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Reminder: Plan of previous lecture

1. Lie derivative of di�erential forms

2. Liouville form and symplectic form

3. Hamiltonian vector �elds
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Plan of this lecture

1. Linear on �bers Hamiltonians

2. Geometric statement of PMP and discussion
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Linear on �bers Hamiltonians
• We introduce a construction that works only on T ∗M. Given a vector �eld

X ∈ VecM, we de�ne a Hamiltonian function

X ∗ ∈ C∞(T ∗M),

which is linear on �bers T ∗qM, as follows:

X ∗(λ) = ⟨λ,X (q)⟩, λ ∈ T ∗M, q = π(λ).

• In canonical coordinates (ξ, x) on T ∗M we have:

X =
n∑

i=1

ai (x)
∂

∂ xi
, X ∗ =

n∑
i=1

ξiai (x). (1)

• This coordinate representation implies that

{X ∗,Y ∗} = [X ,Y ]∗, X ,Y ∈ VecM,

i.e., Poisson brackets of Hamiltonians linear on �bers in T ∗M contain usual Lie

brackets of vector �elds on M.
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• The Hamiltonian vector �eld
−→
X ∗∈ Vec(T ∗M) corresponding to the Hamiltonian

function X ∗ is called the Hamiltonian lift of the vector �eld X ∈ VecM.

• It is easy to see from the coordinate representation (1) that

π∗
−→
X ∗= X .
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• Now we pass to nonautonomous vector �elds. Let Xt be a nonautonomous vector

�eld and

Pτ,t =
−→
exp

∫ t

τ
Xθ dθ

the corresponding �ow on M.
• The �ow P = Pτ,t acts on M:

P : M → M, P : q0 7→ q1,

its di�erential pushes tangent vectors forward:

P∗ : Tq0M → Tq1M,

and the dual mapping P∗ pulls covectors back:

P∗ : T ∗q1M → T ∗q0M.

• Thus we have a �ow on covectors (i.e., on points of the cotangent bundle):

P∗τ,t : T ∗M → T ∗M.
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• Let Vt be the nonautonomous vector �eld on T ∗M that generates the �ow P∗τ,t :

Vt =
d

d ε

∣∣∣∣
ε=0

P∗t,t+ε.

• Then
d

d t
P∗τ,t =

d

d ε

∣∣∣∣
ε=0

P∗τ,t+ε =
d

d ε

∣∣∣∣
ε=0

P∗t,t+ε ◦ P∗τ,t = Vt ◦ P∗τ,t ,

so the �ow P∗τ,t is a solution to the Cauchy problem

d

d t
P∗τ,t = Vt ◦ P∗τ,t , P∗τ,τ = Id,

i.e., it is the left chronological exponential:

P∗τ,t =
←−
exp

∫ t

τ
Vθ dθ.
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• It turns out that the nonautonomous �eld Vt is simply related with the

Hamiltonian vector �eld corresponding to the Hamiltonian X ∗t :

Vt = −
−→
X ∗t . (2)

• Indeed, the �ow P∗τ,t preserves the tautological form s, thus

LVt s = 0.

• By Cartan's formula,

iVtσ = −d⟨s,Vt⟩,
i.e., the �eld Vt is Hamiltonian:

Vt =
−→

⟨s,Vt⟩ .

• But π∗Vt = −Xt , consequently,

⟨s,Vt⟩ = −X ∗t ,

and equality (2) follows.
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• Taking into account the relation between the left and right chronological

exponentials, we obtain

P∗τ,t =
←−
exp

∫ t

τ
−
−→
X ∗θ dθ =

−→
exp

∫ τ

t

−→
X ∗θ dθ.

• We proved the following statement.

Proposition 1

Let Xt be a complete nonautonomous vector �eld on M. Then(
−→
exp

∫ t

τ
Xθ dθ

)∗
=
−→
exp

∫ τ

t

−→
X ∗θ dθ.

• In particular, for autonomous vector �elds X ∈ VecM,(
etX

)∗
= e−t

−→
X∗

.
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Pontryagin Maximum Principle
Geometric statement of PMP and discussion

• Consider an optimal control problem for a control system

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (3)

with the initial condition

q(0) = q0. (4)

• De�ne the following family of Hamiltonians:

hu(λ) = ⟨λ, fu(q)⟩, λ ∈ T ∗qM, q ∈ M, u ∈ U.

• In terms of the previous slides,

hu(λ) = f ∗u (λ).

