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Plan of previous lecture

1. Derivative of �ow with respect to parameter

2. Di�erential 1-forms

3. Di�erential k-forms

4. Exterior di�erential
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Plan of this lecture

1. Exterior di�erential

2. Lie derivative of di�erential forms

3. Liouville form and symplectic form

4. Hamiltonian vector �elds

5. Linear on �bers Hamiltonians
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Exterior di�erential
• First of all, it is obvious from the Stokes formula that d : ΛkM → Λk+1M is a

linear operator.
• Further, if F : M → N is a di�eomorphism, then

dF̂ω = F̂ dω, ω ∈ ΛkN. (1)

• Indeed, if W ⊂ M, then∫
F (W )

ω =

∫
W

F̂ω, ω ∈ ΛkN,

thus ∫
W

dF̂ω =

∫
∂W

F̂ω =

∫
F (∂W )

ω =

∫
∂F (W )

ω =

∫
F (W )

dω

=

∫
W

F̂ dω,

and equality (1) follows.
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• Another basic property of exterior di�erential is given by the equality

d ◦ d = 0,

which follows since ∂(∂N) = ∅ for any submanifold with boundary N ⊂ M.

• Exterior di�erential is an antiderivation:

d(ω1 ∧ ω2) = (dω1) ∧ ω2 + (−1)k1ω1 ∧ dω2, ωi ∈ ΛkiM,

this equality is dual to the formula of boundary ∂(N1 × N2).
• In local coordinates exterior di�erential is computed as follows: if

ω =
∑

i1<···<ik

ai1...ikdxi1 ∧ . . . ∧ dxik , ai1...ik ∈ C∞,

then

dω =
∑

i1<···<ik

(dai1...ik ) ∧ dxi1 ∧ . . . ∧ dxik ,

this formula is forced by above properties of di�erential forms.
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Lie derivative of di�erential forms
• The �in�nitesimal version� of the pull-back P̂ of a di�erential form by a �ow P is

given by the following operation.
• Lie derivative of a di�erential form ω ∈ ΛkM along a vector �eld f ∈ VecM is the

di�erential form Lf ω ∈ ΛkM de�ned as follows:

Lf ω
def
=

d

d ε

∣∣∣∣
ε=0

êεf ω. (2)

• Since

êtf (ω1 ∧ ω2) = êtf ω1 ∧ êtf ω2,

Lie derivative Lf is a derivation of the algebra of di�erential forms:

Lf (ω1 ∧ ω2) = (Lf ω1) ∧ ω2 + ω1 ∧ Lf ω2.

• Further, we have

êtf ◦ d = d ◦ êtf ,
thus

Lf ◦ d = d ◦ Lf . 6 / 37



• For 0-forms, Lie derivative is just the directional derivative:

Lf a = fa, a ∈ C∞(M),

since êtf a = a ◦ etf is a substitution of variables.
• Now we obtain a useful formula for the action of Lie derivative on di�erential

forms of an arbitrary order.
• Consider, along with exterior di�erential

d : ΛkM → Λk+1M

the interior product of a di�erential form ω with a vector �eld f ∈ VecM:

if : ΛkM → Λk−1M,

(if ω)(v1, . . . , vk−1)
def
= ω(f , v1, . . . , vk−1), ω ∈ ΛkM, vi ∈ TqM,

which acts as substitution of f for the �rst argument of ω. By de�nition, for

0-order forms

if a = 0, a ∈ Λ0M.
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• Interior product is an antiderivation, as well as the exterior di�erential:

if (ω1 ∧ ω2) = (if ω1) ∧ ω2 + (−1)k1ω1 ∧ if ω2, ωi ∈ ΛkiM.

• Now we prove that Lie derivative of a di�erential form of an arbitrary order can be

computed by the following formula:

Lf = d ◦ if + if ◦ d (3)

called Cartan's formula, for short �L = di + id �.

• Notice �rst of all that the right-hand side in (3) has the required order:

d ◦ if + if ◦ d : ΛkM → ΛkM.

