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Reminder: Plan of previous lectures

1. Optimal Control Problem: Statement end existence of solutions

2. Chronological calculus
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Plan of this lecture

1. Di�erential 1-forms

2. Di�erential k-forms

3. Exterior di�erential
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Di�erential 1-forms
Linear forms

• E a real vector space of �nite dimension n.

• A linear form on E is a linear function ξ : E → R.
• The set of linear forms on E has a natural structure of a vector space called the

dual space to E and denoted by E ∗.

• If vectors e1, . . . , en form a basis of E , then the corresponding dual basis of E ∗ is

formed by the covectors e∗1 , . . . , e
∗
n such that

⟨e∗i , ej⟩ = δij , i , j = 1, . . . n.

• So the dual space has the same dimension as the initial one:

dimE ∗ = n = dimE .
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Cotangent bundle
• M a smooth manifold and TqM its tangent space at a point q ∈ M.

• The space of linear forms on TqM, i.e., the dual space (TqM)∗ to TqM, is called

the cotangent space to M at q and is denoted as T ∗
qM.

• The disjoint union of all cotangent spaces is called the cotangent bundle of M:

T ∗M
def
=

⊔
q∈M

T ∗
qM.

• The set T ∗M has a natural structure of a smooth manifold of dimension 2n, where
n = dimM.

• Local coordinates on T ∗M are constructed from local coordinates on M.

• Let O ⊂ M be a coordinate neighborhood and let

Φ : O → Rn, Φ(q) = (x1(q), . . . , xn(q)),

be a local coordinate system.
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• Di�erentials of the coordinate functions

dxi |q ∈ T ∗
qM, i = 1, . . . , n, q ∈ O,

form a basis in the cotangent space T ∗
qM.

• The dual basis in the tangent space TqM is formed by the vectors

∂

∂ xi

∣∣∣∣
q

∈ TqM, i = 1, . . . , n, q ∈ O,〈
dxi ,

∂

∂ xj

〉
≡ δij , i , j = 1, . . . , n.

• Any linear form ξ ∈ T ∗
qM can be decomposed via the basis forms:

ξ =
n∑

i=1

ξi dxi .

• So any covector ξ ∈ T ∗M is characterized by n coordinates (x1, . . . , xn) of the
point q ∈ M where ξ is attached, and by n coordinates (ξ1, . . . , ξn) of the linear
form ξ in the basis dx1, . . . , dxn.
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• Mappings of the form

ξ 7→ (ξ1, . . . , ξn; x1, . . . , xn)

de�ne local coordinates on the cotangent bundle. Consequently, T ∗M is a

2n-dimensional manifold.

• Coordinates of the form (ξ, x) are called canonical coordinates on T ∗M.
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• If F : M → N is a smooth mapping between smooth manifolds, then the

di�erential

F∗ : TqM → TF (q)N

has the adjoint (dual) mapping

F ∗ def
= (F∗)

∗ : T ∗
F (q)N → T ∗

qM

de�ned as follows:

F ∗ξ = ξ ◦ F∗, ξ ∈ T ∗
F (q)N,

⟨F ∗ξ, v⟩ = ⟨ξ,F∗v⟩, v ∈ TqM.

• A vector v ∈ TqM is pushed forward by the di�erential F∗ to the vector

F∗v ∈ TF (q)N, while a covector ξ ∈ T ∗
F (q)N is pulled back to the covector

F ∗ξ ∈ T ∗
qM.

• So a smooth mapping F : M → N between manifolds induces a smooth mapping

F ∗ : T ∗N → T ∗M between their cotangent bundles.
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Di�erential 1-forms
• A di�erential 1-form on M is a smooth mapping q 7→ ωq ∈ T ∗

qM, q ∈ M, i.e, a
family ω = {ωq} of linear forms on the tangent spaces TqM smoothly depending

on the point q ∈ M.
• The set of all di�erential 1-forms on M has a natural structure of an

in�nite-dimensional vector space denoted as Λ1M.
• Like linear forms on a vector space are dual objects to vectors of the space,

di�erential forms on a manifold are dual objects to smooth curves in the manifold.
• The pairing operation is the integral of a di�erential 1-form ω ∈ Λ1M along a

smooth oriented curve γ : [t0, t1] → M, de�ned as follows:∫
γ
ω

def
=

∫ t1

t0

⟨ωγ(t), γ̇(t)⟩ dt.

