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Exterior differential

e First of all, it is obvious from the Stokes formula that d : AKM — A*T1M is a
linear operator.
e Further, if F : M — N is a diffeomorphism, then

dFw = Fdw, we NN (1)
® |ndeed, if W C M, then

/ w = / ﬁw, we NN,
F(W) w

/dﬁw = / Aw:/ w:/ w
w ow F(ow) OF (W)

and equality (1) follows.

thus
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® Another basic property of exterior differential is given by the equality
dod=0,

which follows since 9(ON) = 0 for any submanifold with boundary N C M.
e Exterior differential is an antiderivation:

d(wl /\O)Q) = (dw1) N wo + (—1)k1W1 A dwy, wj € /\k’M,

this equality is dual to the formula of boundary O(N; x Ny).
® In local coordinates exterior differential is computed as follows: if

w = Z é),‘l__,'kC/X,'1 VANRAN dX,'k, aj,..i, € COO,
i< <l
then
dw = Z (da,-l_,_,-k) N (J'X,'1 VANPAN dX,'k,
i< <ig

this formula is forced by above properties of differential forms.
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Lie derivative of differential forms
The “infinitesimal version” of the pull-back P of a differential form by a flow P is
given by the following operation.
Lie derivative of a differential form w € AKM along a vector field f € Vec M is the
differential form Lfw € A*M defined as follows:

def d Y
Lrw = —| efw. 2
o & | T (2)
Since

etf (w1 Awy) = etfwy A etfws,
Lie derivative Ly is a derivation of the algebra of differential forms:
Lf(wl VAN WQ) = (wal) Awr +wi A Lrws.
Further, we have . -
etf o d = doett‘7
thus
Lrod =dolLs.
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® For O-forms, Lie derivative is just the directional derivative:
Lra = fa, ae C*(M),

since etfa=aoel’ isa substitution of variables.

® Now we obtain a useful formula for the action of Lie derivative on differential
forms of an arbitrary order.
e Consider, along with exterior differential

d: A"M — NIm
the interior product of a differential form w with a vector field f € Vec M:
ir : NM = ATV,
(ffw)(vay .oy vik—1) def wW(fy Vi, ooy V1), weNM, v e TqM,

which acts as substitution of 7 for the first argument of w. By definition, for
0-order forms
ira=0, ac oM.
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Interior product is an antiderivation, as well as the exterior differential:
if(wr Awa) = (ifwr) A wp + (—1)k1w1 A ifwy, wj € A<M,

Now we prove that Lie derivative of a differential form of an arbitrary order can be
computed by the following formula:

Le=doif+ifod (3)

called Cartan’s formula, for short “L = di + id".

Notice first of all that the right-hand side in (3) has the required order:
doif+ifod : NM — AM.

Further, d o ir + if o d is a derivation as it is obtained from two antiderivations.
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Moreover, this derivation commutes with differential:

do(doif+if0d):d0if0d,
(doif+ifod)od=doirod.

Now we check the formula L = di + id on 0-forms: if a € A°M, then

(d o if)a = 0,
(irod)a= (da, f) = fa= Lra.

So the formula L = di + id holds for 0-forms.

The properties of the mappings L and d o ir + if o d established and the
coordinate representation of differential forms reduce the general case of k-forms
to the case of 0-forms.

Cartan’s formula L = di + id is proved for k-forms.
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¢ The differential definition (2) of Lie derivative can be integrated, i.e., there holds
the following equality on AXM:

t A t
<e7p / f d7> —exp / Le dr, (4)
0 0

in the following sense.

t1
® Denote the flow P! :eﬁ)/ fr d7 of a nonautonomous vector field f- on M.
to
® The family of operators on differential forms P§ : AM — AM is a unique
solution of the Cauchy problem

din Ptol,, Pt

compare with Cauchy problems for the flow P} and for the family of operators
Ad P{, and this solution is denoted as

=l (5)

—

t def 57 — t o
exp Le dT7 = PE= (exp / f, dT)
0 0
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In order to verify the ODE in (5), we prove first the following equality for operators

on forms:
d

de

This equality is straightforward for 0-order forms:

PIew = Lew,  weNM. (6)
e=0

d

de

—_—
Pf-&-sa _ -

=gz ao Pl = fia= Lya, ae C¥(M).

e=0

e=0

Further, the both operators dis}g:O PEe and Ly, commute with d and satisfy the
Leibniz rule w.r.t. product of a function with a differential form.