• Further, d ◦ if + if ◦ d is a derivation as it is obtained from two antiderivations.
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• Moreover, this derivation commutes with di�erential:

d ◦ (d ◦ if + if ◦ d) = d ◦ if ◦ d ,
(d ◦ if + if ◦ d) ◦ d = d ◦ if ◦ d .

• Now we check the formula L = di + id on 0-forms: if a ∈ Λ0M, then

(d ◦ if )a = 0,

(if ◦ d)a = ⟨da, f ⟩ = fa = Lf a.

So the formula L = di + id holds for 0-forms.

• The properties of the mappings Lf and d ◦ if + if ◦ d established and the

coordinate representation of di�erential forms reduce the general case of k-forms

to the case of 0-forms.

• Cartan's formula L = di + id is proved for k-forms.
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• The di�erential de�nition (2) of Lie derivative can be integrated, i.e., there holds

the following equality on ΛkM:(
−→
exp

∫ t

0

fτ dτ

) ̂
=
−→
exp

∫ t

0

Lfτ dτ, (4)

in the following sense.

• Denote the �ow Pt1
t0 =

−→
exp

∫ t1

t0

fτ dτ of a nonautonomous vector �eld fτ on M.

• The family of operators on di�erential forms P̂t
0 : ΛkM → ΛkM is a unique

solution of the Cauchy problem

d

d t
P̂t
0 = P̂t

0 ◦ Lft , P̂t
0

∣∣∣
t=0

= Id, (5)

compare with Cauchy problems for the �ow Pt
0 and for the family of operators

AdPt
0, and this solution is denoted as

−→
exp

∫ t

0

Lfτ dτ
def
= P̂t

0 =

(
−→
exp

∫ t

0

fτ dτ

) ̂
.
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• In order to verify the ODE in (5), we prove �rst the following equality for operators

on forms:
d

d ε

∣∣∣∣
ε=0

P̂t+ε
t ω = Lftω, ω ∈ ΛkM. (6)

• This equality is straightforward for 0-order forms:

d

d ε

∣∣∣∣
ε=0

P̂t+ε
t a =

d

d ε

∣∣∣∣
ε=0

a ◦ Pt+ε
t = fta = Lfta, a ∈ C∞(M).

• Further, the both operators d
d ε

∣∣
ε=0

P̂t+ε
t and Lft commute with d and satisfy the

Leibniz rule w.r.t. product of a function with a di�erential form.

• Then equality (6) follows for forms of arbitrary order, as in the proof of Cartan's

formula.
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• Now we easily verify the ODE in (5):

d

d t
P̂t
0 =

d

d ε

∣∣∣∣
ε=0

P̂t+ε
0 =

d

d ε

∣∣∣∣
ε=0

(
Pt
0 ◦ Pt+ε

t

) ̂

by the composition rule for pull-back of di�erential forms

=
d

d ε

∣∣∣∣
ε=0

P̂t
0 ◦ P̂

t+ε
t = P̂t

0 ◦
d

d ε

∣∣∣∣
ε=0

P̂t+ε
t

= P̂t
0 ◦ Lft .

Exercise 1
Prove uniqueness for Cauchy problem (5).
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• For an autonomous vector �eld f ∈ VecM, equality (4) takes the form

êtf = etLf .

• Notice that the Lie derivatives of di�erential forms Lf and vector �elds (− ad f )
are in a certain sense dual one to another, see equality (7) below.

• That is, the function

⟨ω,X ⟩ : q 7→ ⟨ωq,X (q)⟩, q ∈ M,

de�nes a pairing of Λ1M and VecM over C∞(M). Then the equality

⟨P̂ω,X ⟩ = P⟨ω,AdP−1 X ⟩, P ∈ DiffM, X ∈ VecM, ω ∈ Λ1M,

has an in�nitesimal version of the form

⟨LYω,X ⟩ = Y ⟨ω,X ⟩ − ⟨ω, (adY )X ⟩, X , Y ∈ VecM, ω ∈ Λ1M. (7)

