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Plan of previous lecture

1. Time-Optimal Problem

2. Smooth manifolds

3. Tangent space and tangent vector

4. Ordinary di�erential equations on manifolds
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Plan of this lecture

1. Points, Di�eomorphisms, and Vector Fields

2. Seminorms and C∞(M)-Topology

3. Families of Functionals and Operators

4. ODEs with discontinuous right-hand side

5. De�nition of the right chronological exponential

6. Formal series expansion

7. Estimates and convergence of the series

8. Left chronological exponential
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Points, Di�eomorphisms, and Vector Fields

• We identify points, di�eomorphisms, and vector �elds on the manifold M with

functionals and operators on the algebra C∞(M) of all smooth real-valued

functions on M.

• Addition, multiplication, and product with constants are de�ned in the algebra

C∞(M), as usual, pointwise: if a, b ∈ C∞(M), q ∈ M, α ∈ R, then

(a+ b)(q) = a(q) + b(q),

(a · b)(q) = a(q) · b(q),
(α · a)(q) = α · a(q).

• Any point q ∈ M de�nes a linear functional

q̂ : C∞(M) → R, q̂a = a(q), a ∈ C∞(M).
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• The functionals q̂ are homomorphisms of the algebras C∞(M) and R:

q̂(a+ b) = q̂a+ q̂b, a, b ∈ C∞(M),

q̂(a · b) = (q̂a) · (q̂b), a, b ∈ C∞(M),

q̂(α · a) = α · q̂a, α ∈ R, a ∈ C∞(M).

• So to any point q ∈ M, there corresponds a nontrivial homomorphism of algebras

q̂ : C∞(M) → R. It turns out that there exists an inverse correspondence.

Proposition 1

Let φ : C∞(M) → R be a nontrivial homomorphism of algebras. Then there exists a

point q ∈ M such that φ = q̂.

Proof.
A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint.

Springer-Verlag, 2004.
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• Not only the manifold M can be reconstructed as a set from the algebra C∞(M).
One can recover topology on M from the weak topology in the space of

functionals on C∞(M):

lim
n→∞

qn = q if and only if lim
n→∞

q̂na = q̂a ∀a ∈ C∞(M).

• Moreover, the smooth structure on M is also recovered from C∞(M), actually, �by
de�nition�: a real function on the set {q̂ | q ∈ M} is smooth if and only if it has a

form q̂ 7→ q̂a for some a ∈ C∞(M).

• Any di�eomorphism P : M → M de�nes an automorphism of the algebra C∞(M):

P̂ : C∞(M) → C∞(M), P̂ ∈ Aut(C∞(M)),

(P̂a)(q) = a(P(q)), q ∈ M, a ∈ C∞(M),

i.e., P̂ acts as a change of variables in a function a.
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• Conversely, any automorphism of C∞(M) has such a form.

Proposition 2

Any automorphism A : C∞(M) → C∞(M) has a form of P̂ for some P ∈ DiffM.

Proof.
Let A ∈ Aut(C∞(M)). Take any point q ∈ M. Then the composition

q̂ ◦ A : C∞(M) → R

is a nonzero homomorphism of algebras, thus it has the form q̂1 for some q1 ∈ M. We

denote q1 = P(q) and obtain

q̂ ◦ A = P̂(q) = q̂ ◦ P̂ ∀q ∈ M,

i.e.,

A = P̂,

and P is the required di�eomorphism.
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• Now we characterize tangent vectors to M as functionals on C∞(M).
• Tangent vectors to M are velocity vectors to curves in M, and points of M are

identi�ed with linear functionals on C∞(M); thus we should obtain linear

functionals on C∞(M), but not homomorphisms into R.
• To understand, which functionals on C∞(M) correspond to tangent vectors to M,

take a smooth curve q(t) of points in M. Then the corresponding curve of

functionals q̂(t) = q̂(t) on C∞(M) satis�es the multiplicative rule

q̂(t)(a · b) = q̂(t)a · q̂(t)b, a, b ∈ C∞(M).

