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Plan of previous lecture

1. Points, Di�eomorphisms, and Vector Fields

2. Seminorms and C∞(M)-Topology

3. Families of Functionals and Operators

4. ODEs with discontinuous right-hand side

5. De�nition of the right chronological exponential

6. Formal series expansion
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Plan of this lecture

1. Estimates and convergence of the series

2. Left chronological exponential

3. Uniqueness for functional and operator ODEs

4. Autonomous vector �elds

5. Action of di�eomorphisms on vector �elds

6. Commutation of �ows

7. Variations formula

8. Derivative of �ow with respect to parameter

3 / 35



De�nition of the right chronological exponential
• The Cauchy problem q̇ = Vt(q), q(0) = q0, rewritten as a linear equation for
Lipschitzian w.r.t. t families of functionals on C∞(M):

q̇(t) = q(t) ◦ Vt , q(0) = q0, (1)

is satis�ed for the family of functionals

q(t, q0) : C∞(M) → R, q0 ∈ M, t ∈ R

constructed in the previous lecture.
• We prove later that this Cauchy problem has no other solutions.
• Thus the �ow de�ned as

Pt : q0 7→ q(t, q0) (2)

is a unique solution of the operator Cauchy problem Ṗt = Pt ◦ Vt , P
0 = Id

(where Id is the identity operator), in the class of Lipschitzian �ows on M.
• The �ow Pt determined in (2) is called the right chronological exponential of the

�eld Vt and is denoted as Pt =
−→
exp

∫ t

0

Vτ dτ.
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Formal series expansion

• Purely formally passing to the limit n → ∞, we obtained a formal series for the
solution q(t) to problem q̇(t) = q(t) ◦ Vt , q(0) = q0:

q0 ◦

Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1

 ,

thus for the solution Pt to operator Cauchy problem Ṗt = Pt ◦ Vt , P
0 = Id:

Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1. (3)
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Estimates and convergence of the series
• Unfortunately, series (3) never converges on C∞(M) in the weak sense (if Vt ̸≡ 0):
there always exists a smooth function on M, on which it diverges.

• Although, one can show that series (3) gives an asymptotic expansion for the

chronological exponential Pt =
−→
exp

∫ t

0

Vτ dτ .

• There holds the following bound of the remainder term: denote the m-th partial
sum of series (3) as Sm(t) = Id+

∑m−1
n=1

∫
·· ·

∫
∆n(t)

Vτn ◦ · · · ◦Vτ1 dτn . . . dτ1, then for

any a ∈ C∞(M), s ≥ 0, K ⋐ M∥∥∥∥( −→exp ∫ t

0

Vτ dτ − Sm(t)

)
a

∥∥∥∥
s,K

≤ CeC
∫ t
0 ∥Vτ∥s,K ′ dτ 1

m!

(∫ t

0

∥Vτ∥s+m−1,K ′ dτ

)m

∥a∥s+m,K ′ (4)

= O(tm), t → 0,

where K ′ ⋐ M is some compactum containing K , see [AS]. 6 / 35



• It follows from estimate (4) that∥∥∥∥( −→exp ∫ t

0

εVτ dτ − Sε
m(t)

)
a

∥∥∥∥
s,K

= O(εm), ε → 0,

where Sε
m(t) is the m-th partial sum of series (3) for the �eld εVt .

• Thus we have an asymptotic series expansion:

−→
exp

∫ t

0

Vτ dτ ≈ Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1. (5)

• In the sequel we will use terms of the zeroth, �rst, and second orders of the series
obtained:

−→
exp

∫ t

0

Vτ dτ ≈ Id+

∫ t

0

Vτ dτ +

∫∫
0≤τ2≤τ1≤t

Vτ2 ◦ Vτ1 dτ2 dτ1 + · · · .
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• We prove now that the asymptotic series converges to the chronological
exponential on any normed subspace L ⊂ C∞(M) where Vt is well-de�ned and
bounded:

VtL ⊂ L, ∥Vt∥ = sup {∥Vta∥ | a ∈ L, ∥a∥ ≤ 1} < ∞. (6)