• Taking into account Cartan's formula L = di + id , we immediately obtain the

following important equality:

dω(Y ,X ) = Y ⟨ω,X ⟩−X ⟨ω,Y ⟩− ⟨ω, [Y ,X ]⟩, X , Y ∈ VecM, ω ∈ Λ1M. (8)
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Elements of Symplectic Geometry
Liouville form and symplectic form

• We have already seen that the cotangent bundle T ∗M = ∪q∈MT ∗qM of an

n-dimensional manifold M is a 2n-dimensional manifold. Any local coordinates

x = (x1, . . . , xn) on M determine canonical local coordinates on T ∗M of the form

(ξ, x) = (ξ1, . . . , ξn; x1, . . . , xn) in which any covector λ ∈ T ∗q0M has the

decomposition λ =
∑n

i=1 ξi dxi |q0 .
• The �tautological� 1-form (or Liouville 1-form) on the cotangent bundle

s ∈ Λ1(T ∗M)

is de�ned as follows.
• Let λ ∈ T ∗M be a point in the cotangent bundle and w ∈ Tλ(T

∗M) a tangent

vector to T ∗M at λ.
• Denote by π the canonical projection from T ∗M to M:

π : T ∗M → M,

π : λ 7→ q, λ ∈ T ∗qM.
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• Di�erential of π is a linear mapping

π∗ : Tλ(T
∗M) → TqM, q = π(λ).

• The tautological 1-form s at the point λ acts on the tangent vector w in the

following way:

⟨sλ,w⟩ def
= ⟨λ, π∗w⟩.

• That is, we project the vector w ∈ Tλ(T
∗M) to the vector π∗w ∈ TqM, and then

act by the covector λ ∈ T ∗qM.

• So

sλ
def
= λ ◦ π∗.

15 / 37



• The title �tautological� is explained by the coordinate representation of the form s.
• In canonical coordinates (ξ, x) on T ∗M, we have:

λ =
n∑

i=1

ξidxi , (9)

w =
n∑

i=1

αi
∂

∂ ξi
+ βi

∂

∂ xi
.

• The projection written in canonical coordinates

π : (ξ, x) 7→ x

is a linear mapping, its di�erential acts as follows:

π∗

(
∂

∂ ξi

)
= 0, i = 1, . . . , n,

π∗

(
∂

∂ xi

)
=

∂

∂ xi
, i = 1, . . . , n.

16 / 37



• Thus

π∗w =
n∑

i=1

βi
∂

∂ xi
,

consequently,

⟨sλ,w⟩ = ⟨λ, π∗w⟩ =
n∑

i=1

ξiβi .

• But βi = ⟨dxi ,w⟩, so the form s has in coordinates (ξ, x) exactly the same

expression

sλ =
n∑

i=1

ξidxi (10)

as the covector λ, see (9).

• Although, de�nition of the form s does not depend on any coordinates.

Remark 1
In mechanics, the tautological form s is denoted as p dq.
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• Consider the exterior di�erential of the 1-form s:

σ
def
= ds.

• The di�erential 2-form σ ∈ Λ2(T ∗M) is called the canonical symplectic structure

on T ∗M.

• In canonical coordinates, we obtain from (10):

σ =
n∑

i=1

dξi ∧ dxi . (11)

• This expression shows that the form σ is nondegenerate, i.e., the bilinear

skew-symmetric form

σλ : Tλ(T
∗M)× Tλ(T

∗M) → R

has no kernel:

σ(w , ·) = 0 ⇒ w = 0, w ∈ Tλ(T
∗M).
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• In the following basis in the tangent space Tλ(T
∗M)

∂

∂ x1
,
∂

∂ ξ1
, . . . ,

∂

∂ xn
,

∂

∂ ξn
,

the form σλ has the block matrix


0 1

−1 0
. . .

0 1

−1 0

 .

• The form σ is closed: dσ = 0 since it is exact: σ = ds, and d ◦ d = 0.

Remarks
(1) A closed nondegenerate exterior di�erential 2-form on a 2n-dimensional manifold is

called a symplectic structure. A manifold with a symplectic structure is called a

symplectic manifold. The cotangent bundle T ∗M with the canonical symplectic

structure σ is the most important example of a symplectic manifold.