Then equality (6) follows for forms of arbitrary order, as in the proof of Cartan’s
formula.
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® Now we easily verify the ODE in (5):

d = d| == d —
— _pt— —_ Pt+€ - Pt Pt-‘ra
gt 0= gz 0|, (e P)

by the composition rule for pull-back of differential forms

/t+\
£
Pt
e=0

~ ——  ~
Pto Pfte = pto —

0 t 0 d
€l £

=Plo L.

Exercise 1
Prove uniqueness for Cauchy problem (5).
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For an autonomous vector field f € Vec M, equality (4) takes the form
gt\f = eflr,
Notice that the Lie derivatives of differential forms Ls and vector fields (— ad f)

are in a certain sense dual one to another, see equality (7) below.
That is, the function

(W, X) © g (wg, X(q)),  qeM,
defines a pairing of A'M and Vec M over C>°(M). Then the equality
(Pw,X) = P{w,Ad P~1 X), P € Diff M, X € VecM, w € A'M,
has an infinitesimal version of the form
(Lyw, X) = Y{w,X) — (w,(ad Y)X), X, YeVecM, weA'M. (7)

Taking into account Cartan’s formula L = di + id, we immediately obtain the
following important equality:

dw(Y,X) = Y(w, X) = X{w,Y)—(w,[Y,X]), X, YecVecM, weA'M. (8)
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Elements of Symplectic Geometry
Liouville form and symplectic form
We have already seen that the cotangent bundle T*M = Ugepm Ty M of an
n-dimensional manifold M is a 2n-dimensional manifold. Any local coordinates
x = (X1,...,Xp) on M determine canonical local coordinates on T*M of the form
(§,x) = (&15---&ni X1,- -+, Xa) in which any covector A € Ty M has the
decomposition A = Y7 &; dx,-]qo.
The “tautological” 1-form (or Liouville 1-form) on the cotangent bundle
se NY(T*M)

is defined as follows.
Let A € T*M be a point in the cotangent bundle and w € T)\(T*M) a tangent
vector to T*M at A.
Denote by 7 the canonical projection from T*M to M:

T T"M —= M,

T AP q, AETGM.
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Differential of 7 is a linear mapping
st TA(T"M) = TgM, g =7(N).

The tautological 1-form s at the point \ acts on the tangent vector w in the
following way:
def
(sn,w) = (A, mew).

That is, we project the vector w € T\(T*M) to the vector m,w € T4M, and then

act by the covector A € T/ M.
So

def
Sy = AOT.
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e The title “tautological” is explained by the coordinate representation of the form s.
® In canonical coordinates (£, x) on T*M, we have:

A= Z Erdxi, (9)
i=1

n
0 0
w = Qi— + Pim.
2 5g o
=
® The projection written in canonical coordinates

m (€, %) x

is a linear mapping, its differential acts as follows:
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® Thus .
0
mew =2 Bige
i=1 !
consequently,

(v w) = (A mw) =Y &6

i=1
® But §; = (dx;, w), so the form s has in coordinates (¢, x) exactly the same

expression
n
sv= Gidx
i=1

as the covector \, see (9).
e Although, definition of the form s does not depend on any coordinates.

Remark 1
In mechanics, the tautological form s is denoted as p dgq.

(10)
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Consider the exterior differential of the 1-form s:

def
o = ds.

The differential 2-form o € A2(T*M) is called the canonical symplectic structure
on T*M.
In canonical coordinates, we obtain from (10):

o= d&Adx. (11)
i=1

This expression shows that the form o is nondegenerate, i.e., the bilinear
skew-symmetric form

o) - T)\(T*M) X TA(T*M)%R
has no kernel:
ow,)=0 = w=0, w e Th(T*M).
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¢ In the following basis in the tangent space T)(T*M)

o 0 o 0
FPr TR PAN T
0 1
-1 0
the form o has the block matrix
0 1
-1 0

® The form o is closed: do =0 since it is exact: 0 = ds, and d o d = 0.

Remarks
(1) A closed nondegenerate exterior differential 2-form on a 2n-dimensional manifold is

called a symplectic structure. A manifold with a symplectic structure is called a
symplectic manifold. The cotangent bundle T*M with the canonical symplectic
structure o is the most important example of a symplectic manifold.

(2) In mechanics, the 2-form ¢ is known as the form dp A dg.
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Hamiltonian vector fields

Due to the symplectic structure o € A?(T*M), we can develop the Hamiltonian
formalism on T*M.

A Hamiltonian is an arbitrary smooth function on the cotangent bundle:
he C®(T*M).

