Differential Forms and Symplectic Geometry-2

 (Lecture 8)Yuri Sachkov

Program Systems Institute Russian Academy of Sciences

Pereslavl-Zalessky, Russia yusachkov@gmail.com
«Elements of Control Theory»
Lecture course in Program Systems Institute, Pereslavl-Zalessky
30 May 2023

Reminder: Plan of previous lecture

1. Differential 1-forms
2. Differential k-forms
3. Exterior differential

Plan of this lecture

1. Lie derivative of differential forms
2. Liouville form and symplectic form
3. Hamiltonian vector fields

Lie derivative of differential forms

- The "infinitesimal version" of the pull-back \widehat{P} of a differential form by a flow P is given by the following operation.
- Lie derivative of a differential form $\omega \in \Lambda^{k} M$ along a vector field $f \in \operatorname{Vec} M$ is the differential form $L_{f} \omega \in \Lambda^{k} M$ defined as follows:

$$
\begin{equation*}
\left.L_{f} \omega \stackrel{\text { def }}{=} \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \widehat{e^{\varepsilon f}} \omega \text {. } \tag{1}
\end{equation*}
$$

- Since

$$
\widehat{e^{t f}}\left(\omega_{1} \wedge \omega_{2}\right)=\widehat{e^{t f}} \omega_{1} \wedge \widehat{e^{t f}} \omega_{2},
$$

Lie derivative L_{f} is a derivation of the algebra of differential forms:

$$
L_{f}\left(\omega_{1} \wedge \omega_{2}\right)=\left(L_{f} \omega_{1}\right) \wedge \omega_{2}+\omega_{1} \wedge L_{f} \omega_{2}
$$

- Further, we have

$$
\widehat{e^{t f}} \circ d=d \circ \widehat{e^{t f}},
$$

thus

- For 0 -forms, Lie derivative is just the directional derivative:

$$
L_{f} a=f a, \quad a \in C^{\infty}(M),
$$

since $\widehat{e^{t f}} a=a \circ e^{t f} \quad$ is a substitution of variables.

- Now we obtain a useful formula for the action of Lie derivative on differential forms of an arbitrary order.
- Consider, along with exterior differential

$$
d: \Lambda^{k} M \rightarrow \Lambda^{k+1} M
$$

the interior product of a differential form ω with a vector field $f \in \operatorname{Vec} M$:

$$
\begin{aligned}
& i_{f}: \Lambda^{k} M \rightarrow \Lambda^{k-1} M \\
& \left(i_{f} \omega\right)\left(v_{1}, \ldots, v_{k-1}\right) \stackrel{\text { def }}{=} \omega\left(f, v_{1}, \ldots, v_{k-1}\right), \quad \omega \in \Lambda^{k} M, v_{i} \in T_{q} M
\end{aligned}
$$

which acts as substitution of f for the first argument of ω. By definition, for 0 -order forms

$$
i_{f} a=0, \quad a \in \Lambda^{0} M
$$

- Interior product is an antiderivation, as well as the exterior differential:

$$
i_{f}\left(\omega_{1} \wedge \omega_{2}\right)=\left(i_{f} \omega_{1}\right) \wedge \omega_{2}+(-1)^{k_{1}} \omega_{1} \wedge i_{f} \omega_{2}, \quad \omega_{i} \in \Lambda^{k_{i}} M
$$

- Now we prove that Lie derivative of a differential form of an arbitrary order can be computed by the following formula:

$$
\begin{equation*}
L_{f}=d \circ i_{f}+i_{f} \circ d \tag{2}
\end{equation*}
$$

called Cartan's formula, for short " $L=d i+i d$ ".

- Notice first of all that the right-hand side in (2) has the required order:

$$
d \circ i_{f}+i_{f} \circ d: \Lambda^{k} M \rightarrow \Lambda^{k} M
$$

- Further, $d \circ i_{f}+i_{f} \circ d$ is a derivation as it is obtained from two antiderivations.
- Moreover, this derivation commutes with differential:

$$
\begin{aligned}
& d \circ\left(d \circ i_{f}+i_{f} \circ d\right)=d \circ i_{f} \circ d, \\
& \left(d \circ i_{f}+i_{f} \circ d\right) \circ d=d \circ i_{f} \circ d .
\end{aligned}
$$

- Now we check the formula $L=d i+i d$ on 0 -forms: if $a \in \Lambda^{0} M$, then

$$
\begin{aligned}
& \left(d \circ i_{f}\right) a=0 \\
& \left(i_{f} \circ d\right) a=\langle d a, f\rangle=f a=L_{f} a .
\end{aligned}
$$

So the formula $L=d i+i d$ holds for 0 -forms.