(2) In mechanics, the 2-form σ is known as the form dp ∧ dq.
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Hamiltonian vector �elds

• Due to the symplectic structure σ ∈ Λ2(T ∗M), we can develop the Hamiltonian

formalism on T ∗M.

• A Hamiltonian is an arbitrary smooth function on the cotangent bundle:

h ∈ C∞(T ∗M).

• To any Hamiltonian h, we associate the Hamiltonian vector �eld

h⃗ ∈ Vec(T ∗M)

by the rule:

σλ(·, h⃗) = dλh, λ ∈ T ∗M. (12)

• In terms of the interior product ivω(·, ·) = ω(v , ·), the Hamiltonian vector �eld is a

vector �eld h⃗ that satis�es

i
h⃗
σ = −dh.
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• Since the symplectic form σ is nondegenerate, the mapping

w 7→ σλ(·,w)

is a linear isomorphism

Tλ(T
∗M) → T ∗λ(T

∗M),

thus the Hamiltonian vector �eld h⃗ in (12) exists and is uniquely determined by the

Hamiltonian function h.

• In canonical coordinates (ξ, x) on T ∗M we have

dh =
n∑

i=1

(
∂ h

∂ ξi
dξi +

∂ h

∂ xi
dxi

)
,

then in view of (11)

h⃗ =
n∑

i=1

(
∂ h

∂ ξi

∂

∂ xi
− ∂ h

∂ xi

∂

∂ ξi

)
. (13)
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• So the Hamiltonian system of ODEs corresponding to h

λ̇ = h⃗(λ), λ ∈ T ∗M,

reads in canonical coordinates as follows:
ẋi =

∂ h

∂ ξi
, i = 1, . . . , n,

ξ̇i = − ∂ h

∂ xi
, i = 1, . . . , n.

• The Hamiltonian function can depend on a parameter: ht , t ∈ R. Then the

nonautonomous Hamiltonian vector �eld h⃗t , t ∈ R is de�ned in the same way as in

the autonomous case.

• The �ow of a Hamiltonian system preserves the symplectic form σ.
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Proposition 1

Let h⃗t be a nonautonomous Hamiltonian vector �eld on T ∗M. Then(
−→
exp

∫ t

0

h⃗τ dτ

) ̂
σ = σ.

Proof:
• In view of equality (4), we have(

−→
exp

∫ t

0

h⃗τ dτ

) ̂
=
−→
exp

∫ t

0

L
h⃗τ

dτ,

thus the statement of this proposition can be rewritten as L
h⃗t
σ = 0.

• But this Lie derivative is easily computed by Cartan's formula:

L
h⃗t
σ = i

h⃗t
◦ dσ︸︷︷︸

=0

+ d ◦ i
h⃗t
σ︸︷︷︸

=−dht

= −d ◦ dht = 0.
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• Moreover, there holds a local converse statement: if a �ow preserves σ, then it is

locally Hamiltonian.
• Indeed, (

−→
exp

∫ t

0

fτ dτ

) ̂
σ = σ ⇔ Lftσ = 0,

further

Lftσ = ift ◦ dσ︸︷︷︸
=0

+d ◦ iftσ,

thus

Lftσ = 0 ⇔ d ◦ iftσ = 0.

• If the form iftσ is closed, then it is locally exact (Poincar�e's Lemma), i.e., there

exists a Hamiltonian ht such that locally ft = h⃗t .
• Essentially, only Hamiltonian �ows preserve σ (globally, �multi-valued

Hamiltonians� can appear).
• If a manifold M is simply connected, then there holds a global statement: a �ow

on T ∗M is Hamiltonian if and only if it preserves the symplectic structure.
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• The Poisson bracket of Hamiltonians a, b ∈ C∞(T ∗M) is a Hamiltonian

{a, b} ∈ C∞(T ∗M)

de�ned in one of the following equivalent ways:

{a, b} = a⃗b = ⟨db, a⃗⟩ = σ(a⃗, b⃗) = −σ(b⃗, a⃗) = −b⃗a.

