Elements of Chronological Calculus-1

(Lecture 3)

Yuri Sachkov

Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia yusachkov@gmail.com
«Elements of Optimal Control»
Lecture course in Steklov Mathematical Institute, Moscow
29 September 2023

Plan of previous lecture

1. Time-Optimal Problem
2. Smooth manifolds
3. Tangent space and tangent vector
4. Ordinary differential equations on manifolds

Plan of this lecture

1. Points, Diffeomorphisms, and Vector Fields
2. Seminorms and $C^{\infty}(M)$-Topology
3. Families of Functionals and Operators
4. ODEs with discontinuous right-hand side
5. Definition of the right chronological exponential
6. Formal series expansion
7. Estimates and convergence of the series
8. Left chronological exponential

Points, Diffeomorphisms, and Vector Fields

- We identify points, diffeomorphisms, and vector fields on the manifold M with functionals and operators on the algebra $C^{\infty}(M)$ of all smooth real-valued functions on M.
- Addition, multiplication, and product with constants are defined in the algebra $C^{\infty}(M)$, as usual, pointwise: if $a, b \in C^{\infty}(M), q \in M, \alpha \in \mathbb{R}$, then

$$
\begin{aligned}
& (a+b)(q)=a(q)+b(q), \\
& (a \cdot b)(q)=a(q) \cdot b(q), \\
& (\alpha \cdot a)(q)=\alpha \cdot a(q)
\end{aligned}
$$

- Any point $q \in M$ defines a linear functional

$$
\widehat{q}: C^{\infty}(M) \rightarrow \mathbb{R}, \quad \widehat{q} a=a(q), a \in C^{\infty}(M)
$$

- The functionals \widehat{q} are homomorphisms of the algebras $C^{\infty}(M)$ and \mathbb{R} :

$$
\begin{aligned}
& \widehat{q}(a+b)=\widehat{q} a+\widehat{q} b, \quad a, b \in C^{\infty}(M), \\
& \widehat{q}(a \cdot b)=(\widehat{q} a) \cdot(\widehat{q} b), \quad a, b \in C^{\infty}(M), \\
& \widehat{q}(\alpha \cdot a)=\alpha \cdot \widehat{q} a, \quad \alpha \in \mathbb{R}, a \in C^{\infty}(M) .
\end{aligned}
$$

- So to any point $q \in M$, there corresponds a nontrivial homomorphism of algebras $\widehat{q}: C^{\infty}(M) \rightarrow \mathbb{R}$. It turns out that there exists an inverse correspondence.

Proposition 1
Let $\varphi: C^{\infty}(M) \rightarrow \mathbb{R}$ be a nontrivial homomorphism of algebras. Then there exists a point $q \in M$ such that $\varphi=\widehat{q}$.

Proof.
A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint. Springer-Verlag, 2004.

- Not only the manifold M can be reconstructed as a set from the algebra $C^{\infty}(M)$. One can recover topology on M from the weak topology in the space of functionals on $C^{\infty}(M)$:

$$
\lim _{n \rightarrow \infty} q_{n}=q \quad \text { if and only if } \lim _{n \rightarrow \infty} \widehat{q}_{n} a=\widehat{q} a \quad \forall a \in C^{\infty}(M)
$$

- Moreover, the smooth structure on M is also recovered from $C^{\infty}(M)$, actually, "by definition": a real function on the set $\{\widehat{q} \mid q \in M\}$ is smooth if and only if it has a form $\widehat{q} \mapsto \widehat{q} a$ for some $a \in C^{\infty}(M)$.
- Any diffeomorphism $P: M \rightarrow M$ defines an automorphism of the algebra $C^{\infty}(M)$:

$$
\begin{aligned}
& \widehat{P}: C^{\infty}(M) \rightarrow C^{\infty}(M), \quad \widehat{P} \in \operatorname{Aut}\left(C^{\infty}(M)\right), \\
& (\widehat{P} a)(q)=a(P(q)), \quad q \in M, \quad a \in C^{\infty}(M),
\end{aligned}
$$

i.e., \widehat{P} acts as a change of variables in a function a.

- Conversely, any automorphism of $C^{\infty}(M)$ has such a form.