- The properties of the mappings L_{f} and $d \circ i_{f}+i_{f} \circ d$ established and the coordinate representation of differential forms reduce the general case of k-forms to the case of 0 -forms.
- Cartan's formula $L=d i+i d$ is proved for k-forms.
- The differential definition (1) of Lie derivative can be integrated, i.e., there holds the following equality on $\Lambda^{k} M$:

$$
\begin{equation*}
\left(\overrightarrow{\exp } \int_{0}^{t} f_{\tau} d \tau\right)=\overrightarrow{\exp } \int_{0}^{t} L_{f_{\tau}} d \tau \tag{3}
\end{equation*}
$$

in the following sense.

- Denote the flow $P_{t_{0}}^{t_{1}}=\overrightarrow{\exp } \int_{t_{0}}^{t_{1}} f_{\tau} d \tau$ of a nonautonomous vector field f_{τ} on M.
- The family of operators on differential forms $\widehat{P_{0}^{t}}: \Lambda^{k} M \rightarrow \Lambda^{k} M$ is a unique solution of the Cauchy problem

$$
\begin{equation*}
\frac{d}{d t} \widehat{P_{0}^{t}}=\widehat{P_{0}^{t}} \circ L_{f_{t}},\left.\quad \widehat{P_{0}^{t}}\right|_{t=0}=\mathrm{Id} \tag{4}
\end{equation*}
$$

compare with Cauchy problems for the flow P_{0}^{t} and for the family of operators Ad P_{0}^{t}, and this solution is denoted as

$$
\overrightarrow{\exp } \int_{0}^{t} L_{f_{\tau}} d \tau \stackrel{\text { def }}{=} \widehat{P_{0}^{t}}=\left(\overrightarrow{\exp } \int_{0}^{t} f_{\tau} d \tau\right)
$$

- In order to verify the ODE in (4), we prove first the following equality for operators on forms:

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \widehat{P_{t}^{t+\varepsilon}} \omega=L_{f_{t}} \omega, \quad \omega \in \Lambda^{k} M \tag{5}
\end{equation*}
$$

- This equality is straightforward for 0-order forms:

$$
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \widehat{P_{t}^{t+\varepsilon}} a=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} a \circ P_{t}^{t+\varepsilon}=f_{t} a=L_{f_{t}} a, \quad a \in C^{\infty}(M)
$$

- Further, the both operators $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \widehat{P_{t}^{t+\varepsilon}}$ and $L_{f_{t}}$ commute with d and satisfy the Leibniz rule w.r.t. product of a function with a differential form.
- Then equality (5) follows for forms of arbitrary order, as in the proof of Cartan's formula.
- Now we easily verify the ODE in (4):

$$
\frac{d}{d t} \widehat{P_{0}^{t}}=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \widehat{P_{0}^{t+\varepsilon}}=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(P_{t}^{t+\varepsilon} \circ P_{0}^{t}\right)
$$

by the composition rule for pull-back of differential forms

$$
\begin{aligned}
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \widehat{P_{0}^{t}} \circ \widehat{P_{t}^{t+\varepsilon}}=\left.\widehat{P_{0}^{t}} \circ \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \widehat{P_{t}^{t+\varepsilon}} \\
& =\widehat{P_{0}^{t}} \circ L_{f_{t}} .
\end{aligned}
$$

Exercise 1

Prove uniqueness for Cauchy problem (4).

- For an autonomous vector field $f \in \operatorname{Vec} M$, equality (3) takes the form

$$
\widehat{e^{t f}}=e^{t L_{f}} .
$$

- Notice that the Lie derivatives of differential forms L_{f} and vector fields $(-\operatorname{ad} f)$ are in a certain sense dual one to another, see equality (6) below.
- That is, the function

$$
\langle\omega, X\rangle: q \mapsto\left\langle\omega_{q}, X(q)\right\rangle, \quad q \in M,
$$

defines a pairing of $\Lambda^{1} M$ and $\operatorname{Vec} M$ over $C^{\infty}(M)$. Then the equality

$$
\langle\widehat{P} \omega, X\rangle=P\left\langle\omega, \operatorname{Ad} P^{-1} X\right\rangle, \quad P \in \operatorname{Diff} M, X \in \operatorname{Vec} M, \omega \in \Lambda^{1} M
$$

has an infinitesimal version of the form

$$
\begin{equation*}
\left\langle L_{Y} \omega, X\right\rangle=Y\langle\omega, X\rangle-\langle\omega,(\operatorname{ad} Y) X\rangle, \quad X, Y \in \operatorname{Vec} M, \omega \in \Lambda^{1} M \tag{6}
\end{equation*}
$$

