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Plan of previous lecture

. Time-Optimal Problem
. Smooth manifolds
. Tangent space and tangent vector

. Ordinary differential equations on manifolds
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Plan of this lecture

Points, Diffeomorphisms, and Vector Fields
Seminorms and C*°(M)-Topology

Families of Functionals and Operators

ODEs with discontinuous right-hand side
Definition of the right chronological exponential
Formal series expansion

Estimates and convergence of the series

Left chronological exponential
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Points, Diffeomorphisms, and Vector Fields

e \We identify points, diffeomorphisms, and vector fields on the manifold M with
functionals and operators on the algebra C°°(M) of all smooth real-valued
functions on M.

e Addition, multiplication, and product with constants are defined in the algebra
C°°(M), as usual, pointwise: if a,b € C°(M), g € M, o € R, then

(a+b)(q) = a(q) + b(q),
)

® Any point g € M defines a linear functional

qg: C°(M) =R, ga=a(q), ac C*(M).
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® The functionals g are homomorphisms of the algebras C°°(M) and R:

g(a+ b) = ga+ gb, a, be C*(M),
q(a-b) =(qa)-(gb),  a, be C*(M),
gla-a) =«-qa, acR, ae CO(M).

® So to any point g € M, there corresponds a nontrivial homomorphism of algebras
g : C®°(M) — R. It turns out that there exists an inverse correspondence.

Proposition 1
Let ¢ : C*°(M) — R be a nontrivial homomorphism of algebras. Then there exists a
point g € M such that p = q.

Proof.
A.A. Agrachev, Yu.L. Sachkov, Control theory from the geometric viewpoint.

Springer-Verlag, 2004. Ol
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® Not only the manifold M can be reconstructed as a set from the algebra C>°(M).
One can recover topology on M from the weak topology in the space of
functionals on C*>°(M):

lim g, =¢q ifandonlyif lim g,a=ga Vae C*(M).
n—oo n—o0

® Moreover, the smooth structure on M is also recovered from C*°(M), actually, “by
definition”: a real function on the set {q | g € M} is smooth if and only if it has a
form g — ga for some a € C*°(M).

® Any diffeomorphism P : M — M defines an automorphism of the algebra C>(M):

P : C®(M)— C¥(M), P eAut(C®(M)),
(Pa)(q) = a(P(q)), qeM, ae Cx(M),

i.e., P acts as a change of variables in a function a.
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e Conversely, any automorphism of C°°(M) has such a form.

Proposition 2
Any automorphism A : C>*(M) — C°°(M) has a form of P for some P € Diff M.

Proof.
Let A € Aut(C>°(M)). Take any point g € M. Then the composition

goA: C®(M)—R

is a nonzero homomorphism of algebras, thus it has the form g; for some g1 € M. We
denote g1 = P(q) and obtain
i.e.,

and P is the required diffeomorphism. O
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Now we characterize tangent vectors to M as functionals on C*°(M).

Tangent vectors to M are velocity vectors to curves in M, and points of M are
identified with linear functionals on C*°(M); thus we should obtain linear
functionals on C°°(M), but not homomorphisms into R.

To understand, which functionals on C°°(M) correspond to tangent vectors to M,

take a smooth curve g(t) of points in M. Then the corresponding curve of
functionals g(t) = q(t) on C°°(M) satisfies the multiplicative rule

q(t)(a- b) =q(t)a- q(t)b, a, be C®(M).

We differentiate this equality at ¢ = 0 and obtain that the velocity vector to the
curve of functionals

¢ 24 §: C(M) >R,

satisfies the Leibniz rule:

§(ab) = £(a)b(q(0)) + a(q(0))¢(b)-
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® Consequently, to each tangent vector v € TqgM we should put into correspondence
a linear functional
£ C*(M)—=R
such that
§(ab) = (¢a)b(q) + a(q)(&b),  a, be C(M). (1)

® But there is a linear functional £ = V naturally related to any tangent vector
v € TyM, the directional derivative along v:

d

va= ., a(q(t)), q(0)=gq, 4(0)=v,

and such functional satisfies Leibniz rule (1).

