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Optimal Control Problem Statement

g = fu(q), geM, welUCcCR™,
q(0) = qo,
q(t1) = q1,

J(u) = /Otl (g, u)dt — min.
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Existence of optimal trajectories for problems with fixed t;

Theorem 1

Let g1 € Agy(tr). If A\(O,qo)(tl) is compact, then there exists an optimal trajectory in
the problem (1)—(4) with the fixed terminal time t;.

Theorem 2 (Filippov)

Let the space of control parameters U € R™ be compact. Let there exist a compact
K € M such that f,(q) =0 for q ¢ K, u € U. Moreover, let the velocity sets

fu(q) = {fu(q) | u € U} C TyM, geM,

be convex. Then the attainable sets Aq,(t) and A} are compact for all go € M, t > 0.
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A priori bound in R”

® For control systems on M = R", there exist well-known sufficient conditions for
completeness of vector fields.

e |f the right-hand side grows at infinity sublinearly, i.e.,
fu(x)] <CA+|x]), xeR" wel, (5)
for some constant C, then the nonautonomous vector fields 7,(x) are complete

(here |x| = /x2 + -+ + x2 is the norm of a point x = (x1,...,X,) € R").

® These conditions provide an a priori bound for solutions: any solution x(t) of the

control system
x = fu(x), x€eR" wel, (6)

with the right-hand side satisfying (5) admits the bound
x()] < < (Ix(0)[ +1),  t>0.

6 /37



Compactness of attainable sets in R”

e Filippov's theorem plus the previous remark imply the following sufficient condition
for compactness of attainable sets for systems in R”.

Corollary 3

Let system (6) have a compact space of control parameters U € R™ and convex
velocity sets fy(x), x € R".

Suppose moreover that the right-hand side of the system satisfies a sublinear bound of
the form (5).

Then the attainable sets A, (t) and AL are compact for all xo € R", t > 0.
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Time-optimal problem

® Given a pair of points gg € M and q; € Ag,, the time-optimal problem consists in
minimizing the time of motion from gg to g; via admissible controls of control
system (1):
min {t; | qu(t1) = a1}, (7)
® That is, we consider the optimal control problem with the integrand ¢(q,u) =1
and free terminal time t7.

® Reduction of optimal control problems to the study of attainable sets and
Filippov's Theorem yield the following existence result.

Corollary 4

Under the hypotheses of Filippov's Theorem 2, time-optimal problem (1), (7) has a
solution for any points qo € M, q1 € Ag,.
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Example of a time-optimal problem:
Stopping a train

Given:

® material point of mass m > 0 with coordinate x € R

e force F bounded by the absolute value by Fr. > 0

e initial position xp and initial velocity xp of the material point
Find:

e force F that steers the point to the origin with zero velocity, for a minimal time.

).(1 = X2, (X15X2) €R2,

).(2 = u, |U| < ]-7

(x1,%)(0) = (%0, %),  (x1,%)(t1) = (0,0),
t1 — min.

9/37



Example: Stopping a train

Trajectories of the system with a constant control u # 0 are the parabolas

x2 y

F =ux+ C:

Now it is visually obvious that (0,0) € Ay, »,) for any (x1,x2) € R?.

The set of control parameters U = [—1,1] is compact, the set of admissible
velocity vectors f(x, U) = {(x2, u) | u € [~1,1]} is convex for any x € R?, and the
right-hand side of the control system has sublinear growth: |f(x, u)| < C(|x| + 1).
All hypotheses of the Filippov theorem are satisfied, thus optimal control exists.
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Smooth manifolds

“Smooth” (manifold, mapping, vector field etc.) means C*.

Definition 5

A subset M C R" is called a smooth k-dimensional submanifold of R", k < n, if any
point x € M has a neighbourhood Oy in R" in which M is described in one of the
following ways:

(1) there exists a smooth vector-function

F : Ox— Rk rankE =n—k
dx
q
such that
OxNM = F~0);
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(2) there exists a smooth vector-function

f: Vo — R"”
from a neighbourhood of the origin 0 € V4 C R¥ such that
df
f(0) = x, rankaozk7
Ox,NM = f(W)

and f : Vp — OxN M is a homeomorphism;
(3) there exists a smooth vector-function

®: Or— Oy CR”
onto a neighbourhood of the origin 0 € Oy C R” such that

rank —| =n
dx ’

X

®(0x N M) =R N Op.
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There are two topologically different one-dimensional manifolds: the line R and
the circle S!.

