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Reminder: Plan of previous lecture

1. Differential 1-forms
2. Differential k-forms
3. Exterior differential
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Plan of this lecture

1. Lie derivative of differential forms
2. Liouville form and symplectic form

3. Hamiltonian vector fields

3/29



00@00000000000000O000O00000000

Lie derivative of differential forms
The “infinitesimal version” of the pull-back P of a differential form by a flow P is
given by the following operation.
Lie derivative of a differential form w € AKM along a vector field f € Vec M is the
differential form Lrw € AKM defined as follows:

d —
Lew & 2| efuw. (1)

de e=0

Since - - L
etf(wl A wg) = etfwl A etfwz,
Lie derivative L is a derivation of the algebra of differential forms:
Lf(wl A w2) = (wa1) ANwy +wi A Lrwy.
Further, we have e e
etf od = doetf,

thus
lrod=dol:, 4/29
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® For 0-forms, Lie derivative is just the directional derivative:
Lra = fa, ae C®(M),

fis a substitution of variables.

since etfa=a0et
® Now we obtain a useful formula for the action of Lie derivative on differential
forms of an arbitrary order.

e Consider, along with exterior differential
d: AN"M — NIm
the interior product of a differential form w with a vector field f € Vec M:
ir : NM = NI,
(rw)(vis - vie1) € w(fovi, o vie1),  w e AM, v € TyM,

which acts as substitution of f for the first argument of w. By definition, for
0-order forms
ira=0, aeA'Mm.
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Interior product is an antiderivation, as well as the exterior differential:
if(wl VAN wz) = (ifwl) N wr + (*1)k1w1 N ifwy, wi € A<M,

Now we prove that Lie derivative of a differential form of an arbitrary order can be
computed by the following formula:

L=doifr+ifod (2)

called Cartan’s formula, for short “L = di + id".
Notice first of all that the right-hand side in (2) has the required order:

doir+irod : NM — AM.

Further, d o ir + if o d is a derivation as it is obtained from two antiderivations.
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Moreover, this derivation commutes with differential:

do(doif+ifod)=doirod,
(doif+ifod)od=doifod.

Now we check the formula L = di + id on O-forms: if a € A°M, then

(d o if)a = 0,
(ifod)a= (da,f) =fa= Lra.

So the formula L = di + id holds for 0-forms.

The properties of the mappings L¢ and d o ir + ir o d established and the
coordinate representation of differential forms reduce the general case of k-forms
to the case of 0-forms.

Cartan's formula L = di + id is proved for k-forms.

7/29



0000008000 0000000000O00000000

¢ The differential definition (1) of Lie derivative can be integrated, i.e., there holds
the following equality on AXM:

t ’A\ t
(&5/ ffdf> :&F:/ Ly, dr, (3)
0 0

in the following sense.

t

e Denote the flow Ptt; :e?ﬁ/ f- d7 of a nonautonomous vector field £ on M.
to

® The family of operators on differential forms P} : AM — N*M is a unique

solution of the Cauchy problem

d — — —~
E'Dé = P¢o Ly, P§
compare with Cauchy problems for the flow P} and for the family of operators

Ad P§, and this solution is denoted as

— t def 53 — t o
exp Le dr = PE= <exp / f, d7'>
0 0

=l (4)
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In order to verify the ODE in (4), we prove first the following equality for operators

on forms:
d

o Pfew = Lew,  we ANM. (5)

e=0

This equality is straightforward for 0-order forms:

d —
s L P{tea = = EZanPf“: fra=Lga, ae C®(M).
Further, the both operators —} Pt+€ and Ly commute with d and satisfy the

Leibniz rule w.r.t. product of a functlon with a differential form.

Then equality (5) follows for forms of arbitrary order, as in the proof of Cartan’s
formula.
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® Now we easily verify the ODE in (4):

d - d — d _
7Pt: R Pt+5: i Pt+5 Pt
dt 0 de|_y ° 2| (e R)

by the composition rule for pull-back of differential forms

o~ — o~ d —
= — P§ o PF‘E = Pto — Pf+5
de|._g de|._g
:P(gOLft.

Exercise 1
Prove uniqueness for Cauchy problem (4).
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For an autonomous vector field f € Vec M, equality (3) takes the form
etf — etlr,
Notice that the Lie derivatives of differential forms L¢ and vector fields (— ad f)

are in a certain sense dual one to another, see equality (6) below.
That is, the function

(w,X) : g (wq, X(q)), ge M,
defines a pairing of A'M and Vec M over C>°(M). Then the equality
(Pw,X) = P{w,Ad P~1 X), P € Diff M, X € Vec M, w € A'M,
has an infinitesimal version of the form
(Lyw,X) = Y{w,X) — (w,(ad Y)X), X, YeVecM, weA'M. (6)