• We apply operator series (5) to any a ∈ L and bound terms of the series obtained:

a+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 a dτn . . . dτ1. (7)
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∥∥∥∥∥∥∥
∫

· · ·
∫

∆n(t)

Vτn ◦ · · · ◦ Vτ1 a dτn . . . dτ1

∥∥∥∥∥∥∥
≤

∫
· · ·

∫
0≤τn≤···≤τ1≤t

∥Vτn∥ · · · · · ∥Vτ1∥ dτn . . . dτ1 · ∥a∥

=

∫
· · ·

∫
0≤τσ(n)≤···≤τσ(1)≤t

∥Vτn∥ · · · · · ∥Vτ1∥ dτn . . . dτ1 · ∥a∥

=
1

n!

∫ t

0

. . .

∫ t

0

∥Vτn∥ · · · · · ∥Vτ1∥ dτn . . . dτ1 · ∥a∥

=
1

n!

(∫ t

0

∥Vτ∥ dτ
)n

· ∥a∥.
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• So series (7) is majorized by the exponential series, thus the operator series (5)
converges on L.

• Series (7) can be di�erentiated termwise, thus it satis�es the same ODE as the
function Pta:

ȧt = Vtat , a0 = a.

• Consequently,

Pta = a+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 a dτn . . . dτ1.

• So in the case (6) the asymptotic series converges to the chronological exponential
and there holds the bound

∥Pta∥ ≤ e
∫ t
0 ∥Vτ∥ dτ∥a∥, a ∈ L.

• Moreover, one can show that the bound and convergence hold not only for locally

bounded, but also for integrable on [0, t] vector �elds:

∫ t

0

∥Vτ∥ dτ < ∞.
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• Notice that conditions (6) are satis�ed for any �nite-dimensional Vt-invariant
subspace L ⊂ C∞(M). In particular, this is the case when M = Rn, L is the space
of linear functions, and Vt is a linear vector �eld on Rn.

• If M, Vt , and a are real analytic, then series (7) converges for su�ciently small t.
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Left chronological exponential
• Consider the inverse operator Qt = (Pt)−1 to the right chronological exponential

Pt =
−→
exp

∫ t

0

Vτ dτ .

• We �nd an ODE for the �ow Qt by di�erentiation of the identity

Pt ◦ Qt = Id .

• Leibniz rule yields Ṗt ◦Qt +Pt ◦ Q̇t = 0, thus, in view of the ODE for the �ow Pt ,

Pt ◦ Vt ◦ Qt + Pt ◦ Q̇t = 0.

• We multiply this equality by Qt from the left and obtain

Vt ◦ Qt + Q̇t = 0.

That is, the �ow Qt is a solution of the Cauchy problem

d

d t
Qt = −Vt ◦ Qt , Q0 = Id, (8)

which is dual to the Cauchy problem for Pt : d
d tP

t = Pt ◦ Vt , P
0 = Id.
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• The �ow Qt is called the left chronological exponential and is denoted as

Qt =
←−
exp

∫ t

0

(−Vτ ) dτ.

• We �nd an asymptotic expansion for the left chronological exponential in the same
way as for the right one, by successive substitutions into the right-hand side:

Qt = Id+

∫ t

0

(−Vτ ) ◦ Qτ dτ

= Id+

∫ t

0

(−Vτ ) dτ +

∫∫
∆2(t)

(−Vτ1) ◦ (−Vτ2) ◦ Qτ2 dτ2 dτ1 = · · ·

= Id+
m−1∑
n=1

∫
· · ·

∫
∆n(t)

(−Vτ1) ◦ · · · ◦ (−Vτn) dτn . . . dτ1

+

∫
· · ·

∫
∆m(t)

(−Vτ1) ◦ · · · ◦ (−Vτm) ◦ Qτm dτm . . . dτ1.
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• For the left chronological exponential holds an estimate of the remainder term
as (4) for the right one, and the series obtained is asymptotic:

←−
exp

∫ t

0

(−Vτ ) dτ ≈ Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

(−Vτ1) ◦ · · · ◦ (−Vτn) dτn . . . dτ1.