• It is obvious that Poisson bracket is bilinear and skew-symmetric:

{a, b} = −{b, a}.
• In canonical coordinates (ξ, x) on T ∗M,

{a, b} =
n∑

i=1

(
∂ a

∂ ξi

∂ b

∂ xi
− ∂ a

∂ xi

∂ b

∂ ξi

)
. (14)

• Leibniz rule for Poisson bracket easily follows from de�nition:

{a, bc} = {a, b}c + b{a, c}

(here bc is the usual pointwise product of functions b and c).
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• Symplectomorphisms of cotangent bundle preserve Hamiltonian vector �elds; the

action of a symplectomorphism P ∈ Diff(T ∗M), P̂σ = σ, on a Hamiltonian vector

�eld h⃗ reduces to the action of P on the Hamiltonian function as substitution of

variables:

AdP h⃗ =
−→
Ph .

• This follows from the chain

σ
(
X ,AdP h⃗

)
= P̂σ

(
X ,AdP h⃗

)
= Pσ

(
AdP−1 X , h⃗

)
= P⟨dh,AdP−1 X ⟩ = X (Ph) = σ

(
X ,
−→
Ph

)
, X ∈ Vec(T ∗M).

• In particular, a Hamiltonian �ow transforms a Hamiltonian vector �eld into a

Hamiltonian vector �eld:

AdPt b⃗t =
−→
Ptbt , Pt =

−→
exp

∫ t

0

a⃗τ dτ. (15)

• In�nitesimally, this equality implies Jacobi identity for Poisson bracket.
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Proposition 2

{a, {b, c}}+ {b, {c , a}}+ {c, {a, b}} = 0, a, b, c ∈ C∞(T ∗M). (16)

Proof:

• Any symplectomorphism P ∈ Diff(T ∗M), P̂σ = σ, preserves Poisson brackets:

P{b, c} = Pσ
(
b⃗, c⃗

)
= P̂σ

(
AdP b⃗,AdP c⃗

)
= σ

(
−→
Pb,

−→
Pc

)
= {Pb,Pc}.

• Taking P = eta⃗ and di�erentiating at t = 0, we come to Jacobi identity:

{a, {b, c}} = {{a, b}, c}+ {b, {a, c}}.

27 / 37



• So the space of all Hamiltonians C∞(T ∗M) forms a Lie algebra with Poisson

bracket as a product.

• The correspondence

a 7→ a⃗, a ∈ C∞(T ∗M), (17)

is a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra of

Hamiltonian vector �elds on M. This follows from the next statement.

Corollary 1
−→

{a, b}= [a⃗, b⃗] for any Hamiltonians a, b ∈ C∞(T ∗M).

Proof:

• Jacobi identity can be rewritten as

{{a, b}, c} = {a, {b, c}} − {b, {a, c}},

i.e.,
−→

{a, b} c = a⃗ ◦ b⃗ c − b⃗ ◦ a⃗ c = [a⃗, b⃗] c, c ∈ C∞(T ∗M).
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• It is easy to see from the coordinate representation (13) that the kernel of the

mapping a 7→ a⃗ consists of constant functions, i.e., this is isomorphism up to

constants.

• On the other hand, this homomorphism is far from being onto all vector �elds on

T ∗M.

• Indeed, a general vector �eld on T ∗M is locally de�ned by arbitrary 2n smooth real

functions of 2n variables, while a Hamiltonian vector �eld is determined by just one

real function of 2n variables, a Hamiltonian.
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Theorem 2 (N�other)

A function a ∈ C∞(T ∗M) is an integral of a Hamiltonian system of ODEs

λ̇ = h⃗(λ), λ ∈ T ∗M, (18)

i.e.,

eth⃗a = a t ∈ R,

if and only if it Poisson-commutes with the Hamiltonian:

{a, h} = 0.

Proof:
• eth⃗a ≡ a ⇔ 0 = h⃗a = {h, a}.

Corollary 3

eth⃗h = h, i.e., any Hamiltonian h ∈ C∞(T ∗M) is an integral of the corresponding

Hamiltonian system (18).
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• Further, Jacobi identity for Poisson brackets implies that the set of integrals of the

Hamiltonian system (18) forms a Lie algebra with respect to Poisson brackets.