• We di�erentiate this equality at t = 0 and obtain that the velocity vector to the

curve of functionals

ξ
def
=

d q̂

d t

∣∣∣∣
t=0

, ξ : C∞(M) → R,

satis�es the Leibniz rule:

ξ(ab) = ξ(a)b(q(0)) + a(q(0))ξ(b).
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• Consequently, to each tangent vector v ∈ TqM we should put into correspondence

a linear functional

ξ : C∞(M) → R

such that

ξ(ab) = (ξa)b(q) + a(q)(ξb), a, b ∈ C∞(M). (1)

• But there is a linear functional ξ = v̂ naturally related to any tangent vector

v ∈ TqM, the directional derivative along v :

v̂ a =
d

d t

∣∣∣∣
t=0

a(q(t)), q(0) = q, q̇(0) = v ,

and such functional satis�es Leibniz rule (1).

• Now we show that this rule characterizes exactly directional derivatives.
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Proposition 3

Let ξ : C∞(M) → R be a linear functional that satis�es Leibniz rule (1) for some point

q ∈ M. Then ξ = v̂ for some tangent vector v ∈ TqM.

Proof.
• Notice �rst of all that any functional ξ that meets Leibniz rule (1) is local, i.e., it
depends only on values of functions in an arbitrarily small neighborhood Oq ⊂ M
of the point q:

ã|Oq
= a|Oq

⇒ ξã = ξa, a, ã ∈ C∞(M).

• Indeed, take a cut function b ∈ C∞(M) such that b|M\Oq
≡ 1 and b(q) = 0.

Then (ã− a)b = ã− a, thus

ξ(ã− a) = ξ((ã− a)b) = ξ(ã− a) b(q) + (ã− a)(q) ξb = 0.

• So the statement of the proposition is local, and we prove it in coordinates.
• Let (x1, . . . , xn) be local coordinates on M centered at the point q. We have to

prove that there exist α1, . . . , αn ∈ R such that ξ =
∑n

i=1 αi
∂
∂ xi

∣∣∣
0
.
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• First of all,

ξ(1) = ξ(1 · 1) = (ξ1) · 1+ 1 · (ξ1) = 2ξ(1),

thus ξ(1) = 0. By linearity, ξ(const) = 0.

• In order to �nd the action of ξ on an arbitrary smooth function, we expand it by

the Hadamard Lemma:

a(x) = a(0) +
n∑

i=1

∫ 1

0

∂ a

∂ xi
(tx)xi dt = a(0) +

n∑
i=1

bi (x)xi ,

where bi (x) =
∫ 1

0
∂ a
∂ xi

(tx) dt are smooth functions.

• Now

ξa =
n∑

i=1

ξ(bixi ) =
n∑

i=1

((ξbi )xi (0) + bi (0)(ξxi )) =
n∑

i=1

αi
∂ a

∂ xi
(0),

where we denote αi = ξxi and make use of the equality bi (0) =
∂ a

∂ xi
(0).
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• So tangent vectors v ∈ TqM can be identi�ed with directional derivatives

v̂ : C∞(M) → R, i.e., linear functionals that meet Leibniz rule (1).

• Now we characterize vector �elds on M. A smooth vector �eld on M is a family of

tangent vectors vq ∈ TqM, q ∈ M, such that for any a ∈ C∞(M) the mapping

q 7→ vqa, q ∈ M, is a smooth function on M.

• To a smooth vector �eld V ∈ VecM there corresponds a linear operator

V̂ : C∞(M) → C∞(M)

that satis�es the Leibniz rule

V̂ (ab) = (V̂ a)b + a(V̂ b), a, b ∈ C∞(M),

the directional derivative (Lie derivative) along V .

• A linear operator on an algebra meeting the Leibniz rule is called a derivation of

the algebra, so the Lie derivative V̂ is a derivation of the algebra C∞(M).
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• We show that the correspondence between smooth vector �elds on M and

derivations of the algebra C∞(M) is invertible.

Proposition 4

Any derivation of the algebra C∞(M) is the directional derivative along some smooth

vector �eld on M.