The sphere S? and the torus T2 = S' x S* are two-dimensional manifolds.

The torus can be viewed as a sphere with a handle. Any compact orientable
two-dimensional manifold is topologically a sphere with g handles, g =0,1,2,...
is the genus of the manifold.

Smooth manifolds appear naturally already in the basic analysis. For example, the
circle S and the torus T? are natural domains of periodic and doubly periodic
functions respectively. On the sphere S2, it is convenient to consider restriction of
homogeneous functions of 3 variables.
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Abstract manifold

Definition 6
A smooth k-dimensional manifold M is a Hausdorff paracompact topological space
endowed with a smooth structure: M is covered by a system of open subsets
M =U,0,
called coordinate neighbourhoods, in each of which is defined a homeomorphism
®, 1 Oy — R
called a local coordinate system such that all compositions

dg0 (D;l : 9, (04N Oﬁ) cRF > CDB(OQ N Og) c RK

are diffeomorphisms, see fig. 1.
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Coordinate system in smooth manifold M
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o

M Rk

Figure: Coordinate system in smooth manifold M
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® As a rule, we denote points of a smooth manifold by g, and its coordinate
representation in a local coordinate system by x:

qge M, ®y 1 0, = RF, x=d(q) € RX.

® For a smooth submanifold in R”, the abstract Definition 6 holds. Conversely, any
connected smooth abstract manifold can be considered as a smooth submanifold in
R". Before precise formulation of this statement, we give two definitions.

Definition 7

Let M and N be k- and /-dimensional smooth manifolds respectively. A continuous
mapping f : M — N is called smooth if it is smooth in coordinates. That is, let

M = U,O, and N = UgVj be coverings of M and N by coordinate neighbourhoods
and ¢, : O, — RX, Vg : Vg — R’ the corresponding coordinate mappings. Then all

Wgofod b 1 &y (0nNFY(V5) CRF = Ws(f(0,) N V) CR

should be smooth.
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Definition 8
A smooth manifold M is called diffeomorphic to a smooth manifold N if there exists a

homeomorphism
f: M—N

such that both f and its inverse f~! are smooth mappings. Such mapping f is called a
diffeomorphism.

The set of all diffeomorphisms f : M — M of a smooth manifold M is denoted by
Diff M.

Definition 9

A smooth mapping f : M — N is called an embedding of M into N if f : M — (M)
is a diffeomorphism. A mapping f : M — N is called proper if f~!(K) is compact for
any compactum K € N.

Theorem 10 (Whitney)
Any smooth connected k-dimensional manifold can be properly embedded into R?+1,
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Tangent space of a submanifold in R”

Definition 11
Let M be a smooth k-dimensional submanifold of R” and x € M its point. Then the

tangent space to M at the point x is a k-dimensional linear subspace T,M C R"
defined as follows for cases (1)—(3) of Definition 5:

(1)  TxM =Ker Z—F

X

df
2) TM=Im -~
(2) m——

(3) T M= <‘C’li’

X

;
1
) R
Remark 1

The tangent space is a coordinate-invariant object since smooth changes of variables
lead to linear transformations of the tangent space.
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Tangent vector to an abstract manifold

Definition 12
Let y(-) be a smooth curve in a smooth manifold M starting from a point g € M:

v : (—e,€) = M a smooth mapping, 7(0) = gq.

The tangent vector %’ .= 4(0) to the curve ~y(-) at the point g is the equivalence
.

class of all smooth curves in M starting from g and having the same 1-st order Taylor
polynomial as «y(+), for any coordinate system in a neighbourhood of g.

Figure: Tangent vector 4(0)
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Tangent space to an abstract manifold

Definition 13
The tangent space to a smooth manifold M at a point g € M is the set of all tangent
vectors to all smooth curves in M starting at g:

dv

Tq/\//:{dt |7 - (—575)—>M5m00th77(0):q}'

t=0

Remark 2
Let M be a smooth k-dimensional manifold and g € M. Then the tangent space TaM
has a natural structure of a linear k-dimensional space.

