the curve \; is called an extremal, and its projection g(t) = m(\¢) is
called an extremal trajectory.

Remark 1
If a pair (4(t), A¢) satisfies PMP, then

hi(s)(At) = const, te0,t]. (6)

Indeed, since the admissible control u(t) is bounded, we can take maximum in (13)
over the compact {u(t) |t € [0,t1]} = U.

Further, the function ¢(A) = max, g hu(}) is Lipschitzian w.r.t. A € T*M. We show
that this function has zero derivative.
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For optimal control u(t),
©(Ae) > hgry(Ae), ©(Ar) = hgry(Ar),

thus A \ A \
90(/\f) - 90()‘7) > u(r)( t) - u(T)( ‘I')7 £ 7
t—T1 t—T
Consequently,
d
at|. ©(At) > {hgr), har} =0
if 7 is a differentiability point of ¢(\;). Similarly,
- hg(ry(At) = hgry (A
P = e(Ar) _ o) — han ()

t—T1 - t—1T1

d
thus at|,_ ©(A¢) <0. So

d
—_— )\ =
dt(p( t) 07

and identity (6) follows.

8/29



The Hamiltonian system of PMP

At = hyry(Ae) (7)
is an extension of the initial control system (1) to the cotangent bundle.

Indeed, in canonical coordinates A = (£, x) € T*M, the Hamiltonian system yields

. Ohye
X = 8§ = fu(t)(x)'

That is, solutions A; to (7) are Hamiltonian lifts of solutions g(t) to (1):

Before proving Pontryagin Maximum Principle, we discuss its statement.

9/29



First we give a heuristic explanation of the way the covector curve \; appears
naturally in the study of trajectories coming to boundary of the attainable set.

Let

q1 = q(t1) € 0Ag (1) (8)
The idea is to take a normal covector to the attainable set Aq,(t1) near g1, more
precisely — a normal covector to a kind of a convex tangent cone to Ag,(t1) at gi.
By virtue of inclusion (8), this convex cone is proper.

Thus it has a hyperplane of support, i.e., a linear hyperplane in Tq, M bounding a
half-space that contains the cone.
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® Further, the hyperplane of support is a kernel of a normal covector A, € T M,

Ay # 0, see fig. below:
Aty

Y4

Figure: Hyperplane of support and normal covector to attainable
set Ag, (t1) at the point gy

® The covector )¢, is an analog of Lagrange multipliers.
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In order to construct the whole curve A¢, t € [0, 1], consider the flow generated by

the control u(-):
— f

Pt,tl —=exp fg(T) dT, t e [0, tl].
t

It is easy to see that

’Dt,tl(‘ACIo(t)) - Aqo(t1)7 t e [0, t1].

Indeed, if a point g € Ag,(t) is reachable from qo by a control u(7), 7 € [0, t],
then the point P: 4 (q) is reachable from go by the control

u(t), 7e€][0,t],

v(r) = { i(r), e[t n]
Further, the diffeomorphism Pt : M — M satisfies the condition

Peu(q(t)) =q(t)) =q,  te[0,t].
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Thus if g(t) € int Agy(t), then g1 € int Agy(t1).
By contradiction, inclusion (8) implies that

q(t) € 0A4(t), t €0, ty].

The tangent cone to Ag,(t) at the point g(t) = P, +(q1) has the normal covector
At = Piy (M)

By the previous lecture, the curve A, t € [0, 1], is a trajectory of the Hamiltonian
vector field hg(y), i.e., of the Hamiltonian system of PMP.
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One can easily get the maximality condition of PMP as well.

The tangent cone to Ag,(t1) at g1 should contain the infinitesimal attainable set
from the point ¢;:

fu(qr) — faey)(q1),
i.e., the set of vectors obtained by variations of the control u near t;.
Thus the covector A\, should determine a hyperplane of support to this set:

<)‘t1a fy — fﬁ(t1)> <0, ueU.
In other words,

hu()\tl) = <)‘t17 fu> S <)\t17 fﬁ(t1)> = hﬁ(tl)(Ah)v ve U.

Translating the covector Ay, by the flow Py, , we arrive at the maximality

condition of PMP:
hu(At) < hﬁ(t)(At)7 ue U, te [07 tl]'
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® The following statement shows the power of PMP.
Proposition 1
Assume that the maximized Hamiltonian of PMP
H(\) = max hy(N), AeT"M,
ue

is defined and C2-smooth on T*M \ {\ = 0}.
If a pair (u(t), A¢), t € [0, t1], satisfies PMP, then

Ae=H(\),  telo, ] (9)

Conversely, if a Lipschitzian curve \; # 0 is a solution to the Hamiltonian system (9),
then one can choose an admissible control u(t), t € [0, t1], such that the pair (u(t), A¢)
satisfies PMP.
e That is, in the favorable case when the maximized Hamiltonian H is C2-smooth,
PMP reduces the problem to the study of solutions to just one Hamiltonian
system (9).
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From the point of view of dimension, this reduction is the best one we can expect.