• Notice that the reverse arrow in the left chronological exponential
←−
exp corresponds

to the reverse order of the operators (−Vτ1) ◦ · · · ◦ (−Vτn), τn ≤ . . . ≤ τ1.
• The right and left chronological exponentials satisfy the corresponding di�erential
equations:

d

d t

−→
exp

∫ t

0

Vτ dτ =
−→
exp

∫ t

0

Vτ dτ ◦ Vt ,

d

d t

←−
exp

∫ t

0

(−Vτ ) dτ = −Vt ◦
←−
exp

∫ t

0

(−Vτ ) dτ.

The directions of arrows correlate with the direction of appearance of the operators
Vt and (−Vt) in the right-hand side of these ODEs.
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• If the initial value is prescribed at a moment of time t0 ̸= 0, then the lower limit of
integrals in the chronological exponentials is t0.

• There holds the following obvious rule for composition of �ows:

−→
exp

∫ t1

t0

Vτ dτ ◦
−→
exp

∫ t2

t1

Vτ dτ =
−→
exp

∫ t2

t0

Vτ dτ.

• There hold the identities

−→
exp

∫ t1

t0

Vτ dτ =

(
−→
exp

∫ t0

t1

Vτ dτ

)−1
=
←−
exp

∫ t0

t1

(−Vτ ) dτ. (9)

• We saw that equation (1) for Lipschitzian families of functionals has a solution

q(t) = q0◦
−→
exp

∫ t

0

Vτ dτ . We can prove now that this equation has no other

solutions.
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Proposition 1

Let Vt be a complete nonautonomous vector �eld on M. Then Cauchy problem (1) has

a unique solution in the class of Lipschitzian families of functionals on C∞(M).

Proof.
Let a Lipschitzian family of functionals qt be a solution to problem (1). Then

d

d t

(
qt ◦ (Pt)−1

)
=

d

d t

(
qt ◦ Qt

)
= qt ◦ Vt ◦ Qt − qt ◦ Vt ◦ Qt = 0,

thus qt ◦ Qt ≡ const. But Q0 = Id, consequently, qt ◦ Qt ≡ q0, hence

qt = q0 ◦ Pt = q0 ◦ −→exp
∫ t

0

Vτ dτ

is a unique solution of Cauchy problem (1).

Similarly, the both operator equations Ṗt = Pt ◦ Vt and Q̇t = −Vt ◦ Qt have no other
solutions in addition to the chronological exponentials.
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Autonomous vector �elds
• For an autonomous vector �eld

Vt ≡ V ∈ VecM,

the �ow generated by a complete �eld is called the exponential and is denoted as
etV .

• The asymptotic series for the exponential takes the form

etV ≈
∞∑
n=0

tn

n!
V n = Id+tV +

t2

2
V ◦ V + · · · ,

i.e, it is the standard exponential series.

• The exponential of an autonomous vector �eld satis�es the ODEs

d

d t
etV = etV ◦ V = V ◦ etV , etV

∣∣∣
t=0

= Id .
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• We apply the asymptotic series for exponential to �nd the Lie bracket of
autonomous vector �elds V ,W ∈ VecM.

• We compute the �rst nonconstant term in the asymptotic expansion at t = 0 of
the curve:

q(t) = q ◦ etV ◦ etW ◦ e−tV ◦ e−tW

= q ◦
(
Id+tV +

t2

2
V 2 + · · ·

)
◦
(
Id+tW +

t2

2
W 2 + · · ·

)
◦
(
Id−tV +

t2

2
V 2 + · · ·

)
◦
(
Id−tW +

t2

2
W 2 + · · ·

)
= q ◦

(
Id+t(V +W ) +

t2

2
(V 2 + 2V ◦W +W 2) + · · ·

)
◦
(
Id−t(V +W ) +

t2

2
(V 2 + 2V ◦W +W 2) + · · ·

)
= q ◦ (Id+t2(V ◦W −W ◦ V ) + · · · ) .
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• So the Lie bracket of the vector �elds as operators (directional derivatives) in
C∞(M) is

[V ,W ] = V ◦W −W ◦ V .