• The integral of a 1-form along a curve does not change under

orientation-preserving smooth reparametrizations of the curve and changes its sign

under change of orientation.
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Di�erential k-forms
• A di�erential k-form on M is an object to integrate over k-dim. surfaces in M.
• In�nitesimally, a k-dimensional surface is presented by its tangent space, i.e., a

k-dimensional subspace in TqM.
• We need a dual object to the set of k-dim. subspaces in the linear space.
• Fix a linear space E .
• A k-dimensional subspace is de�ned by its basis v1, . . . , vk ∈ E .
• The dual objects should be mappings

(v1, . . . , vk) 7→ ω(v1, . . . , vk) ∈ R

such that ω(v1, . . . , vk) depend only on the linear hull span{v1, . . . , vk} and the

oriented volume of the k-dimensional parallelepiped generated by v1, . . . , vk .
• Moreover, the dependence on the volume should be linear.
• Recall that the ratio of volumes of the parallelepipeds generated by vectors

wi =
∑k

j=1 αijvj , i = 1, . . . , k , and the vectors v1, . . . , vk , equals det(αij)
k
i ,j=1, and

that determinant of a k × k matrix is a multilinear skew-symmetric form of the

columns of the matrix.
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Exterior k-forms
• Let E be a �nite-dimensional real vector space, dimE = n, and let k ∈ N.
• An exterior k-form on E is a mapping

ω : E × · · · × E︸ ︷︷ ︸
k times

→ R,

which is multilinear:

ω(v1, . . . , α1v
1
i + α2v

2
i , . . . , vk)

= α1ω(v1, . . . , v
1
i , . . . , vk) + α2ω(v1, . . . , v

2
i , . . . , vk), α1, α2 ∈ R,

and skew-symmetric:

ω(v1, . . . , vi , . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi , . . . , vk), i , j = 1, . . . , k .

• The set of all exterior k-forms on E is denoted by ΛkE .
• By the skew-symmetry, any exterior form of order k > n is zero, thus ΛkE = {0}
for k > n.
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• Exterior forms can be multiplied by real numbers, and exterior forms of the same

order k can be added one with another, so each ΛkE is a vector space.

• We construct a basis of ΛkE after we consider another operation between exterior

forms � the exterior product.

• The exterior product of two forms ω1 ∈ Λk1E , ω2 ∈ Λk2E is an exterior form

ω1 ∧ ω2 of order k1 + k2.

• Given linear 1-forms ω1, ω2 ∈ Λ1E , we have a natural (tensor) product for them:

ω1 ⊗ ω2 : (v1, v2) 7→ ω1(v1)ω2(v2), v1, v2 ∈ E .

• The result is a bilinear but not a skew-symmetric form.

• The exterior product is the anti-symmetrization of the tensor one:

ω1 ∧ ω2 : (v1, v2) 7→ ω1(v1)ω2(v2)− ω1(v2)ω2(v1), v1, v2 ∈ E .
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• Similarly, the tensor and exterior products of forms ω1 ∈ Λk1E and ω2 ∈ Λk2E are

the following forms of order k1 + k2:

ω1 ⊗ ω2 : (v1, . . . , vk1+k2) 7→ ω1(v1, . . . , vk1)ω2(vk1+1, . . . , vk1+k2),

ω1 ∧ ω2 : (v1, . . . , vk1+k2) 7→
1

k1! k2!

∑
σ

(−1)ν(σ)ω1(vσ(1), . . . , vσ(k1))ω2(vσ(k1+1), . . . , vσ(k1+k2)), (1)

where the sum is taken over all permutations σ of order k1 + k2 and ν(σ) is parity
of a permutation σ.