Taking into account Cartan’s formula L = di + id, we immediately obtain the
following important equality:

dw(Y,X) = Y(w, X) = X{w,Y)—(w,[Y,X]), X, YeVecM, weA'M. (7)
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Elements of Symplectic Geometry
Liouville form and symplectic form
We have already seen that the cotangent bundle T*M = Ugep Tg M of an
n-dimensional manifold M is a 2n-dimensional manifold. Any local coordinates
x = (X1,...,Xp) on M determine canonical local coordinates on T*M of the form
(§,x) = (&, -+, &n x5+ -+, Xa) in which any covector A € T; M has the
decomposition A = Y7 &; dx,-|q0.
The “tautological” 1-form (or Liouville 1-form) on the cotangent bundle
se NY(T*M)

is defined as follows.
Let A € T*M be a point in the cotangent bundle and w € T)(T*M) a tangent
vector to T*M at A.
Denote by 7 the canonical projection from T*M to M:

T T"M — M,

T A q, Ae T M.
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Differential of 7 is a linear mapping
st TA(T"M) = TgM, qg = 7(A).

The tautological 1-form s at the point \ acts on the tangent vector w in the
following way:

(s, w) & O mow).
That is, we project the vector w € Ty(T*M) to the vector m,w € T,M, and then
act by the covector A € T M.

So et
€
S\ = AOTy.
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® The title “tautological” is explained by the coordinate representation of the form s.
® In canonical coordinates (&, x) on T*M, we have:

/\ = Zn:f,'dx,', (8)
i=1

n
0 0
w = oi— + Pi—.
; "0¢; BI@X,’
® The projection written in canonical coordinates

T (§,x)— x
is a linear mapping, its differential acts as follows:
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® Thus .
0
T+W = Z Biaa
i=1 !
consequently,

(sn, w) = (\, maw Zw,

® But ; = (dx;, w), so the form s has in coordlnates (&, x) exactly the same
expression

S\ = Zfidx,' (9)
i=1

as the covector ), see (8).
e Although, definition of the form s does not depend on any coordinates.

Remark 1
In mechanics, the tautological form s is denoted as p dgq.
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Consider the exterior differential of the 1-form s:

def
o = ds.

The differential 2-form o € A’(T*M) is called the canonical symplectic structure
on T*M.
In canonical coordinates, we obtain from (9):

o= d&Adx. (10)
i=1

This expression shows that the form o is nondegenerate, i.e., the bilinear
skew-symmetric form

o) - T)\(T*M) X TA(T*M)%R
has no kernel:
ow,)=0 = w=0, w e Th(T*M).

16 /29



0000000000000 00e000000000000

¢ In the following basis in the tangent space T)\(T*M)

o 0 o 0
PR TAR PN T
0 1
-1 0
the form o has the block matrix
0 1
-1 0

® The form o is closed: do =0 since it is exact: 0 = ds, and d o d = 0.

Remarks
(1) A closed nondegenerate exterior differential 2-form on a 2n-dimensional manifold is

called a symplectic structure. A manifold with a symplectic structure is called a
symplectic manifold. The cotangent bundle T*M with the canonical symplectic
structure o is the most important example of a symplectic manifold.

(2) In mechanics, the 2-form o is known as the form dp A dg.
17 /29
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Hamiltonian vector fields

Due to the symplectic structure o € A2(T*M), we can develop the Hamiltonian
formalism on T*M.

A Hamiltonian is an arbitrary smooth function on the cotangent bundle:
he C®(T*M).

To any Hamiltonian h, we associate the Hamiltonian vector field
h € Vec(T*M)

by the rule:

—,

O')\(~, h) = djh, Ae T*M. (11)

In terms of the interior product i,w(-, ) = w(v, ), the Hamiltonian vector field is a

vector field h that satisfies
izo = —dh.
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® Since the symplectic form o is nondegenerate, the mapping

is a linear isomorphism

Hamiltonian function h.

W — UA(y

w)

T\(T*M) = Tx(T*M),

thus the Hamiltonian vector field A in (11) exists and is uniquely determined by the

® In canonical coordinates (£, x) on T*M we have

then in view of (1

0)

dh:Z

i=1

n

:Z<

i=1

 h
(a&da

oh 0
0&; 0 x;

i

dh dx,-) ’
0 x

_8h8)' (12)

0x; 0&;
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® So the Hamiltonian system of ODEs corresponding to h
A=h()\), AeT*M,

reads in canonical coordinates as follows:

_dh L
Xji = 85, ! ) ) 1,
é Oh i=1 n
i= é?)q =1,...,n

® The Hamiltonian function can depend on a parameter: h;, t € R. Then the
nonautonomous Hamiltonian vector field h;, t € R is defined in the same way as in
the autonomous case.