To any Hamiltonian h, we associate the Hamiltonian vector field
h € Vec(T*M)

by the rule:

ox(h)=dyh,  Ae T*M. (12)
In terms of the interior product i,w(-, ) = w(v,-), the Hamiltonian vector field is a
vector field h that satisfies

iHO' = —dh.
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® Since the symplectic form o is nondegenerate, the mapping
w — ox(-, w)

is a linear isomorphism
T\(T*M) — Tx(T*M),

thus the Hamiltonian vector field A in (12) exists and is uniquely determined by the
Hamiltonian function h.

® In canonical coordinates (&, x) on T*M we have
"~ (9h O h
dh = —d&+ —dxi ),
,Z;<5fi S o X>

then in view of (11)

N ) dh 0
h = — . 1
;(a&ax,- ax,-‘o‘g,) (13)
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® So the Hamiltonian system of ODEs corresponding to h
A=h()\), e T*M,

reads in canonical coordinates as follows:

X-——ah i=1 n
’_85", ) ) M
é;'__ah _1

1 — 8Xl7 I_ b 7n

® The Hamiltonian function can depend on a parameter: h;, t € R. Then the
nonautonomous Hamiltonian vector field h;, t € R is defined in the same way as in
the autonomous case.

® The flow of a Hamiltonian system preserves the symplectic form o.
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Proposition 1
Let Ht be a nonautonomous Hamiltonian vector field on T*M. Then

. _
<e7p>> / h, dT) o=o.
0
Proof:

® In view of equality (4), we have

t /\ t
<e?f>/ thT> —exp | L dr,
0 o

thus the statement of this proposition can be rewritten as Lﬁta =0.
e But this Lie derivative is easily computed by Cartan’s formula:

LHtU: iﬁto ci(; +do iﬁta = —dodh =0.
=—dh;
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® Moreover, there holds a local converse statement: if a flow preserves o, then it is
locally Hamiltonian.

® |ndeed, -
t
<e?p>)/f7d7> c=0 <& Lio=0,
0
further
Lro =i o do +doigo,
=0
thus

Lro=0 <& doiro=0.

e If the form ifo is closed, then it is locally exact (Poincaré’s Lemma), i.e., there
exists a Hamiltonian h; such that locally f; = Et.

® Essentially, only Hamiltonian flows preserve o (globally, “multi-valued
Hamiltonians” can appear).

e |f a manifold M is simply connected, then there holds a global statement: a flow

on T*M is Hamiltonian if and only if it preserves the symplectic structure.
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The Poisson bracket of Hamiltonians a, b € C*>°(T*M) is a Hamiltonian
{a,b} € C=(T*M)
defined in one of the following equivalent ways:
{a,b} = b = (db, 3) = 0(3,b) = —o(b,3) = —ba.
It is obvious that Poisson bracket is bilinear and skew-symmetric:

{a, b} = —{b, a}.

In canonical coordinates (£, x) on T*M,
~(0adb 0adb
b} = - .
ta. b} iz_;<ag,-ax,- 8x,~8£,'>
Leibniz rule for Poisson bracket easily follows from definition:

{a,bc} = {a,b}c+ b{a,c}

(here bc is the usual pointwise product of functions b and c).

(14)
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Symplectomorphisms of cotangent bundle preserve Hamiltonian vector fields; the
action of a symplectomorphism P € Diff(T*M), Po = o, on a Hamiltonian vector
field h reduces to the action of P on the Hamiltonian function as substitution of
variables:
—
AdPh=Ph.

This follows from the chain
o (X,Ad PH) — Po (X,Ad PE) — Po (Ad pLlX, E)
"
— P(dh,AdP"1 X) = X(Ph) = & <X, Ph) . X € Vec(T*M).

In particular, a Hamiltonian flow transforms a Hamiltonian vector field into a
Hamiltonian vector field:

- t
Ad Pt b, =P'b,, P! :eTp/o 3. dr. (15)

Infinitesimally, this equality implies Jacobi identity for Poisson bracket.
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Proposition 2

{a,{b,c}} +{b,{c,a}} +{c,{a,b}} =0, a,b,c e C*(T*M). (16)

Proof:

¢ Any symplectomorphism P € Diff(T*M), Po = o, preserves Poisson brackets:
= —~ - —_—r —
P{b,c} = Po (b, E) — Po (Ad P b, Ad PE) — 0 (Pb, Pc> — {Pb, Pc}).

e Taking P = e'? and differentiating at t = 0, we come to Jacobi identity:

{a, {b’ C}} - {{a’ b}v C} + {bv {a, C}}
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® So the space of all Hamiltonians C°°(T*M) forms a Lie algebra with Poisson
bracket as a product.