- Taking into account Cartan's formula $L=d i+i d$, we immediately obtain the following important equality:

$$
d \omega(Y, X)=Y\langle\omega, X\rangle-X\langle\omega, Y\rangle-\langle\omega,[Y, X]\rangle, \quad X, Y \in \operatorname{Vec} M, \omega \in \Lambda^{1} M
$$

Elements of Symplectic Geometry

Liouville form and symplectic form

- We have already seen that the cotangent bundle $T^{*} M=\cup_{q \in M} T_{q}^{*} M$ of an n-dimensional manifold M is a $2 n$-dimensional manifold. Any local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ on M determine canonical local coordinates on $T^{*} M$ of the form $(\xi, x)=\left(\xi_{1}, \ldots, \xi_{n} ; x_{1}, \ldots, x_{n}\right)$ in which any covector $\lambda \in T_{q_{0}}^{*} M$ has the decomposition $\lambda=\left.\sum_{i=1}^{n} \xi_{i} d x_{i}\right|_{q_{0}}$.
- The "tautological" 1-form (or Liouville 1-form) on the cotangent bundle

$$
s \in \Lambda^{1}\left(T^{*} M\right)
$$

is defined as follows.

- Let $\lambda \in T^{*} M$ be a point in the cotangent bundle and $w \in T_{\lambda}\left(T^{*} M\right)$ a tangent vector to $T^{*} M$ at λ.
- Denote by π the canonical projection from $T^{*} M$ to M :

$$
\begin{aligned}
& \pi: T^{*} M \rightarrow M, \\
& \pi: \lambda \mapsto q, \quad \lambda \in T_{q}^{*} M .
\end{aligned}
$$

- Differential of π is a linear mapping

$$
\pi_{*}: T_{\lambda}\left(T^{*} M\right) \rightarrow T_{q} M, \quad q=\pi(\lambda)
$$

- The tautological 1-form s at the point λ acts on the tangent vector w in the following way:

$$
\left\langle s_{\lambda}, w\right\rangle \stackrel{\text { def }}{=}\left\langle\lambda, \pi_{*} w\right\rangle .
$$

- That is, we project the vector $w \in T_{\lambda}\left(T^{*} M\right)$ to the vector $\pi_{*} w \in T_{q} M$, and then act by the covector $\lambda \in T_{q}^{*} M$.
- So

$$
s_{\lambda} \stackrel{\text { def }}{=} \lambda \circ \pi_{*}
$$

- The title "tautological" is explained by the coordinate representation of the form s.
- In canonical coordinates (ξ, x) on $T^{*} M$, we have:

$$
\begin{align*}
\lambda & =\sum_{i=1}^{n} \xi_{i} d x_{i} \tag{8}\\
w & =\sum_{i=1}^{n} \alpha_{i} \frac{\partial}{\partial \xi_{i}}+\beta_{i} \frac{\partial}{\partial x_{i}}
\end{align*}
$$

- The projection written in canonical coordinates

$$
\pi:(\xi, x) \mapsto x
$$

is a linear mapping, its differential acts as follows:

$$
\begin{aligned}
& \pi_{*}\left(\frac{\partial}{\partial \xi_{i}}\right)=0, \quad i=1, \ldots, n \\
& \pi_{*}\left(\frac{\partial}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}, \quad i=1, \ldots, n
\end{aligned}
$$

- Thus

$$
\pi_{*} w=\sum_{i=1}^{n} \beta_{i} \frac{\partial}{\partial x_{i}},
$$

consequently,

$$
\left\langle s_{\lambda}, w\right\rangle=\left\langle\lambda, \pi_{*} w\right\rangle=\sum_{i=1}^{n} \xi_{i} \beta_{i} .
$$

- But $\beta_{i}=\left\langle d x_{i}, w\right\rangle$, so the form s has in coordinates (ξ, x) exactly the same expression

$$
\begin{equation*}
s_{\lambda}=\sum_{i=1}^{n} \xi_{i} d x_{i} \tag{9}
\end{equation*}
$$

as the covector λ, see (8).

- Although, definition of the form s does not depend on any coordinates.