• This proves the formula in local coordinates: if

V =
n∑

i=1

ai
∂

∂ xi
, W =

n∑
i=1

bi
∂

∂ xi
, ai , bi ∈ C∞(M),

then

[V ,W ] =
n∑

i ,j=1

(
aj
∂ bi
∂ xj

− bj
∂ ai
∂ xj

)
∂

∂ xi
=

d W

d x
V − d V

d x
W .

• Similarly,

q ◦ etV ◦ esW ◦ e−tV = q ◦ (Id+tV + · · · ) ◦ (Id+sW + · · · ) ◦ (Id−tV + · · · )
= q ◦ (Id+sW + ts[V ,W ] + · · · ),

and

q ◦ [V ,W ] =
∂2

∂s∂t

∣∣∣∣
s=t=0

q ◦ etV ◦ esW ◦ e−tV .
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Action of di�eomorphisms on tangent vectors
• We have already found counterparts to points, di�eomorphisms, and vector �elds
among functionals and operators on C∞(M). Now we consider action of
di�eomorphisms on tangent vectors and vector �elds.

• Take a tangent vector v ∈ TqM and a di�eomorphism P ∈ DiffM. The tangent
vector P∗v ∈ TP(q)M is the velocity vector of the image of a curve starting from q
with the velocity vector v . We claim that

P∗v = v ◦ P, v ∈ TqM, P ∈ DiffM, (10)

as functionals on C∞(M).
• Take a curve

q(t) ∈ M, q(0) = q,
d

d t

∣∣∣∣
t=0

q(t) = v ,

then

P∗v a =
d

d t

∣∣∣∣
t=0

a(P(q(t))) =

(
d

d t

∣∣∣∣
t=0

q(t)

)
◦ Pa

= v ◦ Pa, a ∈ C∞(M).

•
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Action of di�eomorphisms on vector �elds
• Now we �nd expression for P∗V , V ∈ VecM, as a derivation of C∞(M).
• We have

q ◦ P ◦ P∗V = P(q) ◦ P∗V = (P∗V ) (P(q)) = P∗(V (q)) = V (q) ◦ P
= q ◦ V ◦ P, q ∈ M,

thus
P ◦ P∗V = V ◦ P,

i.e.,
P∗V = P−1 ◦ V ◦ P, P ∈ DiffM, V ∈ VecM.

• So di�eomorphisms act on vector �elds as similarities.
• In particular, di�eomorphisms preserve compositions:

P∗(V ◦W ) = P−1 ◦ (V ◦W ) ◦P = (P−1 ◦V ◦P) ◦ (P−1 ◦W ◦P) = P∗V ◦P∗W ,

thus Lie brackets of vector �elds:

P∗[V ,W ] = P∗(V ◦W −W ◦ V ) = P∗V ◦ P∗W − P∗W ◦ P∗V = [P∗V ,P∗W ].
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Action of di�eomorphisms on vector �elds

• If B : C∞(M) → C∞(M) is an automorphism, then the standard algebraic
notation for the corresponding similarity is AdB :

(AdB)V
def
= B ◦ V ◦ B−1.

• That is,
P∗ = AdP−1, P ∈ DiffM.
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• Now we �nd an in�nitesimal version of the operator Ad.
• Let Pt be a �ow on M,

P0 = Id,
d

d t

∣∣∣∣
t=0

Pt = V ∈ VecM.

• Then
d

d t

∣∣∣∣
t=0

(
Pt

)−1
= −V ,

so

d

d t

∣∣∣∣
t=0

(AdPt)W =
d

d t

∣∣∣∣
t=0

(Pt ◦W ◦ (Pt)−1) = V ◦W −W ◦ V

= [V ,W ], W ∈ VecM.