® The correspondence
ar— a, ae C®(T*M), (17)

is a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra of
Hamiltonian vector fields on M. This follows from the next statement.

Corollary 1

iy .
{a, b}= [a, b| for any Hamiltonians a,b € C>*(T*M).
Proof:

® Jacobi identity can be rewritten as

{{av b}v C} - {37 {b, C}} - {bv {a, C}}v

— - —
{a,b} c=3dobc—bodc=]a b|c, ce C®(T*M).
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® |t is easy to see from the coordinate representation (13) that the kernel of the
mapping a — & consists of constant functions, i.e., this is isomorphism up to
constants.

® On the other hand, this homomorphism is far from being onto all vector fields on
T*M.
® Indeed, a general vector field on T*M is locally defined by arbitrary 2n smooth real

functions of 2n variables, while a Hamiltonian vector field is determined by just one
real function of 2n variables, a Hamiltonian.
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Theorem 2 (NGther)
A function a € C>®°(T*M) is an integral of a Hamiltonian system of ODEs

A=h()), e T*M, (18)

ie.,

etha=a t € R,

if and only if it Poisson-commutes with the Hamiltonian:
{a,h} =0.

Proof:
® etha=as 0=nha={hal.
Corollary 3

etﬁh = h, i.e., any Hamiltonian h € C°>°(T*M) is an integral of the corresponding
Hamiltonian system (18).
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® Further, Jacobi identity for Poisson brackets implies that the set of integrals of the
Hamiltonian system (18) forms a Lie algebra with respect to Poisson brackets.

Corollary 4
{h,a} ={h,b} =0= {h,{a,b}} =0.

Remark 2
The Hamiltonian formalism developed generalizes for arbitrary symplectic manifolds.
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Linear on fibers Hamiltonians

® We introduce a construction that works only on T*M. Given a vector field
X € Vec M, we define a Hamiltonian function

X* e C®(T*M),
which is linear on fibers T;I\/I, as follows:
X*(N\) = (A X(q)), AeT*M, q=mr(N).

® In canonical coordinates (£, x) on T*M we have:

X= Za, e X > ai) (19)
® This coordinate representation implies that
{X*, Y*} =[X, Y], X,Y € VecM,

i.e., Poisson brackets of Hamiltonians linear on fibers in T*M contain usual Lie

brackets of vector fields on M.
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H
® The Hamiltonian vector field X*€ Vec(T*M) corresponding to the Hamiltonian
function X* is called the Hamiltonian lift of the vector field X € Vec M.

e |t is easy to see from the coordinate representation (19) that

N
e X*= X.
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Now we pass to nonautonomous vector fields. Let X; be a nonautonomous vector

field and .
Pre=ep [ Xodo

the corresponding flow on M.
The flow P = P, ; acts on M:

P: MM, P:q — qi,
its differential pushes tangent vectors forward:
Py : TeoM — Tg, M,
and the dual mapping P* pulls covectors back:
P*: TyyM — To M.
Thus we have a flow on covectors (i.e., on points of the cotangent bundle):
Py T"M — T*M.
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® Let V; be the nonautonomous vector field on T*M that generates the flow P} ,:

d

V= —
t de

t,t+e-

e=0

® Then
d _, d

d
9 pr 9 £ _
dt ™' de

* * *
T T de Pt»t+€ © P‘r,t = Vio P‘nt’

e=0

e=0
so the flow P;, is a solution to the Cauchy problem

S pr=VioPl Pl =

i.e., it is the left chronological exponential:

t
P;f?t:é?p/ Vy db.
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It turns out that the nonautonomous field V4 is simply related with the
Hamiltonian vector field corresponding to the Hamiltonian X}

E—
Vt == — X:( .
Indeed, the flow P}, preserves the tautological form s, thus
L\/ts =0.

By Cartan’s formula,
I.\/tO' = —d<5, Vt>,

i.e., the field V4 is Hamiltonian:
H

Vi =(s, Vi) .
But m, Vi = —X;, consequently,
(s, Vi) = =X,
and equality (20) follows.

(20)
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® Taking into account the relation between the left and right chronological
exponentials, we obtain

T —

t —
P*7t:e?p/ —X; do=exp | X; db.
T

T
t
® We proved the following statement.

Proposition 3
Let X; be a complete nonautonomous vector field on M. Then

t * T —»
<e7p/ X9d9> —exp | X df.
T t

® |n particular, for autonomous vector fields X € Vec M,

x\* Xt
() ek
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