• Fix an arbitrary instant t1 > 0.
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• In Lecture 2 we reduced the optimal control problem to the study of boundary of

attainable sets.
• Now we give a necessary optimality condition in this geometric setting.

Theorem 1 (PMP)

Let ũ(t), t ∈ [0, t1], be an admissible control and q̃(t) = qũ(t) the corresponding

solution of Cauchy problem (3), (4). If q̃(t1) ∈ ∂Aq0(t1), then there exists a

Lipschitzian curve in the cotangent bundle

λt ∈ T ∗q̃(t)M, 0 ≤ t ≤ t1,

such that

λt ̸= 0, (5)

λ̇t = h⃗ũ(t)(λt), (6)

hũ(t)(λt) = max
u∈U

hu(λt) (7)

for almost all t ∈ [0, t1]. 11 / 23



• If u(t) is an admissible control and λt a Lipschitzian curve in T ∗M such that

conditions (5)�(7) hold, then the pair (u(t), λt) is said to satisfy PMP

• In this case the curve λt is called an extremal, and its projection q̃(t) = π(λt) is
called an extremal trajectory.

Remark 1
If a pair (ũ(t), λt) satis�es PMP, then

hũ(t)(λt) = const, t ∈ [0, t1]. (8)

Indeed, since the admissible control ũ(t) is bounded, we can take maximum in (7) over
the compact {ũ(t) | t ∈ [0, t1]} = Ũ.
Further, the function φ(λ) = max

u∈Ũ hu(λ) is Lipschitzian w.r.t. λ ∈ T ∗M. We show

that this function has zero derivative.
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For optimal control ũ(t),

φ(λt) ≥ hũ(τ)(λt), φ(λτ ) = hũ(τ)(λτ ),

thus
φ(λt)− φ(λτ )

t − τ
≥

hũ(τ)(λt)− hũ(τ)(λτ )

t − τ
, t > τ.

Consequently,
d

d t

∣∣∣∣
t=τ

φ(λt) ≥ {hũ(τ), hũ(τ)} = 0

if τ is a di�erentiability point of φ(λt). Similarly,

φ(λt)− φ(λτ )

t − τ
≤

hũ(τ)(λt)− hũ(τ)(λτ )

t − τ
, t < τ,

thus
d

d t

∣∣∣∣
t=τ

φ(λt) ≤ 0. So

d

d t
φ(λt) = 0,

and identity (8) follows.
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• The Hamiltonian system of PMP

λ̇t = h⃗u(t)(λt) (9)

is an extension of the initial control system (3) to the cotangent bundle.

• Indeed, in canonical coordinates λ = (ξ, x) ∈ T ∗M, the Hamiltonian system yields

ẋ =
∂ hu(t)
∂ ξ

= fu(t)(x).

• That is, solutions λt to (9) are Hamiltonian lifts of solutions q(t) to (3):

π(λt) = qu(t).

• Before proving Pontryagin Maximum Principle, we discuss its statement.
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• First we give a heuristic explanation of the way the covector curve λt appears

naturally in the study of trajectories coming to boundary of the attainable set.

• Let

q1 = q̃(t1) ∈ ∂Aq0(t1). (10)

• The idea is to take a normal covector to the attainable set Aq0(t1) near q1, more

precisely � a normal covector to a kind of a convex tangent cone to Aq0(t1) at q1.

• By virtue of inclusion (10), this convex cone is proper.

• Thus it has a hyperplane of support, i.e., a linear hyperplane in Tq1M bounding a

half-space that contains the cone.
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• Further, the hyperplane of support is a kernel of a normal covector λt1 ∈ T ∗q1M,

λt1 ̸= 0, see �g. below:

A

q

0

(t

1

)

�

t

1

q

0

q

1

Figure: Hyperplane of support and normal covector to attainable

set Aq0(t1) at the point q1

• The covector λt1 is an analog of Lagrange multipliers.
16 / 23



• In order to construct the whole curve λt , t ∈ [0, t1], consider the �ow generated by

the control ũ(·):

Pt,t1 =
−→
exp

∫ t1

t
fũ(τ) dτ, t ∈ [0, t1].

• It is easy to see that

Pt,t1(Aq0(t)) ⊂ Aq0(t1), t ∈ [0, t1].

• Indeed, if a point q ∈ Aq0(t) is reachable from q0 by a control u(τ), τ ∈ [0, t],
then the point Pt,t1(q) is reachable from q0 by the control

v(τ) =

{
u(τ), τ ∈ [0, t],
ũ(τ), τ ∈ [t, t1].