® Now we show that this rule characterizes exactly directional derivatives.
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Proposition 3
Let & : C*®(M) — R be a linear functional that satisfies Leibniz rule (1) for some point
q € M. Then £ =V for some tangent vector v € TqM.
Proof.
® Notice first of all that any functional £ that meets Leibniz rule (1) is local, i.e., it
depends only on values of functions in an arbitrarily small neighborhood Oy C M
of the point g:
dlg, = alo, = &i=¢a, a, ae C*(M).
® Indeed, take a cut function b € C*°(M) such that b[ o =1 and b(q) =0.
Then (53— a)b =3 — a, thus
€(5—a) = €((5— a)b) = £(5— 2) b(q) + (5 — a)(q) €b = O,
® So the statement of the proposition is local, and we prove it in coordinates.
® let (x1,...,x%) be local coordinates on M centered at the point g. We have to
prove that there exist a1,...,a, € Rsuch that £ =37 «; aix’_ .
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® First of all,
§(1) =¢&(1-1) = (£1) - 141+ (£1) = 2¢(1),
thus £(1) = 0. By linearity, £(const) = 0.
® In order to find the action of £ on an arbitrary smooth function, we expand it by
the Hadamard Lemma:

n 1 da n
a(x) =a(0)+ ) / o ()xi dt = a(0) + > bi(x)xi,
i=1 70 ! i=1

where b;j(x) = fol %(tx) dt are smooth functions.

® Now
n n n 83
€a=> &(bix) = ((£bi)xi(0) + bi(0)(¢x:)) = ZO@'E(O),
i=1 i=1 i=1 !
: F]
where we denote a; = x; and make use of the equality b;(0) = 6x-(0)' O



® So tangent vectors v € TqM can be identified with directional derivatives
vV : C®(M) — R, i.e., linear functionals that meet Leibniz rule (1).

® Now we characterize vector fields on M. A smooth vector field on M is a family of
tangent vectors vqg € TqM, g € M, such that for any a € C°°(M) the mapping
q — vga, g € M, is a smooth function on M.

® To a smooth vector field V € Vec M there corresponds a linear operator
V : C®(M) = C®(M)
that satisfies the Leibniz rule
V(ab) = (Va)b+ a(Vb),  a, be C2(M),

the directional derivative (Lie derivative) along V.

® A linear operator on an algebra meeting the Leibniz rule is called a derivation of
the algebra, so the Lie derivative V is a derivation of the algebra C>°(M).
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® \We show that the correspondence between smooth vector fields on M and
derivations of the algebra C°°(M) is invertible.

Proposition 4
Any derivation of the algebra C°°(M) is the directional derivative along some smooth
vector field on M.

Proof.
Let D : C®°(M) — C°°(M) be a derivation. Take any point g € M. We show that the

linear functional
dg ¥ GoD : C®(M) >R

is a directional derivative at the point g, i.e., satisfies Leibniz rule (1):

dg(ab) = G(D(ab)) = G((Da)b+ a(Db)) = G(Da)b(q) + a(q)G(Db) =
(dga)b(q) + a(q)(dgb), 3, b CX(M).
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So we can identify points g € M, diffeomorphisms P € Diff M, and vector fields
V' € Vec M with nontrivial homomorphisms g : C>°(M) — R, automorphisms
P : C*®(M) — C>(M), and derivations V : C*°(M) — C>°(M) respectively.
For example, we can write a point P(q) in the operator notation as g o P.

Moreover, in the sequel we omit hats and write g o P. This does not cause
ambiguity: if g is to the right of P, then g is a point, P a diffeomorphism, and
P(q) is the value of the diffeomorphism P at the point g. And if g is to the left of
P, then g is a homomorphism, P an automorphism, and g o P a homomorphism of
C>(M).

Similarly, V(q) € TqM is the value of the vector field V' at the point g, and

goV : C®(M) — R is the directional derivative along the vector V(q).
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Seminorms and C*°(M)-Topology

We introduce seminorms and topology on the space C*°(M).

By Whitney's Theorem, a smooth manifold M can be properly embedded into a
Euclidean space RV for sufficiently large N. Denote by h;, i =1,..., N, the
smooth vector field on M that is the orthogonal projection from RN to M of the
constant basis vector field % € Vec(RN). So we have N vector fields

hi,..., hy € Vec M that span the tangent space T,M at each point g € M.

We define the family of seminorms || - ||s.x on the space C°>°(M) in the following
way:

lalls,x =sup{|hjo---ohya(q)|qge K, 1 <i,....,ii <N, 0<[/<s},
ae C*(M), s>0, KeM.