Remark 1
In mechanics, the tautological form s is denoted as $p d q$.

- Consider the exterior differential of the 1-form s :

$$
\sigma \stackrel{\text { def }}{=} d s
$$

- The differential 2-form $\sigma \in \Lambda^{2}\left(T^{*} M\right)$ is called the canonical symplectic structure on $T^{*} M$.
- In canonical coordinates, we obtain from (9):

$$
\begin{equation*}
\sigma=\sum_{i=1}^{n} d \xi_{i} \wedge d x_{i} \tag{10}
\end{equation*}
$$

- This expression shows that the form σ is nondegenerate, i.e., the bilinear skew-symmetric form

$$
\sigma_{\lambda}: T_{\lambda}\left(T^{*} M\right) \times T_{\lambda}\left(T^{*} M\right) \rightarrow \mathbb{R}
$$

has no kernel:

$$
\sigma(w, \cdot)=0 \Rightarrow w=0, \quad w \in T_{\lambda}\left(T^{*} M\right)
$$

- In the following basis in the tangent space $T_{\lambda}\left(T^{*} M\right)$

$$
\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial \xi_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial \xi_{n}}
$$

the form σ_{λ} has the block matrix $\left(\begin{array}{ccccc}0 & 1 & & & \\ -1 & 0 & & & \\ & & \ddots & & \\ & & & 0 & 1 \\ & & & -1 & 0\end{array}\right)$.

- The form σ is closed: $\quad d \sigma=0$ since it is exact: $\sigma=d s$, and $d \circ d=0$.

Remarks

(1) A closed nondegenerate exterior differential 2 -form on a $2 n$-dimensional manifold is called a symplectic structure. A manifold with a symplectic structure is called a symplectic manifold. The cotangent bundle $T^{*} M$ with the canonical symplectic structure σ is the most important example of a symplectic manifold.
(2) In mechanics, the 2-form σ is known as the form $d p \wedge d q$.

Hamiltonian vector fields

- Due to the symplectic structure $\sigma \in \Lambda^{2}\left(T^{*} M\right)$, we can develop the Hamiltonian formalism on $T^{*} M$.
- A Hamiltonian is an arbitrary smooth function on the cotangent bundle:

$$
h \in C^{\infty}\left(T^{*} M\right)
$$

- To any Hamiltonian h, we associate the Hamiltonian vector field

$$
\vec{h} \in \operatorname{Vec}\left(T^{*} M\right)
$$

by the rule:

$$
\begin{equation*}
\sigma_{\lambda}(\cdot, \vec{h})=d_{\lambda} h, \quad \lambda \in T^{*} M \tag{11}
\end{equation*}
$$

- In terms of the interior product $i_{v} \omega(\cdot, \cdot)=\omega(v, \cdot)$, the Hamiltonian vector field is a vector field \vec{h} that satisfies

$$
i_{\vec{h}} \sigma=-d h .
$$

- Since the symplectic form σ is nondegenerate, the mapping

$$
w \mapsto \sigma_{\lambda}(\cdot, w)
$$

is a linear isomorphism

$$
T_{\lambda}\left(T^{*} M\right) \rightarrow T_{\lambda}^{*}\left(T^{*} M\right)
$$

thus the Hamiltonian vector field \vec{h} in (11) exists and is uniquely determined by the Hamiltonian function h.

- In canonical coordinates (ξ, x) on $T^{*} M$ we have

$$
d h=\sum_{i=1}^{n}\left(\frac{\partial h}{\partial \xi_{i}} d \xi_{i}+\frac{\partial h}{\partial x_{i}} d x_{i}\right),
$$

then in view of (10)

$$
\begin{equation*}
\vec{h}=\sum_{i=1}^{n}\left(\frac{\partial h}{\partial \xi_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial h}{\partial x_{i}} \frac{\partial}{\partial \xi_{i}}\right) . \tag{12}
\end{equation*}
$$

- So the Hamiltonian system of ODEs corresponding to h

$$
\dot{\lambda}=\vec{h}(\lambda), \quad \lambda \in T^{*} M
$$

reads in canonical coordinates as follows:

$$
\begin{cases}\dot{x}_{i}=\frac{\partial h}{\partial \xi_{i}}, & i=1, \ldots, n, \\ \dot{\xi}_{i}=-\frac{\partial h}{\partial x_{i}}, & \\ i=1, \ldots, n .\end{cases}
$$

- The Hamiltonian function can depend on a parameter: $h_{t}, t \in \mathbb{R}$. Then the nonautonomous Hamiltonian vector field $\vec{h}_{t}, t \in \mathbb{R}$ is defined in the same way as in the autonomous case.
- The flow of a Hamiltonian system preserves the symplectic form σ.