Proposition 2

Any automorphism $A: C^{\infty}(M) \rightarrow C^{\infty}(M)$ has a form of \widehat{P} for some $P \in \operatorname{Diff} M$.
Proof.
Let $A \in \operatorname{Aut}\left(C^{\infty}(M)\right)$. Take any point $q \in M$. Then the composition

$$
\widehat{q} \circ A: C^{\infty}(M) \rightarrow \mathbb{R}
$$

is a nonzero homomorphism of algebras, thus it has the form $\widehat{q_{1}}$ for some $q_{1} \in M$. We denote $q_{1}=P(q)$ and obtain

$$
\widehat{q} \circ A=\widehat{P(q)}=\widehat{q} \circ \widehat{P} \quad \forall q \in M
$$

i.e.,

$$
A=\widehat{P}
$$

and P is the required diffeomorphism.

- Now we characterize tangent vectors to M as functionals on $C^{\infty}(M)$.
- Tangent vectors to M are velocity vectors to curves in M, and points of M are identified with linear functionals on $C^{\infty}(M)$; thus we should obtain linear functionals on $C^{\infty}(M)$, but not homomorphisms into \mathbb{R}.
- To understand, which functionals on $C^{\infty}(M)$ correspond to tangent vectors to M, take a smooth curve $q(t)$ of points in M. Then the corresponding curve of functionals $\widehat{q}(t)=\widehat{q(t)}$ on $C^{\infty}(M)$ satisfies the multiplicative rule

$$
\widehat{q}(t)(a \cdot b)=\widehat{q}(t) a \cdot \widehat{q}(t) b, \quad a, b \in C^{\infty}(M)
$$

- We differentiate this equality at $t=0$ and obtain that the velocity vector to the curve of functionals

$$
\left.\xi \stackrel{\text { def }}{=} \frac{d \widehat{q}}{d t}\right|_{t=0}, \quad \xi: C^{\infty}(M) \rightarrow \mathbb{R}
$$

satisfies the Leibniz rule:

$$
\xi(a b)=\xi(a) b(q(0))+a(q(0)) \xi(b)
$$

- Consequently, to each tangent vector $v \in T_{q} M$ we should put into correspondence a linear functional

$$
\xi: C^{\infty}(M) \rightarrow \mathbb{R}
$$

such that

$$
\begin{equation*}
\xi(a b)=(\xi a) b(q)+a(q)(\xi b), \quad a, b \in C^{\infty}(M) \tag{1}
\end{equation*}
$$

- But there is a linear functional $\xi=\widehat{v}$ naturally related to any tangent vector $v \in T_{q} M$, the directional derivative along v :

$$
\widehat{v} a=\left.\frac{d}{d t}\right|_{t=0} a(q(t)), \quad q(0)=q, \quad \dot{q}(0)=v
$$

and such functional satisfies Leibniz rule (1).

- Now we show that this rule characterizes exactly directional derivatives.

Proposition 3

Let $\xi: C^{\infty}(M) \rightarrow \mathbb{R}$ be a linear functional that satisfies Leibniz rule (1) for some point $q \in M$. Then $\xi=\widehat{v}$ for some tangent vector $v \in T_{q} M$.
Proof.

- Notice first of all that any functional ξ that meets Leibniz rule (1) is local, i.e., it depends only on values of functions in an arbitrarily small neighborhood $O_{q} \subset M$ of the point q :

$$
\left.\tilde{a}\right|_{O_{q}}=\left.a\right|_{O_{q}} \quad \Rightarrow \quad \xi \tilde{a}=\xi a, \quad a, \tilde{a} \in C^{\infty}(M) .
$$

- Indeed, take a cut function $b \in C^{\infty}(M)$ such that $\left.b\right|_{M \backslash O_{q}} \equiv 1$ and $b(q)=0$. Then $(\tilde{a}-a) b=\tilde{a}-a$, thus

$$
\xi(\tilde{a}-a)=\xi((\tilde{a}-a) b)=\xi(\tilde{a}-a) b(q)+(\tilde{a}-a)(q) \xi b=0 .
$$

- So the statement of the proposition is local, and we prove it in coordinates.
- Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates on M centered at the point q. We have to prove that there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that $\xi=\left.\sum_{i=1}^{n} \alpha_{i} \frac{\partial}{\partial x_{i}}\right|_{0}$.
- First of all,

$$
\xi(1)=\xi(1 \cdot 1)=(\xi 1) \cdot 1+1 \cdot(\xi 1)=2 \xi(1)
$$

thus $\xi(1)=0$. By linearity, $\xi($ const $)=0$.