Indeed, for a full-dimensional attainable set (dim Ag,(t1) = n) we have
dim0Ag(t1) = n—1, i.e., we need an (n — 1)-parameter family of curves to
describe the boundary 0.Aq,(t1).

On the other hand, the family of solutions to Hamiltonian system (9) with the
initial condition m(\g) = qo is n-dimensional.

Taking into account that the Hamiltonian H is homogeneous:
H(cA) = cH()), c>0,

thus

—

etf(cho) = cetfl(No),  moetf(chg) = moetf(No),

—

we obtain the required (n — 1)-dimensional family of curves.

Now we prove Proposition 1.
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Proof.

® \We show that if an admissible control u(t) satisfies the maximality condition (13),
then
hﬁ(t)()\t) = H(At), te [0, tl]. (10)

By definition of the maximized Hamiltonian H,

H(\) — hg(t)()\) >0 AeT*M, tel0,t].

On the other hand, by the maximality condition of PMP (13), along the extremal
At this inequality turns into equality:

H(At) — hge)(Ae) =0, t €0, t1].

That is why
d)\tH = d)\thg(t), t e [0, tl].

But a Hamiltonian vector field is obtained from differential of the Hamiltonian by a
standard linear transformation, thus equality (10) follows.
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e Conversely, let \; # 0 be a trajectory of the Hamiltonian system \; = H(At).

® |n the same way as in the proof of Filippov’s theorem, one can choose an
admissible control u(t) that realizes maximum along A

H()\t) = hﬁ(t)()\f) = Teagj( hu()\t)

® As we have shown above, then there holds equality (10). So the pair (u(t), A¢)
satisfies PMP.
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The geometric statement of PMP with fixed terminal time

Theorem 1 (PMP)

Let u(t), t € [0, t1], be an admissible control and q(t) = q(t) the corresponding
solution of Cauchy problem (1), (2). If q(t1) € 0.Aq,(t1), then there exists a
Lipschitzian curve in the cotangent bundle

At € g(t)M, 0<t<t,
such that
At # 0, (11)
Ae = han(Ne)s (12)
hiey(Ae) = max hy(At) (13)

for almost all t € [0, t,].
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Proof of the geometric statement of PMP with fixed terminal time

e \We start from two auxiliary lemmas.
® Denote the positive orthant in R™ as

RT ={(x1,...,xm) €ER" | x; >0, i=1,...,m}.

Lemma 2

Let a vector-function F : R™ — R" be Lipschitzian, F(0) = 0, and differentiable at 0:

dF

0

Assume that
RRT) = R".
Then for any neighborhood of the origin Oy C R™

0 cint F(Og NRT).
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Remark 2
The statement of this lemma holds if the orthant R is replaced by an arbitrary convex
cone C C R™. In this case the proof given below works without any changes.

Proof of Lemma 2.
® Choose points yg, ..., ¥, € R" that generate an n-dimensional simplex centered at

1 n
e origin ] ,-E_O yi=0

® Since the mapping Fy : RT — R" is surjective and the positive orthant R is a
convex cone, it is easy to show that restriction to the interior F|. . pm is also
+

surjective:
Jvi €intR] suchthat Fyvi=y;, i=0,...,n.

® The points yg, ..., y, are affinely independent in R”, thus their preimages
Vo, ..., Vy are also affinely independent in R™.
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® The mean
n

1
v = Vi

n+1 P

belongs to intR"" and satisfies the equality
Fgv = 0.
® Further, the subspace
W =span{v;—v|i=0,...,n} CR™

is n-dimensional.
® Since v € int R, we can find an n-dimensional ball B; C W of a sufficiently small

radius & centered at the origin such that
v+ Bs CintRY.
® Since Fy(vi — v) = Fjv;, then FfW =1R", i.e., the linear mapping Fj : W — R”

is invertible.
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Consider the following family of mappings:
Gy : Bs = R", a € [0, ),
Go(w) = éF(a(v—i—w)), a>0,
Go(w) = Fyw.
By the hypotheses of this lemma,
F(x) = Fix +o(x), x€eR™ x—0,

thus

Ga(w) = é(Fé(a(v +w)) + o(a(v+ W) = Fiw +o(1), a0, w e Bs.
(14)