• Denote

adV = ad

(
d

d t

∣∣∣∣
t=0

Pt

)
def
=

d

d t

∣∣∣∣
t=0

AdPt ,

then
(adV )W = [V ,W ], W ∈ VecM.
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• Di�erentiation of the equality

AdPt [X ,Y ] = [AdPt X ,AdPt Y ] X ,Y ∈ VecM,

at t = 0 gives Jacobi identity for Lie bracket of vector �elds:

(adV )[X ,Y ] = [(adV )X ,Y ] + [X , (adV )Y ],

which may also be written as

[V , [X ,Y ]] = [[V ,X ],Y ] + [X , [V ,Y ]], V ,X ,Y ∈ VecM,

or, in a symmetric way

[X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0, X ,Y ,Z ∈ VecM. (11)

24 / 35



• The set VecM is a vector space with an additional operation � Lie bracket, which
has the properties:

(1) bilinearity:

[αX + βY ,Z ] = α[X ,Z ] + β[Y ,Z ],

[X , αY + βZ ] = α[X ,Y ] + β[X ,Z ], X ,Y ,Z ∈ VecM, α, β ∈ R,

(2) skew-symmetry:
[X ,Y ] = −[Y ,X ], X ,Y ∈ VecM,

(3) Jacobi identity (11).

• In other words, the set VecM of all smooth vector �elds on a smooth manifold M
forms a Lie algebra.
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• Consider the �ow Pt =
−→
exp

∫ t

0

Vτ dτ of a nonautonomous vector �eld Vt . We

�nd an ODE for the family of operators AdPt = (Pt)−1∗ on the Lie algebra VecM.

d

d t
(AdPt)X =

d

d t

(
Pt ◦ X ◦ (Pt)−1

)
= Pt ◦ Vt ◦ X ◦ (Pt)−1 − Pt ◦ X ◦ Vt ◦ (Pt)−1

= (AdPt)[Vt ,X ] = (AdPt) adVt X , X ∈ VecM.

• Thus the family of operators AdPt satis�es the ODE

d

d t
AdPt = (AdPt) ◦ adVt (12)

with the initial condition
AdP0 = Id . (13)

• So the family AdPt is an invertible solution for the Cauchy problem

Ȧt = At ◦ adVt , A0 = Id

for operators At : VecM → VecM.
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• We can apply the same argument as for the analogous Cauchy problem for �ows to
derive the asymptotic expansion

AdPt ≈ Id+

∫ t

0

adVτ dτ + · · ·

+

∫
· · ·

∫
∆n(t)

adVτn ◦ · · · ◦ adVτ1 dτn . . . dτ1 + · · · (14)

then prove uniqueness of the solution, and justify the following notation:

−→
exp

∫ t

0

adVτ dτ
def
= AdPt = Ad

(
−→
exp

∫ t

0

Vτ dτ

)
.

• Similar identities for the left chronological exponential are

←−
exp

∫ t

0

ad(−Vτ ) dτ
def
= Ad

(
←−
exp

∫ t

0

(−Vτ ) dτ

)
≈ Id+

∞∑
n=1

∫
· · ·

∫
∆n(t)

(− adVτ1) ◦ · · · ◦ (− adVτn) dτn . . . dτ1.
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• For the asymptotic series (14), there holds an estimate of the remainder term
similar to the estimate for the �ow Pt .

• Denote the partial sum

Tm = Id+
m−1∑
n=1

∫
· · ·

∫
∆n(t)

adVτn ◦ · · · ◦ adVτ1 dτn . . . dτ1,

then for any X ∈ VecM, s ≥ 0, K ⋐ M∥∥∥∥(Ad −→exp ∫ t

0

Vτ dτ − Tm

)
X

∥∥∥∥
s,K

≤ C1e
C1

∫ t
0 ∥Vτ∥s+1,K ′ dτ 1

m!

(∫ t

0

∥Vτ∥s+m,K ′ dτ

)m

∥X∥s+m,K ′ (15)

= O(tm), t → 0,

where K ′ ⋐ M is some compactum containing K .
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• For autonomous vector �elds, we denote

et adV
def
= Ad etV ,

thus the family of operators et adV : VecM → VecM is the unique solution to the
problem

Ȧt = At ◦ adV , A0 = Id,

which admits the asymptotic expansion

et adV ≈ Id+t adV +
t2

2
ad2 V + · · · .