- In order to find the action of ξ on an arbitrary smooth function, we expand it by the Hadamard Lemma:

$$
a(x)=a(0)+\sum_{i=1}^{n} \int_{0}^{1} \frac{\partial a}{\partial x_{i}}(t x) x_{i} d t=a(0)+\sum_{i=1}^{n} b_{i}(x) x_{i}
$$

where $b_{i}(x)=\int_{0}^{1} \frac{\partial a}{\partial x_{i}}(t x) d t$ are smooth functions.

- Now

$$
\xi a=\sum_{i=1}^{n} \xi\left(b_{i} x_{i}\right)=\sum_{i=1}^{n}\left(\left(\xi b_{i}\right) x_{i}(0)+b_{i}(0)\left(\xi x_{i}\right)\right)=\sum_{i=1}^{n} \alpha_{i} \frac{\partial a}{\partial x_{i}}(0),
$$

where we denote $\alpha_{i}=\xi x_{i}$ and make use of the equality $b_{i}(0)=\frac{\partial a}{\partial x_{i}}(0)$.

- So tangent vectors $v \in T_{q} M$ can be identified with directional derivatives $\widehat{v}: C^{\infty}(M) \rightarrow \mathbb{R}$, i.e., linear functionals that meet Leibniz rule (1).
- Now we characterize vector fields on M. A smooth vector field on M is a family of tangent vectors $v_{q} \in T_{q} M, q \in M$, such that for any $a \in C^{\infty}(M)$ the mapping $q \mapsto v_{q} a, q \in M$, is a smooth function on M.
- To a smooth vector field $V \in \operatorname{Vec} M$ there corresponds a linear operator

$$
\widehat{V}: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
\widehat{V}(a b)=(\widehat{V} a) b+a(\widehat{V} b), \quad a, b \in C^{\infty}(M)
$$

the directional derivative (Lie derivative) along V.

- A linear operator on an algebra meeting the Leibniz rule is called a derivation of the algebra, so the Lie derivative \widehat{V} is a derivation of the algebra $C^{\infty}(M)$.
- We show that the correspondence between smooth vector fields on M and derivations of the algebra $C^{\infty}(M)$ is invertible.

Proposition 4

Any derivation of the algebra $C^{\infty}(M)$ is the directional derivative along some smooth vector field on M.

Proof.

Let $D: C^{\infty}(M) \rightarrow C^{\infty}(M)$ be a derivation. Take any point $q \in M$. We show that the linear functional

$$
d_{q} \stackrel{\text { def }}{=} \widehat{q} \circ D: C^{\infty}(M) \rightarrow \mathbb{R}
$$

is a directional derivative at the point q, i.e., satisfies Leibniz rule (1):

$$
\begin{aligned}
d_{q}(a b)= & \widehat{q}(D(a b))=\widehat{q}((D a) b+a(D b))=\widehat{q}(D a) b(q)+a(q) \widehat{q}(D b)= \\
& \left(d_{q} a\right) b(q)+a(q)\left(d_{q} b\right), \quad a, b \in C^{\infty}(M) .
\end{aligned}
$$

- So we can identify points $q \in M$, diffeomorphisms $P \in \operatorname{Diff} M$, and vector fields $V \in \operatorname{Vec} M$ with nontrivial homomorphisms $\widehat{q}: C^{\infty}(M) \rightarrow \mathbb{R}$, automorphisms $\widehat{P}: C^{\infty}(M) \rightarrow C^{\infty}(M)$, and derivations $\widehat{V}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ respectively.
- For example, we can write a point $P(q)$ in the operator notation as $\widehat{q} \circ \widehat{P}$.
- Moreover, in the sequel we omit hats and write $q \circ P$. This does not cause ambiguity: if q is to the right of P, then q is a point, P a diffeomorphism, and $P(q)$ is the value of the diffeomorphism P at the point q. And if q is to the left of P, then q is a homomorphism, P an automorphism, and $q \circ P$ a homomorphism of $C^{\infty}(M)$.
- Similarly, $V(q) \in T_{q} M$ is the value of the vector field V at the point q, and $q \circ V: C^{\infty}(M) \rightarrow \mathbb{R}$ is the directional derivative along the vector $V(q)$.

