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Reminder: Plan of previous lecture

1. Lie derivative of differential forms
2. Liouville form and symplectic form

3. Hamiltonian vector fields
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Plan of this lecture

1. Linear on fibers Hamiltonians

2. Geometric statement of PMP and discussion
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Linear on fibers Hamiltonians

® We introduce a construction that works only on T*M. Given a vector field
X € Vec M, we define a Hamiltonian function

X* e C®(T*M),
which is linear on fibers T;I\/I, as follows:
X*(N\) = (A X(q)), AeT*M, q=mr(N).

® In canonical coordinates (£, x) on T*M we have:

X = Za, ax, X" = ;5"3"()()' (1)
® This coordinate representation implies that
{X*, Y*} =[X, Y], X,Y € Vec M,

i.e., Poisson brackets of Hamiltonians linear on fibers in T*M contain usual Lie

brackets of vector fields on M.
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H
® The Hamiltonian vector field X*€ Vec(T*M) corresponding to the Hamiltonian
function X* is called the Hamiltonian lift of the vector field X € Vec M.

® |t is easy to see from the coordinate representation (1) that

N
e X*= X.
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Now we pass to nonautonomous vector fields. Let X; be a nonautonomous vector

field and .
Pre=ep [ Xodo

the corresponding flow on M.
The flow P = P, ; acts on M:

P: MM, P:q — qi,
its differential pushes tangent vectors forward:
Py : TeoM — Tg, M,
and the dual mapping P* pulls covectors back:
P*: TyyM — To M.
Thus we have a flow on covectors (i.e., on points of the cotangent bundle):
Py T"M — T*M.
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® Let V; be the nonautonomous vector field on T*M that generates the flow P} ,:

d

V= —
t de

t,t+e-

e=0

® Then
d _, d

d
9 pr 9 £ _
dt ™' de

* * *
T T de Pt»t+€ © P‘r,t = Vio P‘nt’

e=0

e=0
so the flow P;, is a solution to the Cauchy problem

S pr=VioPl Pl =

i.e., it is the left chronological exponential:

t
P;f?t:é?p/ Vy db.
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It turns out that the nonautonomous field V4 is simply related with the
Hamiltonian vector field corresponding to the Hamiltonian X}

E—
Indeed, the flow P;, preserves the tautological form s, thus
L\/ts =0.

By Cartan’s formula,
I.\/tO' = —d<5, Vt>,

i.e., the field V; is Hamiltonian:
H

Vi =(s, V4) .
But 7, Vi = — X, consequently,
(s, Vi) = =X{,
and equality (2) follows.
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® Taking into account the relation between the left and right chronological
exponentials, we obtain

T —

t —
P*7t:e?p/ —X; do=exp | X; db.
T

T
t
® We proved the following statement.

Proposition 1
Let X; be a complete nonautonomous vector field on M. Then

t * T —»
<e7p/ X9d9> —exp | X df.
T t

® |n particular, for autonomous vector fields X € Vec M,

x\* Xt
() ek
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Pontryagin Maximum Principle

Geometric statement of PMP and discussion

Consider an optimal control problem for a control system
g = f,(q), geM, uvueUCR™,

with the initial condition
q(0) = qo.

Define the following family of Hamiltonians:
hy(N) = (A, fu(q)), ANETM, qge M, ue U.

In terms of the previous slides,

Fix an arbitrary instant t; > 0.
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® |n Lecture 2 we reduced the optimal control problem to the study of boundary of
attainable sets.
® Now we give a necessary optimality condition in this geometric setting.

Theorem 1 (PMP)
Let u(t), t € [0, t1], be an admissible control and q(t) = q(t) the corresponding

solution of Cauchy problem (3), (4). If q(t1) € 0Aq,(t1), then there exists a
Lipschitzian curve in the cotangent bundle

At € qi(t)M, 0<t<ty,
such that
)-‘t 7é 97 (5)
At = hgry(Me), (6)
hg(t)()\t) = Teal)J( hu()\t) (7)

for almost all t € [0, t1]. 11/23



e If u(t) is an admissible control and A; a Lipschitzian curve in T*M such that
conditions (5)—(7) hold, then the pair (u(t), A¢) is said to satisfy PMP

® In this case the curve \; is called an extremal, and its projection g(t) = m(\¢) is
called an extremal trajectory.

Remark 1
If a pair (4(t), A¢) satisfies PMP, then

hi(s)(At) = const, te0,t]. (8)

Indeed, since the admissible control u(t) is bounded, we can take maximum in (7) over
the compact {u(t) | t € [0, 1]} = U.

Further, the function ¢(A) = max, g hu(}) is Lipschitzian w.r.t. A € T*M. We show
that this function has zero derivative.
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For optimal control u(t),
©(Ae) > hgry(Ae), ©(Ar) = hgry(Ar),

thus A \ A \
90(/\f) - 90()‘7) > u(r)( t) - u(T)( ‘I')7 £ 7
t—T1 t—T
Consequently,
d
at|. ©(At) > {hgr), har} =0
if 7 is a differentiability point of ¢(\;). Similarly,
- hg(ry(At) = hgry (A
P = e(Ar) _ o) — han ()

t—T1 - t—1T1

d
thus at|,_ ©(A¢) <0. So

d
—_— )\ =
dt(p( t) 07

and identity (8) follows.

13/23



The Hamiltonian system of PMP

At = hyry(Ae) (9)
is an extension of the initial control system (3) to the cotangent bundle.