• Let P ∈ DiffM, and let Vt be a nonautonomous vector �eld on M. Then

P◦ −→exp
∫ t

0

Vτ dτ ◦ P−1 = −→exp
∫ t

0

AdP Vτ dτ (16)

since the both parts satisfy the same operator Cauchy problem.
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Commutation of �ows
Let Vt ∈ VecM be a nonautonomous vector �eld and Pt =

−→
exp

∫ t
0
Vτ dτ the

corresponding �ow. We are interested in the question: under what conditions the �ow
Pt preserves a vector �eld W ∈ VecM.

Proposition 2

Pt
∗W = W ∀t ⇔ [Vt ,W ] = 0 ∀t.

Proof.

d

d t
(Pt)

−1
∗ W =

d

d t
AdPtW =

(
d

d t

−→
exp

∫ t

0

adVτ dτ

)
W

=

(
−→
exp

∫ t

0

adVτ dτ ◦ adVτ

)
W =

(
−→
exp

∫ t

0

adVτ dτ

)
[Vt ,W ]

= (Pt)−1∗ [Vt ,W ],

thus (Pt)−1∗ W ≡ W if and only if [Vt ,W ] ≡ 0.
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• In general, �ows do not commute, neither for nonautonomous vector �elds Vt , Wt :

−→
exp

∫ t1

0

Vτ dτ ◦
−→
exp

∫ t2

0

Wτ dτ ̸= −→exp
∫ t2

0

Wτ dτ ◦
−→
exp

∫ t1

0

Vτ dτ,

nor for autonomous vector �elds V , W :

et1V ◦ et2W ̸= et2W ◦ et1V .
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Proposition 3

In the autonomous case, commutativity of �ows is equivalent to commutativity of

vector �elds: if V ,W ∈ VecM, then

et1V ◦ et2W = et2W ◦ et1V , t1, t2 ∈ R, ⇔ [V ,W ] = 0.

Proof.
Necessity:

d2

dt2
q ◦ etV ◦ etW ◦ e−tV ◦ e−tW = q ◦ 2[V ,W ].

Su�ciency. We have
(
Ad et1V

)
W = et1 adVW = W . Taking into account

equality (16), we obtain

et1V ◦ et2W ◦ e−t1V = et2(Ad e
t1V )W = et2W .
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Variations formula

• Consider an ODE of the form

q̇ = Vt(q) +Wt(q). (17)

We think of Vt as an initial vector �eld and Wt as its perturbation.

• Our aim is to �nd a formula for the �ow Qt of the new �eld Vt +Wt as a
perturbation of the �ow Pt =

−→
exp

∫ t
0
Vτ dτ of the initial �eld Vt .

• In other words, we wish to have a decomposition of the form

Qt =
−→
exp

∫ t

0

(Vτ +Wτ ) dτ = Ct ◦ Pt .
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• We proceed as in the method of variation of parameters; we substitute the
previous expression to ODE (17):

d

d t
Qt = Qt ◦ (Vt +Wt)

= Ċt ◦ Pt + Ct ◦ Pt ◦ Vt

= Ċt ◦ Pt + Qt ◦ Vt ,

cancel the common term Qt ◦ Vt :

Qt ◦Wt = Ċt ◦ Pt ,

and write down the ODE for the unknown �ow Ct :

Ċt = Qt ◦Wt ◦
(
Pt

)−1
= Ct ◦ Pt ◦Wt ◦

(
Pt

)−1
= Ct ◦

(
AdPt

)
Wt

= Ct ◦
(
−→
exp

∫ t

0

adVτ dτ

)
Wt , C0 = Id .
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• This operator Cauchy problem is of the form Ċ t = C t ◦ Vt , C
0 = Id, thus it has a

unique solution:

Ct =
−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ dθ

)
Wτ dτ.

• Hence we obtain the required decomposition of the perturbed �ow:

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ dθ

)
Wτ dτ ◦

−→
exp

∫ t

0

Vτ dτ.

(18)

• This equality is called the variations formula.

• It can be written as follows:

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(AdPτ )Wτ dτ ◦ Pt .

• So the perturbed �ow is a composition of the initial �ow Pt with the �ow of the
perturbation Wt twisted by Pt .

35 / 35