Seminorms and $C^{\infty}(M)$-Topology

- We introduce seminorms and topology on the space $C^{\infty}(M)$.
- By Whitney's Theorem, a smooth manifold M can be properly embedded into a Euclidean space \mathbb{R}^{N} for sufficiently large N. Denote by $h_{i}, i=1, \ldots, N$, the smooth vector field on M that is the orthogonal projection from \mathbb{R}^{N} to M of the constant basis vector field $\frac{\partial}{\partial x_{i}} \in \operatorname{Vec}\left(\mathbb{R}^{N}\right)$. So we have N vector fields $h_{1}, \ldots, h_{N} \in \operatorname{Vec} M$ that span the tangent space $T_{q} M$ at each point $q \in M$.
- We define the family of seminorms $\|\cdot\|_{s, K}$ on the space $C^{\infty}(M)$ in the following way:

$$
\begin{aligned}
\|a\|_{s, K}=\sup \left\{\left|h_{i_{l}} \circ \cdots \circ h_{i_{1}} a(q)\right| \mid q \in K, 1 \leq i_{1}, \ldots, i_{I} \leq N, 0 \leq I \leq s\right\}
\end{aligned}, \quad \begin{aligned}
& a \in C^{\infty}(M), \quad s \geq 0, \quad K \Subset M .
\end{aligned}
$$

- This family of seminorms defines a topology on $C^{\infty}(M)$.
- A local base of this topology is given by the subsets

$$
\left\{a \in C^{\infty}(M) \left\lvert\,\|a\|_{n, K_{n}}<\frac{1}{n}\right.\right\}, \quad n \in \mathbb{N}
$$

where $K_{n}, n \in \mathbb{N}$, is a chained system of compacta that cover M :

$$
K_{n} \subset K_{n+1}, \quad \bigcup_{n=1}^{\infty} K_{n}=M
$$

- This topology on $C^{\infty}(M)$ does not depend on embedding of M into \mathbb{R}^{N}. It is called the topology of uniform convergence of all derivatives on compacta, or just $C^{\infty}(M)$-topology.
- This topology turns $C^{\infty}(M)$ into a Fréchet space (a complete, metrizable, locally convex topological vector space).
- A sequence of functions $a_{k} \in C^{\infty}(M)$ converges to $a \in C^{\infty}(M)$ as $k \rightarrow \infty$ if and only if

$$
\lim _{k \rightarrow \infty}\left\|a_{k}-a\right\|_{s, K}=0 \quad \forall s \geq 0, K \Subset M
$$

- For vector fields $V \in \operatorname{Vec} M$, we define the seminorms

$$
\begin{equation*}
\|V\|_{s, K}=\sup \left\{\|V a\|_{s, K} \mid\|a\|_{s+1, K}=1\right\}, \quad s \geq 0, \quad K \Subset M . \tag{2}
\end{equation*}
$$

- One can prove that any vector field $V \in \operatorname{Vec} M$ has finite seminorms $\|V\|_{s, K}$, and that there holds an estimate of the action of a diffeomorphism $P \in \operatorname{Diff} M$ on a function $a \in C^{\infty}(M)$:

$$
\begin{equation*}
\|P a\|_{s, K} \leq C_{s, P}\|a\|_{s, P(K)}, \quad s \geq 0, \quad K \Subset M \tag{3}
\end{equation*}
$$

- Thus vector fields and diffeomorphisms are linear continuous operators on the topological vector space $C^{\infty}(M)$.