T,M (1)

Figure: Tangent space ToM
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Dynamical system
Denote by Vec M the set of all smooth vector fields on a smooth manifold M.

Definition 14
A smooth dynamical system, or an ordinary differential equation (ODE), on a smooth
manifold M is an equation of the form % = V(q), g € M, or, equivalently,

g = V(q), qg € M, where V(q) is a smooth vector field on M.

A solution to this system is a smooth mapping v : | — M, where | C R is an interval,

such that 97 = V((t)) Vtel.
/ —_—
/ Vi)

Figure: Solution to ODE ¢ = V/(q)
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Differential of a smooth mapping

Definition 15
Let & : M — N be a smooth mapping between smooth manifolds M and N. The

differential of ® at a point g € M is a linear mapping

Dg® : TyM — ToqN

qu,(dv >: 4
t=0 dt|,_

dt
v :(-ge)CR =M, 7(0) = q,

defined as follows:

where

is a smooth curve in M starting at g.

22/37



Action of diffeomorphisms on vector fields

® Let V € Vec M be a vector field on M and
qg=V(q) (8)

the corresponding ODE.

® To find the action of a diffeomorphism
d: M= N, d g x=P(q)

on the vector field V/(q), take a solution g(t) of (8) and compute the ODE
satisfied by the image x(t) = ®(q(t)):

x(t) = %q’(Q(t)) = (Dg®) 4(t) = (Dg®) V(q(t)) = (Do-1()®) V(®7H(x(1))).
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So the required ODE is
x = (Dgp-1(®) V(®1(x)). (9)

The right-hand side here is the transformed vector field on N induced by the
diffeomorphism ¢:

(©V)(x) &' (Do-1(9®) V(®7(x)).

The notation ®,4 is used, along with Dq®, for differential of a mapping ® at a
point q.

In general, a smooth mapping ® induces transformation of tangent vectors, not of
vector fields.

In order that D® transform vector fields to vector fields, ® should be a
diffeomorphism.
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Smooth ODEs and flows on manifolds

Theorem 16
Consider a smooth ODE

g=V(q), geMCR” (10)
on a smooth submanifold M of R". For any initial point gy € M, there exists a unique
solution

q(t,q), te€(ab), a<0<b,
of equation (10) with the initial condition q(0, qo) = qo, defined on a sufficiently short
interval (a, b). The mapping
(t, qo) — q(t, qo)

is smooth. In particular, the domain (a, b) of the solution q(-, qo) can be chosen
smoothly depending on qq.
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Proof.
We prove the theorem by reduction to its classical analogue in R”".
The statement of the theorem is local. We rectify the submanifold M in the
neighbourhood of the point qo:

®: Oyp CR" = Og CR",

®(Ogo N M) = RK.
Consider the restriction ¢ = ®|p. Then a curve g(t) in M is a solution to (10) if and
only if its image x(t) = ¢(q(t)) in R is a solution to the induced system:

x=0,V(x), xeRk
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Theorem 17
Let M C R" be a smooth submanifold and let

q= V(q)a qc R, (11)

be a system of ODEs in R" such that

geM = V(q) € TyM.

Then for any initial point qo € M, the corresponding solution q(t, qo) to (11) with
q(0, go) = qo belongs to M for all sufficiently small |t|.
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Proof.

Consider the restricted vector field:
f=V|u.
By the existence theorem for M, the system
g="~f(q), qeM,
has a solution q(t, qo), q(0, go) = qo, with
q(t,q0) € M for small |t|. (12)

On the other hand, the curve q(t, qo) is a solution of (11) with the same initial
condition. Then inclusion (12) proves the theorem. O
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Complete vector fields

Definition 18
A vector field V € Vec M is called complete, if for all go € M the solution q(t, go) of
the Cauchy problem

is defined for all t € R.

Example 19

The vector field V(x) = x is complete on R, as well as on R\ {0}, (—o0,0), (0, +00),
and {0}, but not complete on other submanifolds of R.