Proposition 1.1

Let \vec{h}_{t} be a nonautonomous Hamiltonian vector field on $T^{*} M$. Then

$$
\left(\overrightarrow{\exp } \int_{0}^{t} \vec{h}_{\tau} d \tau\right) \quad \sigma=\sigma
$$

Proof:

- In view of equality (3), we have

$$
\left(\overrightarrow{\exp } \int_{0}^{t} \vec{h}_{\tau} d \tau\right)=\overrightarrow{\exp } \int_{0}^{t} L_{\vec{h}_{\tau}} d \tau
$$

thus the statement of this proposition can be rewritten as $L_{\vec{h}_{t}} \sigma=0$.

- But this Lie derivative is easily computed by Cartan's formula:

$$
L_{\vec{h}_{t}} \sigma=i_{\vec{h}_{t}} \circ \underbrace{d \sigma}_{=0}+d \circ \underbrace{i_{\vec{h}_{t}} \sigma}_{=-d h_{t}}=-d \circ d h_{t}=0 .
$$

- Moreover, there holds a local converse statement: if a flow preserves σ, then it is locally Hamiltonian.
- Indeed,

$$
\left(\overrightarrow{\exp } \int_{0}^{t} f_{\tau} d \tau\right) \quad \sigma=\sigma \quad \Leftrightarrow \quad L_{f_{t}} \sigma=0
$$

further

$$
L_{f_{t}} \sigma=i_{f_{t}} \circ \underbrace{d \sigma}_{=0}+d \circ i_{f_{t}} \sigma,
$$

thus

$$
L_{f_{t}} \sigma=0 \quad \Leftrightarrow \quad d \circ i_{f_{t}} \sigma=0
$$

- If the form $i_{f_{t}} \sigma$ is closed, then it is locally exact (Poincaré's Lemma), i.e., there exists a Hamiltonian h_{t} such that locally $f_{t}=\vec{h}_{t}$.
- Essentially, only Hamiltonian flows preserve σ (globally, "multi-valued Hamiltonians" can appear).
- If a manifold M is simply connected, then there holds a global statement: a flow on $T^{*} M$ is Hamiltonian if and only if it preserves the symplectic structure.
- The Poisson bracket of Hamiltonians $a, b \in C^{\infty}\left(T^{*} M\right)$ is a Hamiltonian

$$
\{a, b\} \in C^{\infty}\left(T^{*} M\right)
$$

defined in one of the following equivalent ways:

$$
\{a, b\}=\vec{a} b=\langle d b, \vec{a}\rangle=\sigma(\vec{a}, \vec{b})=-\sigma(\vec{b}, \vec{a})=-\vec{b} a .
$$

- It is obvious that Poisson bracket is bilinear and skew-symmetric:

$$
\{a, b\}=-\{b, a\} .
$$

- In canonical coordinates (ξ, x) on $T^{*} M$,

$$
\begin{equation*}
\{a, b\}=\sum_{i=1}^{n}\left(\frac{\partial a}{\partial \xi_{i}} \frac{\partial b}{\partial x_{i}}-\frac{\partial a}{\partial x_{i}} \frac{\partial b}{\partial \xi_{i}}\right) . \tag{13}
\end{equation*}
$$

- Leibniz rule for Poisson bracket easily follows from definition:

$$
\{a, b c\}=\{a, b\} c+b\{a, c\}
$$

(here $b c$ is the usual pointwise product of functions b and c).

- Symplectomorphisms of cotangent bundle preserve Hamiltonian vector fields; the action of a symplectomorphism $P \in \operatorname{Diff}\left(T^{*} M\right), \widehat{P} \sigma=\sigma$, on a Hamiltonian vector field \vec{h} reduces to the action of P on the Hamiltonian function as substitution of variables:

$$
\operatorname{Ad} P \vec{h}=\overrightarrow{P h}
$$

- This follows from the chain

$$
\begin{aligned}
\sigma(X, \operatorname{Ad} P \vec{h}) & =\widehat{P} \sigma(X, \operatorname{Ad} P \vec{h})=P \sigma\left(\operatorname{Ad} P^{-1} X, \vec{h}\right) \\
& =P\left\langle d h, \operatorname{Ad} P^{-1} X\right\rangle=X(P h)=\sigma(X, \overrightarrow{P h}), \quad X \in \operatorname{Vec}\left(T^{*} M\right)
\end{aligned}
$$

- In particular, a Hamiltonian flow transforms a Hamiltonian vector field into a Hamiltonian vector field:

$$
\begin{equation*}
\operatorname{Ad} P^{t} \vec{b}_{t}=\overrightarrow{P^{t} b_{t}}, \quad P^{t}=\overrightarrow{\exp } \int_{0}^{t} \vec{a}_{\tau} d \tau \tag{14}
\end{equation*}
$$

- Infinitesimally, this equality implies Jacobi identity for Poisson bracket.