® The flow of a Hamiltonian system preserves the symplectic form o.
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Proposition 1.1

Let ﬁt be a nonautonomous Hamiltonian vector field on T*M. Then
— [t o
(exp / h: d7> o =o0.
0
¢ In view of equality (3), we have

t "\ t
<&5/ thT> —e?f)/ Ly dr,
0 0 T

thus the statement of this proposition can be rewritten as

Proof:

Lo =0.
h
e But this Lie derivative is easily computed by Cartan’s formula: t
Lﬁtaz i © ci(; +do Fo = —dodh = 0.
=—dh;
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® Moreover, there holds a local converse statement: if a flow preserves o, then it is
locally Hamiltonian.

® Indeed, -
(e?ﬁ)/tﬂm') c=0 <& Lgo=0,
further 0
Lro =g o\dg/—i—d o0,
thus -

Lro=0 <& doiro=0.

e If the form ir,o is closed, then it is locally exact (Poincaré’s Lemma), i.e., there
exists a Hamiltonian h; such that locally f; = Be.

® Essentially, only Hamiltonian flows preserve o (globally, “multi-valued
Hamiltonians” can appear).

e |f a manifold M is simply connected, then there holds a global statement: a flow

on T*M is Hamiltonian if and only if it preserves the symplectic structure.
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The Poisson bracket of Hamiltonians a, b € C*>°(T*M) is a Hamiltonian
{a,b} € C=(T*M)
defined in one of the following equivalent ways:
{a,b} = b = (db, 3) = 0(3,b) = —0o(b,3) = —ba.

It is obvious that Poisson bracket is bilinear and skew-symmetric:

{a, b} = —{b, a}.
In canonical coordinates (&, x) on T*M,
'\ (0adb 0adb
{ajb}_iz_;(af;ax,'_ax,‘afi). (13)

Leibniz rule for Poisson bracket easily follows from definition:
{a,bc} ={a,b}c + b{a,c}

(here bc is the usual pointwise product of functions b and c).
23/29
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Symplectomorphisms of cotangent bundle preserve Hamiltonian vector fields; the
action of a symplectomorphism P € Diff(T*M), Po = o, on a Hamiltonian vector
field h reduces to the action of P on the Hamiltonian function as substitution of
variables:

= —
AdPh=Ph.

This follows from the chain

o(X,AdPh) =Po (X,AdPh) =Po(AdP X, h
(X.AdPR) = Po (X.AdPR) = Po (Ad P X.F)
= P(dh,Ad P~ X) = X(Ph) = o (X, ﬁ?) . X € Vec(T*M).

In particular, a Hamiltonian flow transforms a Hamiltonian vector field into a
Hamiltonian vector field:
L — ot
Ad Pt b, =P'b;, P'=exp | adr. (14)
0
Infinitesimally, this equality implies Jacobi identity for Poisson bracket.
24/29
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Proposition 1.2

{a,{b,c}} + {b{c,a}} + {c,{a,b}} =0,  ab,ce C(T*M).  (15)

Proof:
® Any symplectomorphism P € Diff(T*M), Po = o, preserves Poisson brackets:

= ~ N — —
P{b.c} = Po (b, E) — Po (Ad P b, Ad PE) —g (Pb, Pc> — {Pb, Pc}.
e Taking P = e'? and differentiating at t = 0, we come to Jacobi identity:

{aa {bv C}} = {{av b}v C} + {bv {aa C}}
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® So the space of all Hamiltonians C°>°(T*M) forms a Lie algebra with Poisson
bracket as a product.

® The correspondence
ara, ae C™(T*M), (16)

is a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra of
Hamiltonian vector fields on M. This follows from the next statement.

Corollary 1

— -
{a, b}= [a, b] for any Hamiltonians a,b € C>*(T*M).
Proof:

® Jacobi identity can be rewritten as

{{37 b}v C} = {37 {b7 C}} - {b7 {37 C}}7

26 /29



0000000000 0000000O000O00000e00

e |t is easy to see from the coordinate representation (12) that the kernel of the
mapping a — & consists of constant functions, i.e., this is isomorphism up to
constants.

® On the other hand, this homomorphism is far from being onto all vector fields on
T*M.
® Indeed, a general vector field on T*M is locally defined by arbitrary 2n smooth real

functions of 2n variables, while a Hamiltonian vector field is determined by just one
real function of 2n variables, a Hamiltonian.
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Theorem 2 (Né&ther)
A function a € C*°(T*M) is an integral of a Hamiltonian system of ODEs

A=h()), AeT'M, (17)

lLe.,

etha=a t € R,

if and only if it Poisson-commutes with the Hamiltonian:
{a,h} =0.

Proof:
® etha=ac 0=nha={hal.
Corollary 3

ethh = h, i.e., any Hamiltonian h € C*°(T*M) is an integral of the corresponding

Hamiltonian system (17). 28 /20
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® Further, Jacobi identity for Poisson brackets implies that the set of integrals of the
Hamiltonian system (17) forms a Lie algebra with respect to Poisson brackets.

Corollary 4
{h,a} = {h,b} = 0 = {h, {a,b}} = 0.
Remark 2

The Hamiltonian formalism developed generalizes for arbitrary symplectic manifolds.
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