Proof.
Let D : C∞(M) → C∞(M) be a derivation. Take any point q ∈ M. We show that the

linear functional

dq
def
= q̂ ◦ D : C∞(M) → R

is a directional derivative at the point q, i.e., satis�es Leibniz rule (1):

dq(ab) = q̂(D(ab)) = q̂((Da)b + a(Db)) = q̂(Da)b(q) + a(q)q̂(Db) =

(dqa)b(q) + a(q)(dqb), a, b ∈ C∞(M).
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• So we can identify points q ∈ M, di�eomorphisms P ∈ DiffM, and vector �elds

V ∈ VecM with nontrivial homomorphisms q̂ : C∞(M) → R, automorphisms

P̂ : C∞(M) → C∞(M), and derivations V̂ : C∞(M) → C∞(M) respectively.

• For example, we can write a point P(q) in the operator notation as q̂ ◦ P̂ .
• Moreover, in the sequel we omit hats and write q ◦ P . This does not cause
ambiguity: if q is to the right of P , then q is a point, P a di�eomorphism, and

P(q) is the value of the di�eomorphism P at the point q. And if q is to the left of

P , then q is a homomorphism, P an automorphism, and q ◦ P a homomorphism of

C∞(M).

• Similarly, V (q) ∈ TqM is the value of the vector �eld V at the point q, and
q ◦ V : C∞(M) → R is the directional derivative along the vector V (q).
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Seminorms and C∞(M)-Topology

• We introduce seminorms and topology on the space C∞(M).

• By Whitney's Theorem, a smooth manifold M can be properly embedded into a

Euclidean space RN for su�ciently large N. Denote by hi , i = 1, . . . ,N, the

smooth vector �eld on M that is the orthogonal projection from RN to M of the

constant basis vector �eld ∂
∂ xi

∈ Vec(RN). So we have N vector �elds

h1, . . . , hN ∈ VecM that span the tangent space TqM at each point q ∈ M.

• We de�ne the family of seminorms ∥ · ∥s,K on the space C∞(M) in the following

way:

∥a∥s,K = sup {|hil ◦ · · · ◦ hi1a(q)| | q ∈ K , 1 ≤ i1, . . . , il ≤ N, 0 ≤ l ≤ s} ,
a ∈ C∞(M), s ≥ 0, K ⋐ M.

• This family of seminorms de�nes a topology on C∞(M).
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• A local base of this topology is given by the subsets{
a ∈ C∞(M) | ∥a∥n,Kn <

1

n

}
, n ∈ N,

where Kn, n ∈ N, is a chained system of compacta that cover M:

Kn ⊂ Kn+1,

∞⋃
n=1

Kn = M.

• This topology on C∞(M) does not depend on embedding of M into RN . It is

called the topology of uniform convergence of all derivatives on compacta, or just

C∞(M)-topology.
• This topology turns C∞(M) into a Fr�echet space (a complete, metrizable, locally

convex topological vector space).
• A sequence of functions ak ∈ C∞(M) converges to a ∈ C∞(M) as k → ∞ if and

only if

lim
k→∞

∥ak − a∥s,K = 0 ∀ s ≥ 0, K ⋐ M.
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• For vector �elds V ∈ VecM, we de�ne the seminorms

∥V ∥s,K = sup {∥Va∥s,K | ∥a∥s+1,K = 1} , s ≥ 0, K ⋐ M. (2)

• One can prove that any vector �eld V ∈ VecM has �nite seminorms ∥V ∥s,K , and
that there holds an estimate of the action of a di�eomorphism P ∈ DiffM on a

function a ∈ C∞(M):

∥Pa∥s,K ≤ Cs,P∥a∥s,P(K), s ≥ 0, K ⋐ M. (3)

• Thus vector �elds and di�eomorphisms are linear continuous operators on the

topological vector space C∞(M).
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Families of Functionals and Operators

• In the sequel we will often consider one-parameter families of points,

di�eomorphisms, and vector �elds that satisfy various regularity properties (e.g.

di�erentiability or absolute continuity) with respect to the parameter.

• Since we treat points as functionals, and di�eomorphisms and vector �elds as

operators on C∞(M), we can introduce regularity properties for them in the weak

sense, via the corresponding properties for one-parameter families of functions

t 7→ at , at ∈ C∞(M), t ∈ R.

• So we start from de�nitions for families of functions.

• Continuity and di�erentiability of a family of functions at w.r.t. parameter t are

de�ned in a standard way since C∞(M) is a topological vector space.
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• A family of functions at is called measurable w.r.t. t if the real function t 7→ at(q)
is measurable for any q ∈ M. A measurable family at is called locally integrable if∫ t1

t0

∥at∥s,K dt < ∞ ∀ s ≥ 0, K ⋐ M, t0, t1 ∈ R.