The vector field V(x) = x? is not complete on any submanifolds of R except {0}.
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Proposition 1

Suppose that there exists € > 0 such that for any qo € M the solution q(t, qg) to
Cauchy problem (13) is defined for t € (—e,e). Then the vector field V(q) is complete.

Remark 3

In this proposition it is required that there exists € > 0 common for all initial points

go € M. In general, € may be not bounded away from zero for all gy € M. E.g., for the
vector field V(x) = x? we have ¢ — 0 as xp — 0o.
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Proof.
Suppose that the hypothesis of the proposition is true. Then we can introduce the
following family of mappings in M:

Pt : M — M, t € (—e,¢),
P* : qo — q(t, q0).

P*(qo) is the shift of a point gy € M along the trajectory of the vector field V(q) for
time t.
By Theorem 16, all mappings P are smooth. Moreover, the family { P* | t € (—¢,¢) }
is a smooth family of mappings.
A very important property of this family is that it forms a local one-parameter group,
le.,

PE(P*(q)) = P*(P'(q)) = P*"*(q), qe€M, t s t+se(—¢,e).
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Indeed, the both curves in M:
t— Pt(PS(q)) and t+— Pt+s(q)

satisfy the ODE ¢ = V/(q) with the same initial value P°(P*(q)) = P°*5(q) = P*(q).
By uniqueness, Pt(P%(q)) = P'™5(q). The equality for P°(P*(q)) is obtained by
switching t and s.

So we have the following local group properties of the mappings P*:

PtoPS=PSoPt=PHs  t s t+se(—ec),

PO = 1Id,
P toPt=PloP t=Id, t € (—¢,¢),
pt — (Pt)_1 , t € (—e,e).

In particular, all Pt are diffeomorphisms.
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Now we extend the mappings P! for all t € R. Any t € R can be represented as
€ €
t=cK+r  0Srt<g, K=0xL2..
We set

pt & propre/2o .o pe/2 + =sgnt.

|K| times

Then the curve
t — PY(qo), t € R,

is a solution to Cauchy problem (13).
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The flow of a vector field

Definition 20
For a complete vector field V € Vec M, the mapping

t— Pt t € R,
is called the flow generated by V.

Example 21

The linear vector field V(x) = Ax, x € R, has the flow Pt = e = > 72° 0 , :
By this reason the flow of any complete vector field V' € Vec M is denoted as Pt =e

Remark 4

It is useful to imagine a vector field V' € Vec M as a field of velocity vectors of a
moving liquid in M. Then the flow P! takes any particle of the liquid from a position
g € M and transfers it for a time t € R to the position P*(q) € M.

tvV
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Sufficient conditions for completeness of a vector field

Proposition 2

Let K C M be a compact subset, and let V € Vec M. Then there exists e > 0 such
that for all gy € K the solution q(t, qo) to Cauchy problem (13) is defined for all

t € (—¢ek,ek)-
Proof.

By Theorem 16, domain of the solution q(t, qo) can be chosen continuously depending
on go. The diameter of this domain has a positive infimum 2ex for qo in the compact

set K. O

Corollary 22
If a smooth manifold M is compact, then any vector field V € Vec M is complete.
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Corollary 23
Suppose that a vector field V € Vec M has a compact support:

suppV & {ge M| V(q) #0} is compact.
Then V is complete.

Proof.

Indeed, by Proposition 2, there exists € > 0 such that all trajectories of V starting in
supp V are defined for t € (—¢,¢). But V|ppsuppv = 0, and all trajectories of V
starting outside of supp V are constant, thus defined for all t € R. By Proposition 1,
the vector field V is complete. O
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Remark 5

If we are interested in the behaviour of (trajectories of) a vector field V € Vec M in a
compact subset K C M, we can suppose that V is complete. Indeed, take an open
neighbourhood Ok of K with the compact closure Ox. We can find a function

a € C*°(M) such that

_J 1 q€K,
a(q)_{o, qEI\/I\OK.
Then the vector field a(q)V(q) € Vec M is complete since it has a compact support.

On the other hand, in K the vector fields a(q)V/(q) and V(q) coincide, thus have the
same trajectories.
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