Proposition 1.2

$$
\begin{equation*}
\{a,\{b, c\}\}+\{b,\{c, a\}\}+\{c,\{a, b\}\}=0, \quad a, b, c \in C^{\infty}\left(T^{*} M\right) \tag{15}
\end{equation*}
$$

Proof:

- Any symplectomorphism $P \in \operatorname{Diff}\left(T^{*} M\right), \widehat{P} \sigma=\sigma$, preserves Poisson brackets:

$$
P\{b, c\}=P \sigma(\vec{b}, \vec{c})=\widehat{P} \sigma(\operatorname{Ad} P \vec{b}, \operatorname{Ad} P \vec{c})=\sigma(\overrightarrow{P b}, \overrightarrow{P c})=\{P b, P c\}
$$

- Taking $P=e^{t \vec{a}}$ and differentiating at $t=0$, we come to Jacobi identity:

$$
\{a,\{b, c\}\}=\{\{a, b\}, c\}+\{b,\{a, c\}\} .
$$

- So the space of all Hamiltonians $C^{\infty}\left(T^{*} M\right)$ forms a Lie algebra with Poisson bracket as a product.
- The correspondence

$$
\begin{equation*}
a \mapsto \vec{a}, \quad a \in C^{\infty}\left(T^{*} M\right) \tag{16}
\end{equation*}
$$

is a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra of Hamiltonian vector fields on M. This follows from the next statement.

Corollary 1

$\{\overrightarrow{a, b}\}=[\vec{a}, \vec{b}]$ for any Hamiltonians $a, b \in C^{\infty}\left(T^{*} M\right)$.
Proof:

- Jacobi identity can be rewritten as

$$
\{\{a, b\}, c\}=\{a,\{b, c\}\}-\{b,\{a, c\}\}
$$

i.e.,

$$
\{\overrightarrow{a, b}\} c=\vec{a} \circ \vec{b} c-\vec{b} \circ \vec{a} c=[\vec{a}, \vec{b}] c, \quad c \in C^{\infty}\left(T^{*} M\right)
$$

- It is easy to see from the coordinate representation (12) that the kernel of the mapping $a \mapsto \vec{a}$ consists of constant functions, i.e., this is isomorphism up to constants.
- On the other hand, this homomorphism is far from being onto all vector fields on $T^{*} M$.
- Indeed, a general vector field on $T^{*} M$ is locally defined by arbitrary $2 n$ smooth real functions of $2 n$ variables, while a Hamiltonian vector field is determined by just one real function of $2 n$ variables, a Hamiltonian.

Theorem 2 (Nöther)

A function $a \in C^{\infty}\left(T^{*} M\right)$ is an integral of a Hamiltonian system of ODEs

$$
\begin{equation*}
\dot{\lambda}=\vec{h}(\lambda), \quad \lambda \in T^{*} M, \tag{17}
\end{equation*}
$$

i.e.,

$$
e^{t \vec{h}} a=a \quad t \in \mathbb{R},
$$

if and only if it Poisson-commutes with the Hamiltonian:

$$
\{a, h\}=0 .
$$

Proof:

- $e^{t \vec{h}} a \equiv a \Leftrightarrow 0=\vec{h} a=\{h, a\}$.

Corollary 3
$e^{t \vec{h}} h=h$, i.e., any Hamiltonian $h \in C^{\infty}\left(T^{*} M\right)$ is an integral of the corresponding Hamiltonian system (17).

- Further, Jacobi identity for Poisson brackets implies that the set of integrals of the Hamiltonian system (17) forms a Lie algebra with respect to Poisson brackets.

Corollary 4
$\{h, a\}=\{h, b\}=0 \Rightarrow\{h,\{a, b\}\}=0$.
Remark 2
The Hamiltonian formalism developed generalizes for arbitrary symplectic manifolds.