This family of seminorms defines a topology on C*°(M).
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® A local base of this topology is given by the subsets
1
{accxmlaln <3} e

where K,, n € N, is a chained system of compacta that cover M:
o0
Ky C Kny1, U Ko =M.
n=1

® This topology on C*®°(M) does not depend on embedding of M into R". It is
called the topology of uniform convergence of all derivatives on compacta, or just
C>°(M)-topology.
e This topology turns C°°(M) into a Fréchet space (a complete, metrizable, locally
convex topological vector space).
® A sequence of functions ax € C°°(M) converges to a € C*°(M) as k — oo if and
only if
lim |lax —allsk =0 Vs>0, Ke M.
k—o0
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® For vector fields V € Vec M, we define the seminorms

[Vlls,k =sup{lIVallsk | lalls41,6 =1},  s20, KEM. (2)

® One can prove that any vector field V € Vec M has finite seminorms || V|| k, and
that there holds an estimate of the action of a diffeomorphism P € Diff M on a
function a € C*(M):

IPallsk < Gpllalls,pk)y, s20, KEM. (3)

® Thus vector fields and diffeomorphisms are linear continuous operators on the
topological vector space C>(M).
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Families of Functionals and Operators

In the sequel we will often consider one-parameter families of points,
diffeomorphisms, and vector fields that satisfy various regularity properties (e.g.
differentiability or absolute continuity) with respect to the parameter.

Since we treat points as functionals, and diffeomorphisms and vector fields as
operators on C*°(M), we can introduce regularity properties for them in the weak
sense, via the corresponding properties for one-parameter families of functions

t — ay, ar € C*(M), teR.

So we start from definitions for families of functions.

Continuity and differentiability of a family of functions a; w.r.t. parameter t are
defined in a standard way since C°°(M) is a topological vector space.
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e A family of functions a; is called measurable w.r.t. t if the real function t — a:(q)
is measurable for any g € M. A measurable family a; is called locally integrable if

t1
/ ||at|]s,Kdt<oo Vs>0, KeM, ty, t1 €R.
£

0

e A family a; is called absolutely continuous w.r.t. t if

t
at:3t0+/ de’T
t

0

for some locally integrable family of functions b;.
o A family a; is called Lipschitzian w.r.t. t if

llar — ar|ls,x < Gkt — 7| Vs >0, KeM, t, 7eR,
and locally bounded w.r.t. t if
Hat||s7;<§ Cs,K,I, Vs>0, KeM, IeR, tel,

where C; i and G i/ are some constants depending on s, K, and /.
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Now we can define regularity properties of families of functionals and operators on
C®(M).
A family of linear functionals or linear operators on C*°(M)

t— A, teR,

has some regularity property (i.e., is continuous, differentiable, measurable, locally
integrable, absolutely continuous, Lipschitzian, locally bounded w.r.t. t) if the
family

t— A:a, t e R,
has the same property for any a € C*(M).
A locally bounded w.r.t. t family of vector fields

t— Vi, Vi € VecM, teR,

is called a nonautonomous vector field, or simply a vector field, on M.
An absolutely continuous w.r.t. t family of diffeomorphisms

t — Pt Pt € Diff M, teR,

is called a flow on M. 20 /20



So, for a nonautonomous vector field V4, the family of functions t — V;a is locally
integrable for any a € C*°(M).

Similarly, for a flow P*, the family of functions (P*a)(q) = a(P*(q)) is absolutely
continuous w.r.t. t for any a € C*°(M).

Integrals of measurable locally integrable families, and derivatives of differentiable
families are also defined in the weak sense:

t1 t1
/ Acdt :a »—>/ (A:a) dt, ae C®(M),
to to
d d
—A; —(A e .
s a'—>dt( +a), ae C*(M)

One can show that if A; and B; are continuous families of operators on C*°(M)
which are differentiable at tg, then the family A; o B; is continuous, moreover,
differentiable at tg, and satisfies the Leibniz rule:
Bt> |
to 21/29

d d d
dt (AtOBt):(dttoAt>°Bto+Atoo<dt

to



e |f families A; and B; of operators are absolutely continuous, then the composition
A; o By is absolutely continuous as well, the same is true for composition of
functionals with operators.

® For an absolute continuous family of functions a;, the family A;a; is also
absolutely continuous, and the Leibniz rule holds for it as well.
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ODEs with discontinuous right-hand side
We consider a nonautonomous ordinary differential equation of the form
g=Vi(q),  q(0) = qo, (4)

where V; is a nonautonomous vector field on M, and study the flow determined by
this field.