Families of Functionals and Operators

- In the sequel we will often consider one-parameter families of points, diffeomorphisms, and vector fields that satisfy various regularity properties (e.g. differentiability or absolute continuity) with respect to the parameter.
- Since we treat points as functionals, and diffeomorphisms and vector fields as operators on $C^{\infty}(M)$, we can introduce regularity properties for them in the weak sense, via the corresponding properties for one-parameter families of functions

$$
t \mapsto a_{t}, \quad a_{t} \in C^{\infty}(M), \quad t \in \mathbb{R}
$$

- So we start from definitions for families of functions.
- Continuity and differentiability of a family of functions a_{t} w.r.t. parameter t are defined in a standard way since $C^{\infty}(M)$ is a topological vector space.
- A family of functions a_{t} is called measurable w.r.t. t if the real function $t \mapsto a_{t}(q)$ is measurable for any $q \in M$. A measurable family a_{t} is called locally integrable if

$$
\int_{t_{0}}^{t_{1}}\left\|a_{t}\right\|_{s, K} d t<\infty \quad \forall s \geq 0, \quad K \Subset M, \quad t_{0}, \quad t_{1} \in \mathbb{R}
$$

- A family a_{t} is called absolutely continuous w.r.t. t if

$$
a_{t}=a_{t_{0}}+\int_{t_{0}}^{t} b_{\tau} d \tau
$$

for some locally integrable family of functions b_{t}.

- A family a_{t} is called Lipschitzian w.r.t. t if

$$
\left\|a_{t}-a_{\tau}\right\|_{s, K} \leq C_{s, K}|t-\tau| \quad \forall s \geq 0, \quad K \Subset M, \quad t, \tau \in \mathbb{R},
$$

and locally bounded w.r.t. t if

$$
\left\|a_{t}\right\|_{s, K} \leq C_{s, K, I}, \quad \forall s \geq 0, \quad K \Subset M, \quad I \Subset \mathbb{R}, \quad t \in I,
$$

where $C_{s, K}$ and $C_{s, K, I}$ are some constants depending on s, K, and I.

- Now we can define regularity properties of families of functionals and operators on $C^{\infty}(M)$.
- A family of linear functionals or linear operators on $C^{\infty}(M)$

$$
t \mapsto A_{t}, \quad t \in \mathbb{R}
$$

has some regularity property (i.e., is continuous, differentiable, measurable, locally integrable, absolutely continuous, Lipschitzian, locally bounded w.r.t. t) if the family

$$
t \mapsto A_{t} a, \quad t \in \mathbb{R}
$$

has the same property for any $a \in C^{\infty}(M)$.

- A locally bounded w.r.t. t family of vector fields

$$
t \mapsto V_{t}, \quad V_{t} \in \operatorname{Vec} M, \quad t \in \mathbb{R}
$$

is called a nonautonomous vector field, or simply a vector field, on M.

- An absolutely continuous w.r.t. t family of diffeomorphisms

$$
t \mapsto P^{t}, \quad P^{t} \in \operatorname{Diff} M, \quad t \in \mathbb{R},
$$

is called a flow on M.

- So, for a nonautonomous vector field V_{t}, the family of functions $t \mapsto V_{t} a$ is locally integrable for any $a \in C^{\infty}(M)$.
- Similarly, for a flow P^{t}, the family of functions $\left(P^{t} a\right)(q)=a\left(P^{t}(q)\right)$ is absolutely continuous w.r.t. t for any $a \in C^{\infty}(M)$.
- Integrals of measurable locally integrable families, and derivatives of differentiable families are also defined in the weak sense:

$$
\begin{array}{ll}
\int_{t_{0}}^{t_{1}} A_{t} d t: a \mapsto \int_{t_{0}}^{t_{1}}\left(A_{t} a\right) d t, & a \in C^{\infty}(M), \\
\frac{d}{d t} A_{t}: a \mapsto \frac{d}{d t}\left(A_{t} a\right), & a \in C^{\infty}(M) .
\end{array}
$$

- One can show that if A_{t} and B_{t} are continuous families of operators on $C^{\infty}(M)$ which are differentiable at t_{0}, then the family $A_{t} \circ B_{t}$ is continuous, moreover, differentiable at t_{0}, and satisfies the Leibniz rule:

$$
\left.\frac{d}{d t}\right|_{t_{0}}\left(A_{t} \circ B_{t}\right)=\left(\left.\frac{d}{d t}\right|_{t_{0}} A_{t}\right) \circ B_{t_{0}}+A_{t_{0}} \circ\left(\left.\frac{d}{d t}\right|_{t_{0}} B_{t}\right) .
$$

- If families A_{t} and B_{t} of operators are absolutely continuous, then the composition $A_{t} \circ B_{t}$ is absolutely continuous as well, the same is true for composition of functionals with operators.
- For an absolute continuous family of functions a_{t}, the family $A_{t} a_{t}$ is also absolutely continuous, and the Leibniz rule holds for it as well.