• A family at is called absolutely continuous w.r.t. t if

at = at0 +

∫ t

t0

bτ dτ

for some locally integrable family of functions bt .
• A family at is called Lipschitzian w.r.t. t if

∥at − aτ∥s,K ≤ Cs,K |t − τ | ∀s ≥ 0, K ⋐ M, t, τ ∈ R,

and locally bounded w.r.t. t if

∥at∥s,K ≤ Cs,K ,I , ∀ s ≥ 0, K ⋐ M, I ⋐ R, t ∈ I ,

where Cs,K and Cs,K ,I are some constants depending on s, K , and I .
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• Now we can de�ne regularity properties of families of functionals and operators on

C∞(M).
• A family of linear functionals or linear operators on C∞(M)

t 7→ At , t ∈ R,

has some regularity property (i.e., is continuous, di�erentiable, measurable, locally

integrable, absolutely continuous, Lipschitzian, locally bounded w.r.t. t) if the
family

t 7→ Ata, t ∈ R,
has the same property for any a ∈ C∞(M).

• A locally bounded w.r.t. t family of vector �elds

t 7→ Vt , Vt ∈ VecM, t ∈ R,

is called a nonautonomous vector �eld, or simply a vector �eld, on M.
• An absolutely continuous w.r.t. t family of di�eomorphisms

t 7→ Pt , Pt ∈ DiffM, t ∈ R,

is called a �ow on M.
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• So, for a nonautonomous vector �eld Vt , the family of functions t 7→ Vta is locally

integrable for any a ∈ C∞(M).
• Similarly, for a �ow Pt , the family of functions (Pta)(q) = a(Pt(q)) is absolutely
continuous w.r.t. t for any a ∈ C∞(M).

• Integrals of measurable locally integrable families, and derivatives of di�erentiable

families are also de�ned in the weak sense:∫ t1

t0

At dt : a 7→
∫ t1

t0

(Ata) dt, a ∈ C∞(M),

d

d t
At : a 7→ d

d t
(Ata), a ∈ C∞(M).

• One can show that if At and Bt are continuous families of operators on C∞(M)
which are di�erentiable at t0, then the family At ◦ Bt is continuous, moreover,

di�erentiable at t0, and satis�es the Leibniz rule:

d

d t

∣∣∣∣
t0

(At ◦ Bt) =

(
d

d t

∣∣∣∣
t0

At

)
◦ Bt0 + At0 ◦

(
d

d t

∣∣∣∣
t0

Bt

)
.
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• If families At and Bt of operators are absolutely continuous, then the composition

At ◦ Bt is absolutely continuous as well, the same is true for composition of

functionals with operators.

• For an absolute continuous family of functions at , the family Atat is also
absolutely continuous, and the Leibniz rule holds for it as well.
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ODEs with discontinuous right-hand side
• We consider a nonautonomous ordinary di�erential equation of the form

q̇ = Vt(q), q(0) = q0, (4)

where Vt is a nonautonomous vector �eld on M, and study the �ow determined by

this �eld.

• We denote by q̇ the derivative
d q

d t
, so equation (4) reads in the expanded form as

d q(t)

d t
= Vt(q(t)).

• To obtain local solutions to the Cauchy problem (4) on a manifold M, we reduce it

to a Cauchy problem in a Euclidean space.
• Choose local coordinates x = (x1, . . . , xn) in a neighborhood Oq0 of the point q0:

Φ : Oq0 ⊂ M → Ox0 ⊂ Rn, Φ : q 7→ x ,

Φ(q0) = x0.
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• In these coordinates, the �eld Vt reads

(Φ∗Vt) (x) = Ṽt(x) =
n∑

i=1

vi (t, x)
∂

∂ x i
, x ∈ Ox0 , t ∈ R, (5)

and problem (4) takes the form

ẋ = Ṽt(x), x(0) = x0, x ∈ Ox0 ⊂ Rn. (6)

• Since the nonautonomous vector �eld Vt ∈ VecM is locally bounded, the
components vi (t, x), i = 1, . . . , n, of its coordinate representation (5) are:

(1) measurable and locally bounded w.r.t. t for any �xed x ∈ Ox0 ,
(2) smooth w.r.t. x for any �xed t ∈ R,
(3) di�erentiable in x with locally bounded partial derivatives:∣∣∣∣∂ vi

∂ x
(t, x)

∣∣∣∣ ≤ CI ,K , t ∈ I ⋐ R, x ∈ K ⋐ Ox0 , i = 1, . . . , n.
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• By the classical Carath�eodory Theorem, the Cauchy problem (6) has a unique
solution, i.e., a vector-function x(t, x0), Lipschitzian w.r.t. t and smooth w.r.t. x0,
and such that:
(1) ODE (6) is satis�ed for almost all t,
(2) initial condition holds: x(0, x0) = x0.

• Then the pull-back of this solution from Rn to M

q(t, q0) = Φ−1(x(t, x0)),

is a solution to problem (4) in M.
• The mapping q(t, q0) is Lipschitzian w.r.t. t and smooth w.r.t. q0, it satis�es
almost everywhere the ODE and the initial condition in (4).

• For any q0 ∈ M, the solution q(t, q0) to the Cauchy problem (4) can be continued

to a maximal interval t ∈ Jq0 ⊂ R containing the origin and depending on q0.
• We will assume that the solutions q(t, q0) are de�ned for all q0 ∈ M and all t ∈ R,
i.e., Jq0 = R for any q0 ∈ M. Then the nonautonomous �eld Vt is called complete.

• This holds, e.g., when all the �elds Vt , t ∈ R, vanish outside of a common

compactum in M (in this case we say that the nonautonomous vector �eld Vt has

a compact support).
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De�nition of the right chronological exponential
• The Cauchy problem q̇ = Vt(q), q(0) = q0, rewritten as a linear equation for

Lipschitzian w.r.t. t families of functionals on C∞(M):

q̇(t) = q(t) ◦ Vt , q(0) = q0, (7)

is satis�ed for the family of functionals

q(t, q0) : C∞(M) → R, q0 ∈ M, t ∈ R

constructed in the previous subsection.
• We prove later that this Cauchy problem has no other solutions.
• Thus the �ow de�ned as

Pt : q0 7→ q(t, q0) (8)

is a unique solution of the operator Cauchy problem Ṗt = Pt ◦ Vt , P
0 = Id

(where Id is the identity operator), in the class of Lipschitzian �ows on M.
• The �ow Pt determined in (8) is called the right chronological exponential of the

�eld Vt and is denoted as Pt =
−→
exp

∫ t

0

Vτ dτ.
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Formal series expansion

• We rewrite di�erential equation in (7) as an integral one:

q(t) = q0 +

∫ t

0

q(τ) ◦ Vτ dτ (9)

then substitute this expression for q(t) into the right-hand side

= q0 +

∫ t

0

(
q0 +

∫ τ1

0

q(τ2) ◦ Vτ2 dτ2

)
◦ Vτ1 dτ1

= q0 ◦
(
Id+

∫ t

0

Vτ dt

)
+

∫∫
0≤τ2≤τ1≤t

q(τ2) ◦ Vτ2 ◦ Vτ1 dτ2 dτ1,

repeat this procedure iteratively, and obtain the decomposition:
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q(t) = q0 ◦

Id+

∫ t

0

Vτ dτ +

∫∫
∆2(t)

Vτ2 ◦ Vτ1 dτ2 dτ1 + . . .+

∫
· · ·
∫

∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1

+

∫
· · ·
∫

∆n+1(t)

q(τn+1) ◦ Vτn+1 ◦ · · · ◦ Vτ1 dτn+1 . . . dτ1. (10)

• Here

∆n(t) = {(τ1, . . . , τn) ∈ Rn | 0 ≤ τn ≤ · · · ≤ τ1 ≤ t}

is the n-dimensional simplex.
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• Purely formally passing in (10) to the limit n → ∞, we obtain a formal series for

the solution q(t) to problem (7):

q0 ◦

Id+
∞∑
n=1

∫
· · ·
∫

∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1

 ,

thus for the solution Pt to our Cauchy problem:

Id+
∞∑
n=1

∫
· · ·
∫

∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1. (11)
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