Since the mapping F is Lipschitzian, all mappings G, are Lipschitzian with a
common constant.
Thus the family G, is equicontinuous. Equality (14) means that uniformly in

w € Bs we have G, — Gp, a — 0.
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So the continuous mapping G, o GO_1 . Go(Bs) — R is uniformly close to the
identity mapping, hence the difference Id — G, o GO_1 is uniformly close to the zero

mapping.
For any X € R" sufficiently close to the origin, the continuous mapping
Id =Gy o Gyt + %
transforms the set Go(Bjs) into itself.
By Brower’s fixed point theorem, this mapping has a fixed point x € Gy(Bs):

X — Gy o Gy H(x) + % = x,

ie.,
Ga 0 Gy H(x) = %.

It follows that int G,(Bs) > 0, consequently, int F(a(v + Bs)) > 0 for small o > 0.
Thus int F(Op NRT) > 0 for a small neighborhood Op € R™. O
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® Now we start to compute a convex approximation of the attainable set A, (t1) at
the point g1 = g(t1) corresponding to a reference control u(-).

® Take any admissible control u(t) and express the endpoint of a trajectory via
Variations Formula:

t1 t1
qu(t1) = qoo 675/ fu(r) AT = qoo 675/ far) + (fury — far)) d7
0 0
. [51 N t
= qo° exp / fU(T) dro exp / (Pﬁl)* (fu(r) — fU(T)) dr
0 0

t1
= qi° 67[)) / (Pil)* (fU(T) - fE(T)) dr.
0
¢ |ntroduce the following vector field depending on two parameters:
&ru= (Pﬁl)* (fu — fg(T)), T € [0, tl], ueU. (15)
® We showed that
— t
qu(tl) = qi° exp/ &r,u(T) dr. (16)
0

® Notice that g, ;) =0, T € [0, t1].



Lemma 3
Let T C [0, t1] be the set of Lebesgue points of the control u(-). If

cone{gru(qu) | T€T, ue U} =TyM,

then q1 € int Ag,(t1).

Remark 3
The set cone{g, ,(q1) | 7€ T, u€ U} C Ty, M is a local convex approximation of the
attainable set A, (t1) at the point g; corresponding to a reference control u(-).

¢ Recall that a point 7 € [0, t1] is called a Lebesgue point of a function u € L]0, t;]

if lim / ) —u(7)| d6 = 0.
t*)T‘t |

® At Lebesgue points of u, the integral / u(0) do is differentiable and
0

% </0t u(6) de) = u(t).
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® The set of Lebesgue points has the full measure in the domain [0, ;].
Proof of Lemma 3.
® We can choose vectors

gru(q) € TuyM, €T, wuel, i=1,... k,
that generate the whole tangent space as a positive convex cone:
cone {gThUi(ql) | = 17 sty k} = TCth

moreover, we can choose points 7; distinct: 7; # 7j, i # j.

® Indeed, if 7; = 7; for some i # j, we can find a sufficiently close Lebesgue point
7/ # 7j such that the difference gTJg’uj(ql) — &r,,u;(q1) is as small as we wish.

® This is possible since for any 7 € 7 and any ¢ > 0

T ’meas{t’E[T,t] | u(t) —u(T)|<e}—last—T.
-7

® We suppose that i < 7 < -+ < 7%.
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We define a family of variations of controls that follow the reference control u(-)

everywhere except neighborhoods of 7;, and follow u; near 7; (such variations are
called needle-like).

More precisely, for any s = (s1,...,5¢) € Ri consider a control of the form
uj, tG[Ti,Ti+Si],
us(t) =9 ~ 17
s(t) { u(t), t¢ U,’-‘Zl[T,-,T,- + si]. (17)

For small s, the segments [7;, 7; + s;] do not overlap since 7; # 7}, i # j.
In view of formula (16), the endpoint of the trajectory corresponding to the control
constructed is expressed as follows:

51
Gu(tt) = goo &P / Fonte) dt
0

N T1+Ss1 . T2+52
= q10 exp 8t,uy dt o exp 8tu, dt o+
T1 T2
N Tk+Sk
o exp 8t,u, dt.

Tk
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® The mapping
F : s=(s1,...,5) — qu.(t1)
is Lipschitzian, differentiable at s =0, and

OF
85; s—0

= gThUi(ql)’

® By Lemma 2,
F(0) = q1 € int F(Og NRX)
for any neighborhood Oy C RX.

® But the curve q,(t), t € [0, 1], is an admissible trajectory for small s € Rk, thus
F(Oo ﬂRi) C Aqo(tl) and g € intAqo(tl).
U

20/29