ODEs with discontinuous right-hand side

- We consider a nonautonomous ordinary differential equation of the form

$$
\begin{equation*}
\dot{q}=V_{t}(q), \quad q(0)=q_{0}, \tag{4}
\end{equation*}
$$

where V_{t} is a nonautonomous vector field on M, and study the flow determined by this field.

- We denote by \dot{q} the derivative $\frac{d q}{d t}$, so equation (4) reads in the expanded form as

$$
\frac{d q(t)}{d t}=V_{t}(q(t))
$$

- To obtain local solutions to the Cauchy problem (4) on a manifold M, we reduce it to a Cauchy problem in a Euclidean space.
- Choose local coordinates $x=\left(x^{1}, \ldots, x^{n}\right)$ in a neighborhood $O_{q_{0}}$ of the point q_{0} :

$$
\begin{aligned}
& \Phi: O_{q_{0}} \subset M \rightarrow O_{x_{0}} \subset \mathbb{R}^{n}, \quad \Phi: q \mapsto x, \\
& \Phi\left(q_{0}\right)=x_{0}
\end{aligned}
$$

- In these coordinates, the field V_{t} reads

$$
\begin{equation*}
\left(\Phi_{*} V_{t}\right)(x)=\widetilde{V}_{t}(x)=\sum_{i=1}^{n} v_{i}(t, x) \frac{\partial}{\partial x^{i}}, \quad x \in O_{x_{0}}, \quad t \in \mathbb{R} \tag{5}
\end{equation*}
$$

and problem (4) takes the form

$$
\begin{equation*}
\dot{x}=\widetilde{V}_{t}(x), \quad x(0)=x_{0}, \quad x \in O_{x_{0}} \subset \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

- Since the nonautonomous vector field $V_{t} \in \operatorname{Vec} M$ is locally bounded, the components $v_{i}(t, x), i=1, \ldots, n$, of its coordinate representation (5) are:
(1) measurable and locally bounded w.r.t. t for any fixed $x \in O_{x_{0}}$,
(2) smooth w.r.t. x for any fixed $t \in \mathbb{R}$,
(3) differentiable in x with locally bounded partial derivatives:

$$
\left|\frac{\partial v_{i}}{\partial x}(t, x)\right| \leq C_{l, K}, \quad t \in I \Subset \mathbb{R}, x \in K \Subset O_{x_{0}}, \quad i=1, \ldots, n .
$$

- By the classical Carathéodory Theorem, the Cauchy problem (6) has a unique solution, i.e., a vector-function $x\left(t, x_{0}\right)$, Lipschitzian w.r.t. t and smooth w.r.t. x_{0}, and such that:
(1) ODE (6) is satisfied for almost all t,
(2) initial condition holds: $x\left(0, x_{0}\right)=x_{0}$.
- Then the pull-back of this solution from \mathbb{R}^{n} to M

$$
q\left(t, q_{0}\right)=\Phi^{-1}\left(x\left(t, x_{0}\right)\right)
$$

is a solution to problem (4) in M.

- The mapping $q\left(t, q_{0}\right)$ is Lipschitzian w.r.t. t and smooth w.r.t. q_{0}, it satisfies almost everywhere the ODE and the initial condition in (4).
- For any $q_{0} \in M$, the solution $q\left(t, q_{0}\right)$ to the Cauchy problem (4) can be continued to a maximal interval $t \in J_{q_{0}} \subset \mathbb{R}$ containing the origin and depending on q_{0}.
- We will assume that the solutions $q\left(t, q_{0}\right)$ are defined for all $q_{0} \in M$ and all $t \in \mathbb{R}$, i.e., $J_{q_{0}}=\mathbb{R}$ for any $q_{0} \in M$. Then the nonautonomous field V_{t} is called complete.
- This holds, e.g., when all the fields $V_{t}, t \in \mathbb{R}$, vanish outside of a common compactum in M (in this case we say that the nonautonomous vector field V_{t} has a compact support).