• Further, the di�eomorphism Pt,t1 : M → M satis�es the condition

Pt,t1(q̃(t)) = q̃(t1) = q1, t ∈ [0, t1].
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• Thus if q̃(t) ∈ intAq0(t), then q1 ∈ intAq0(t1).

• By contradiction, inclusion (10) implies that

q̃(t) ∈ ∂Aq0(t), t ∈ [0, t1].

• The tangent cone to Aq0(t) at the point q̃(t) = Pt1,t(q1) has the normal covector

λt = P∗t,t1(λt1).

• By Proposition 1, the curve λt , t ∈ [0, t1], is a trajectory of the Hamiltonian vector

�eld h⃗ũ(t), i.e., of the Hamiltonian system of PMP.
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• One can easily get the maximality condition of PMP as well.

• The tangent cone to Aq0(t1) at q1 should contain the in�nitesimal attainable set

from the point q1:
fU(q1)− fũ(t1)(q1),

i.e., the set of vectors obtained by variations of the control ũ near t1.

• Thus the covector λt1 should determine a hyperplane of support to this set:

⟨λt1 , fu − fũ(t1)⟩ ≤ 0, u ∈ U.

• In other words,

hu(λt1) = ⟨λt1 , fu⟩ ≤ ⟨λt1 , fũ(t1)⟩ = hũ(t1)(λt1), u ∈ U.

• Translating the covector λt1 by the �ow P∗t,t1 , we arrive at the maximality

condition of PMP:

hu(λt) ≤ hũ(t)(λt), u ∈ U, t ∈ [0, t1].
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• The following statement shows the power of PMP.

Proposition 2

Assume that the maximized Hamiltonian of PMP

H(λ) = max
u∈U

hu(λ), λ ∈ T ∗M,

is de�ned and C 2-smooth on T ∗M \ {λ = 0}.
If a pair (ũ(t), λt), t ∈ [0, t1], satis�es PMP, then

λ̇t = H⃗(λt), t ∈ [0, t1]. (11)

Conversely, if a Lipschitzian curve λt ̸= 0 is a solution to the Hamiltonian system (11),
then one can choose an admissible control ũ(t), t ∈ [0, t1], such that the pair (ũ(t), λt)
satis�es PMP.

• That is, in the favorable case when the maximized Hamiltonian H is C 2-smooth,

PMP reduces the problem to the study of solutions to just one Hamiltonian

system (11).
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• From the point of view of dimension, this reduction is the best one we can expect.

• Indeed, for a full-dimensional attainable set (dimAq0(t1) = n) we have

dim ∂Aq0(t1) = n − 1, i.e., we need an (n − 1)-parameter family of curves to

describe the boundary ∂Aq0(t1).

• On the other hand, the family of solutions to Hamiltonian system (11) with the

initial condition π(λ0) = q0 is n-dimensional.

• Taking into account that the Hamiltonian H is homogeneous:

H(cλ) = cH(λ), c > 0,

thus

etH⃗(cλ0) = cetH⃗(λ0), π ◦ etH⃗(cλ0) = π ◦ etH⃗(λ0),

we obtain the required (n − 1)-dimensional family of curves.

• Now we prove Proposition 2.
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Proof.

• We show that if an admissible control ũ(t) satis�es the maximality condition (7),
then

h⃗ũ(t)(λt) = H⃗(λt), t ∈ [0, t1]. (12)

• By de�nition of the maximized Hamiltonian H,

H(λ)− hũ(t)(λ) ≥ 0 λ ∈ T ∗M, t ∈ [0, t1].

• On the other hand, by the maximality condition of PMP (7), along the extremal

λt this inequality turns into equality:

H(λt)− hũ(t)(λt) = 0, t ∈ [0, t1].

• That is why

dλtH = dλthũ(t), t ∈ [0, t1].

• But a Hamiltonian vector �eld is obtained from di�erential of the Hamiltonian by a

standard linear transformation, thus equality (12) follows.
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• Conversely, let λt ̸= 0 be a trajectory of the Hamiltonian system λ̇t = H⃗(λt).

• In the same way as in the proof of Filippov's theorem, one can choose an

admissible control ũ(t) that realizes maximum along λt :

H(λt) = hũ(t)(λt) = max
u∈U

hu(λt).

• As we have shown above, then there holds equality (12). So the pair (ũ(t), λt)
satis�es PMP.

□
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