Corollary 4

{h, a} = {h, b} = 0 ⇒ {h, {a, b}} = 0.

Remark 2
The Hamiltonian formalism developed generalizes for arbitrary symplectic manifolds.
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Linear on �bers Hamiltonians
• We introduce a construction that works only on T ∗M. Given a vector �eld

X ∈ VecM, we de�ne a Hamiltonian function

X ∗ ∈ C∞(T ∗M),

which is linear on �bers T ∗qM, as follows:

X ∗(λ) = ⟨λ,X (q)⟩, λ ∈ T ∗M, q = π(λ).

• In canonical coordinates (ξ, x) on T ∗M we have:

X =
n∑

i=1

ai (x)
∂

∂ xi
, X ∗ =

n∑
i=1

ξiai (x). (19)

• This coordinate representation implies that

{X ∗,Y ∗} = [X ,Y ]∗, X ,Y ∈ VecM,

i.e., Poisson brackets of Hamiltonians linear on �bers in T ∗M contain usual Lie

brackets of vector �elds on M.
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• The Hamiltonian vector �eld
−→
X ∗∈ Vec(T ∗M) corresponding to the Hamiltonian

function X ∗ is called the Hamiltonian lift of the vector �eld X ∈ VecM.

• It is easy to see from the coordinate representation (19) that

π∗
−→
X ∗= X .
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• Now we pass to nonautonomous vector �elds. Let Xt be a nonautonomous vector

�eld and

Pτ,t =
−→
exp

∫ t

τ
Xθ dθ

the corresponding �ow on M.
• The �ow P = Pτ,t acts on M:

P : M → M, P : q0 7→ q1,

its di�erential pushes tangent vectors forward:

P∗ : Tq0M → Tq1M,

and the dual mapping P∗ pulls covectors back:

P∗ : T ∗q1M → T ∗q0M.

• Thus we have a �ow on covectors (i.e., on points of the cotangent bundle):

P∗τ,t : T ∗M → T ∗M.
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• Let Vt be the nonautonomous vector �eld on T ∗M that generates the �ow P∗τ,t :

Vt =
d

d ε

∣∣∣∣
ε=0

P∗t,t+ε.

• Then
d

d t
P∗τ,t =

d

d ε

∣∣∣∣
ε=0

P∗τ,t+ε =
d

d ε

∣∣∣∣
ε=0

P∗t,t+ε ◦ P∗τ,t = Vt ◦ P∗τ,t ,

so the �ow P∗τ,t is a solution to the Cauchy problem

d

d t
P∗τ,t = Vt ◦ P∗τ,t , P∗τ,τ = Id,

i.e., it is the left chronological exponential:

P∗τ,t =
←−
exp

∫ t

τ
Vθ dθ.
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• It turns out that the nonautonomous �eld Vt is simply related with the

Hamiltonian vector �eld corresponding to the Hamiltonian X ∗t :

Vt = −
−→
X ∗t . (20)

• Indeed, the �ow P∗τ,t preserves the tautological form s, thus

LVt s = 0.

• By Cartan's formula,

iVtσ = −d⟨s,Vt⟩,
i.e., the �eld Vt is Hamiltonian:

Vt =
−→

⟨s,Vt⟩ .

• But π∗Vt = −Xt , consequently,

⟨s,Vt⟩ = −X ∗t ,

and equality (20) follows.
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• Taking into account the relation between the left and right chronological

exponentials, we obtain

P∗τ,t =
←−
exp

∫ t

τ
−
−→
X ∗θ dθ =

−→
exp

∫ τ

t

−→
X ∗θ dθ.

• We proved the following statement.

Proposition 3

Let Xt be a complete nonautonomous vector �eld on M. Then(
−→
exp

∫ t

τ
Xθ dθ

)∗
=
−→
exp

∫ τ

t

−→
X ∗θ dθ.

• In particular, for autonomous vector �elds X ∈ VecM,(
etX

)∗
= e−t

−→
X∗

.
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