Definition of the right chronological exponential

- The Cauchy problem $\dot{q}=V_{t}(q), q(0)=q_{0}$, rewritten as a linear equation for Lipschitzian w.r.t. t families of functionals on $C^{\infty}(M)$:

$$
\begin{equation*}
\dot{q}(t)=q(t) \circ V_{t}, \quad q(0)=q_{0}, \tag{7}
\end{equation*}
$$

is satisfied for the family of functionals

$$
q\left(t, q_{0}\right): C^{\infty}(M) \rightarrow \mathbb{R}, \quad q_{0} \in M, \quad t \in \mathbb{R}
$$

constructed in the previous subsection.

- We prove later that this Cauchy problem has no other solutions.
- Thus the flow defined as

$$
\begin{equation*}
P^{t}: q_{0} \mapsto q\left(t, q_{0}\right) \tag{8}
\end{equation*}
$$

is a unique solution of the operator Cauchy problem $\dot{P}^{t}=P^{t} \circ V_{t}, P^{0}=\mathrm{ld}$ (where Id is the identity operator), in the class of Lipschitzian flows on M.

- The flow P^{t} determined in (8) is called the right chronological exponential of the field V_{t} and is denoted as $P^{t}=\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau$.

Formal series expansion

- We rewrite differential equation in (7) as an integral one:

$$
\begin{equation*}
q(t)=q_{0}+\int_{0}^{t} q(\tau) \circ V_{\tau} d \tau \tag{9}
\end{equation*}
$$

then substitute this expression for $q(t)$ into the right-hand side

$$
\begin{aligned}
& =q_{0}+\int_{0}^{t}\left(q_{0}+\int_{0}^{\tau_{1}} q\left(\tau_{2}\right) \circ V_{\tau_{2}} d \tau_{2}\right) \circ V_{\tau_{1}} d \tau_{1} \\
& =q_{0} \circ\left(\mathrm{ld}+\int_{0}^{t} V_{\tau} d t\right)+\iint_{0 \leq \tau_{2} \leq \tau_{1} \leq t} q\left(\tau_{2}\right) \circ V_{\tau_{2}} \circ V_{\tau_{1}} d \tau_{2} d \tau_{1}
\end{aligned}
$$

repeat this procedure iteratively, and obtain the decomposition:

$$
\begin{align*}
& q(t)=q_{0} \circ\left(\mathrm{Id}+\int_{0}^{t} V_{\tau} d \tau+\iint_{\Delta_{2}(t)} V_{\tau_{2}} \circ V_{\tau_{1}} d \tau_{2} d \tau_{1}+\ldots+\right. \\
&\left.\iint_{\Delta_{n}(t)} \ldots V_{\tau_{n}} \circ \cdots \circ V_{\tau_{1}} d \tau_{n} \ldots d \tau_{1}\right)+ \\
& \quad \int_{\Delta_{n+1}(t)} \ldots \int_{1} q\left(\tau_{n+1}\right) \circ V_{\tau_{n+1}} \circ \cdots \circ V_{\tau_{1}} d \tau_{n+1} \ldots d \tau_{1} \tag{10}
\end{align*}
$$

- Here

$$
\Delta_{n}(t)=\left\{\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{R}^{n} \mid 0 \leq \tau_{n} \leq \cdots \leq \tau_{1} \leq t\right\}
$$

is the n-dimensional simplex.

- Purely formally passing in (10) to the limit $n \rightarrow \infty$, we obtain a formal series for the solution $q(t)$ to problem (7):

$$
q_{0} \circ\left(\mathrm{Id}+\sum_{n=1}^{\infty} \iint_{\Delta_{n}(t)} \ldots \int V_{\tau_{n}} \circ \cdots \circ V_{\tau_{1}} d \tau_{n} \ldots d \tau_{1}\right)
$$

thus for the solution P^{t} to our Cauchy problem:

$$
\begin{equation*}
\mathrm{Id}+\sum_{n=1}^{\infty} \iint_{\Delta_{n}(t)} \ldots V_{\tau_{n}} \circ \cdots \circ V_{\tau_{1}} d \tau_{n} \ldots d \tau_{1} \tag{11}
\end{equation*}
$$