Indeed, in canonical coordinates A = (£, x) € T*M, the Hamiltonian system yields

. Ohye
X = 8§ = fu(t)(x)'

That is, solutions A; to (9) are Hamiltonian lifts of solutions g(t) to (3):

Before proving Pontryagin Maximum Principle, we discuss its statement.
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First we give a heuristic explanation of the way the covector curve \; appears
naturally in the study of trajectories coming to boundary of the attainable set.

Let

q1 = q(t1) € 0Ag (1) (10)
The idea is to take a normal covector to the attainable set Aq,(t1) near g1, more
precisely — a normal covector to a kind of a convex tangent cone to Ag,(t1) at gi.
By virtue of inclusion (10), this convex cone is proper.

Thus it has a hyperplane of support, i.e., a linear hyperplane in Tq, M bounding a
half-space that contains the cone.
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® Further, the hyperplane of support is a kernel of a normal covector A, € T M,

Ay # 0, see fig. below:
Aty

Y4

Figure: Hyperplane of support and normal covector to attainable
set Ag, (t1) at the point gy

® The covector )¢, is an analog of Lagrange multipliers.
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In order to construct the whole curve A¢, t € [0, 1], consider the flow generated by

the control u(-):
— f

Pt,tl —=exp fg(T) dT, t e [0, tl].
t

It is easy to see that

’Dt,tl(‘ACIo(t)) - Aqo(t1)7 t e [0, t1].

Indeed, if a point g € Ag,(t) is reachable from qo by a control u(7), 7 € [0, t],
then the point P: 4 (q) is reachable from go by the control

u(t), 7e€][0,t],

v(r) = { i(r), e[t n]
Further, the diffeomorphism Pt : M — M satisfies the condition

Peu(q(t)) =q(t)) =q,  te[0,t].
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Thus if g(t) € int Agy(t), then g1 € int Agy(t1).
By contradiction, inclusion (10) implies that

q(t) € 0A4(t), t €0, ty].

The tangent cone to Ag,(t) at the point g(t) = P, +(q1) has the normal covector
At = Pty (M)

By Proposition 1, the curve ¢, t € [0, t1], is a trajectory of the Hamiltonian vector
field hg(t), i.e., of the Hamiltonian system of PMP.

18/23



One can easily get the maximality condition of PMP as well.

The tangent cone to Ag,(t1) at g1 should contain the infinitesimal attainable set
from the point ¢;:

fu(qr) — faey)(q1),
i.e., the set of vectors obtained by variations of the control u near t;.
Thus the covector A\, should determine a hyperplane of support to this set:

<)‘t1a fy — fﬁ(t1)> <0, ueU.
In other words,

hu()\tl) = <)‘t17 fu> S <)\t17 fﬁ(t1)> = hﬁ(tl)(Ah)v ve U.

Translating the covector Ay, by the flow Py, , we arrive at the maximality

condition of PMP:
hu(At) < hﬁ(t)(At)7 ue U, te [07 tl]'

19/23



® The following statement shows the power of PMP.
Proposition 2
Assume that the maximized Hamiltonian of PMP
H(\) = max hy(N), AeT"M,
ue

is defined and C2-smooth on T*M \ {\ = 0}.
If a pair (u(t), A¢), t € [0, t1], satisfies PMP, then

Ae=HQy),  te[o,n]. (11)

Conversely, if a Lipschitzian curve A\t # 0 is a solution to the Hamiltonian system (11),
then one can choose an admissible control u(t), t € [0, t1], such that the pair (u(t), A¢)
satisfies PMP.
e That is, in the favorable case when the maximized Hamiltonian H is C2-smooth,
PMP reduces the problem to the study of solutions to just one Hamiltonian
system (11).
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From the point of view of dimension, this reduction is the best one we can expect.

Indeed, for a full-dimensional attainable set (dim Ag,(t1) = n) we have
dim0Ag(t1) = n—1, i.e., we need an (n — 1)-parameter family of curves to
describe the boundary 0.Aq,(t1).

On the other hand, the family of solutions to Hamiltonian system (11) with the
initial condition m(\g) = qo is n-dimensional.

Taking into account that the Hamiltonian H is homogeneous:
H(cA) = cH()), c>0,

thus

—

etf(cho) = cetfl(No),  moetf(chg) = moetf(No),

—

we obtain the required (n — 1)-dimensional family of curves.

Now we prove Proposition 2.
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Proof.

® \We show that if an admissible control u(t) satisfies the maximality condition (7),
then
hiey(Ae) = H(A),  t €0, 1] (12)

By definition of the maximized Hamiltonian H,

H(\) — hg(t)()\) >0 AeET*M, tel0,t].

On the other hand, by the maximality condition of PMP (7), along the extremal
At this inequality turns into equality:

H(At) — hgey(Ae) =0, t €0, t1].

That is why
d)\tH = d)\thg(t), t e [0, tl].

But a Hamiltonian vector field is obtained from differential of the Hamiltonian by a
standard linear transformation, thus equality (12) follows.
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e Conversely, let \; # 0 be a trajectory of the Hamiltonian system \; = H(At).

® |n the same way as in the proof of Filippov’s theorem, one can choose an
admissible control u(t) that realizes maximum along A

H()\t) = hﬁ(t)()\f) = Teagj( hu()\t)

® As we have shown above, then there holds equality (12). So the pair (u(t), A¢)
satisfies PMP.
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