. .d . .
We denote by g the derivative d—z so equation (4) reads in the expanded form as

T _ vy (q(r)).

To obtain local solutions to the Cauchy problem (4) on a manifold M, we reduce it
to a Cauchy problem in a Euclidean space.

Choose local coordinates x = (x1,...,x") in a neighborhood Oy, of the point qo:
®: O CM— O CR", o : g x,
®(q0) = xo.
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® |n these coordinates, the field V; reads

n

(@Ve) (x) = Vi(x) = > v,-(t,x)aaxl., x € 0,, tekR, (5)
i=1

and problem (4) takes the form
x=Vi(x), x(0)=xp, xe€O,CR" (6)

® Since the nonautonomous vector field V; € Vec M is locally bounded, the
components v;(t,x), i =1,...,n, of its coordinate representation (5) are:

(1) measurable and locally bounded w.r.t. t for any fixed x € Oy,
(2) smooth w.r.t. x for any fixed t € R,
(3) differentiable in x with locally bounded partial derivatives:

ov; .
‘ d < Gk, telER, xeEKEOy, i=1,...,n

E(tv X)
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By the classical Carathéodory Theorem, the Cauchy problem (6) has a unique
solution, i.e., a vector-function x(t, xp), Lipschitzian w.r.t. t and smooth w.r.t. xp,
and such that:

(1) ODE (6) is satisfied for almost all ¢,

(2) initial condition holds: x(0, %) = xo.

Then the pull-back of this solution from R"” to M

q(t) qO) = (D_l(X(t,Xo)),
is a solution to problem (4) in M.
The mapping q(t, go) is Lipschitzian w.r.t. t and smooth w.r.t. qo, it satisfies
almost everywhere the ODE and the initial condition in (4).
For any qo € M, the solution g(t, go) to the Cauchy problem (4) can be continued
to a maximal interval t € J;, C R containing the origin and depending on qo.
We will assume that the solutions q(t, qo) are defined for all gop € M and all ¢t € R,
i.e., Jgo = R for any qo € M. Then the nonautonomous field V; is called complete.
This holds, e.g., when all the fields V;, t € R, vanish outside of a common
compactum in M (in this case we say that the nonautonomous vector field V; has
a compact support).
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Definition of the right chronological exponential

The Cauchy problem ¢ = V4(q), q(0) = qo, rewritten as a linear equation for
Lipschitzian w.r.t. t families of functionals on C*°(M):

a(t)=a(t)o Vi,  q(0) = qo, (7)
is satisfied for the family of functionals
q(t,q0) : C°(M) = R, GgeM, teR

constructed in the previous subsection.
e \We prove later that this Cauchy problem has no other solutions.

® Thus the flow defined as

P : g0+ q(t,qo) (8)
is a unique solution of the operator Cauchy problem Pt = Pt o V,, P? = Id
(where Id is the identity operator), in the class of Lipschitzian flows on M.
The flow P* determined in (8) is called the right chronological exponential of the
t
field V; and is denoted as P* :e?f)/ V. dr.
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Formal series expansion

e We rewrite differential equation in (7) as an integral one:
t
a(t) =0+ [ a(r)o Vi dr ©)
0

then substitute this expression for g(t) into the right-hand side

t T1
= qo +/ (QO +/ q(m2) o Vo, dT2) oV dn
0

=qoo <|d+/ V. dt) // q(r2) 0 Vo, 0 Vo dmadm,

<< <t

repeat this procedure iteratively, and obtain the decomposition:
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t
q(t) = qoo Id+/ deT+//vfzov71d72d71+...+
0

Do(t)
/H-/VT,,O---O Vo dry ...dn | +
Ap(t)
"/C](Tn+1) oVi,0--0 Vo drppr ... dTi. (10)
AnJrl(t)

® Here
A”(t):{(Tlv"'77—n)€Rn‘OSTHS"'STlSt}

is the n-dimensional simplex.
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® Purely formally passing in (10) to the limit n — oo, we obtain a formal series for
the solution g(t) to problem (7):

o © Id+2/ /ano oV, dr, ... dn |,

nlA(t

thus for the solution P! to our Cauchy problem:

|d—|—Z/"'/VT,,O"'OVT1dTn-~~dTl' (11)
ﬂ:]. An(t)

20/29