• The factor 1
k1! k2!

normalizes the sum in (1) since it contains k1! k2! identically
equal terms: e.g., if permutations σ do not mix the �rst k1 and the last k2
arguments, then all terms of the form

(−1)ν(σ)ω1(vσ(1), . . . , vσ(k1))ω2(vσ(k1+1), . . . , vσ(k1+k2))

are equal to

ω1(v1, . . . , vk1)ω2(vk1+1, . . . , vk1+k2).
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• This guarantees the associative property of the exterior product:

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3, ωi ∈ ΛkiE ,

• Further, the exterior product is skew-commutative:

ω2 ∧ ω1 = (−1)k1k2ω1 ∧ ω2, ωi ∈ ΛkiE .

• Let e1, . . . , en be a basis of the space E and e∗1 , . . . , e
∗
n the corresponding dual

basis of E ∗.

• If 1 ≤ k ≤ n, then the following C k
n = n!

k!(n−k)! elements form a basis of the space

ΛkE :
e∗i1 ∧ . . . ∧ e∗ik , 1 ≤ i1 < i2 < · · · < ik ≤ n.
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• The equalities

(e∗i1 ∧ . . . ∧ e∗ik )(ei1 , . . . , eik ) = 1,

(e∗i1 ∧ . . . ∧ e∗ik )(ej1 , . . . , ejk ) = 0, if (i1, . . . , ik) ̸= (j1, . . . , jk)

for 1 ≤ i1 < i2 < · · · < ik ≤ n imply that any k-form ω ∈ ΛkE has a unique

decomposition of the form

ω =
∑

1≤i1<i2<···<ik≤n

ωi1...ik e
∗
i1 ∧ . . . ∧ e∗ik

with

ωi1...ik = ω(ei1 , . . . , eik ).

Exercise 1

Show that for any 1-forms ω1, . . . ωp ∈ Λ1E and any vectors v1, . . . , vp ∈ E there holds

the equality

(ω1 ∧ . . . ∧ ωp)(v1, . . . , vp) = det (⟨ωi , vj⟩)pi ,j=1 . (2)
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• Notice that the space of n-forms of an n-dimensional space E is one-dimensional.

• Any nonzero n-form on E is called a volume form.

• For example, the value of the standard volume form e∗1 ∧ . . . ∧ e∗n on an n-tuple of
vectors (v1, . . . , vn) is

(e∗1 ∧ . . . ∧ e∗n)(v1, . . . , vn) = det (⟨e∗i , vj⟩)
n
i ,j=1 ,

the oriented volume of the parallelepiped generated by the vectors v1, . . . , vn.
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Di�erential k-forms

• A di�erential k-form on M is a mapping

ω : q 7→ ωq ∈ ΛkTqM, q ∈ M,

smooth w.r.t. q ∈ M.

• The set of all di�erential k-forms on M is denoted by ΛkM.

• It is natural to consider smooth functions on M as 0-forms, so Λ0M = C∞(M).

• In local coordinates (x1, . . . , xn) on a domain O ⊂ M, any di�erential k-form
ω ∈ ΛkM can be uniquely decomposed as follows:

ωx =
∑

i1<···<ik

ai1...ik (x)dxi1 ∧ . . . ∧ dxik , x ∈ O, ai1...ik ∈ C∞(O). (3)
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• Any smooth mapping F : M → N induces a mapping of di�erential forms

F̂ : ΛkN → ΛkM in the following way: given a di�erential k-form ω ∈ ΛkN, the

k-form F̂ω ∈ ΛkM is de�ned as

(F̂ω)q(v1, . . . , vk) = ωF (q)(F∗v1, . . . ,F∗vk), q ∈ M, vi ∈ TqM.

• For 0-forms, pull-back is a substitution of variables:

F̂ a(q) = a ◦ F (q), a ∈ C∞(M), q ∈ M.

• The pull-back F̂ is linear w.r.t. forms and preserves the exterior product:

F̂ (ω1 ∧ ω2) = F̂ω1 ∧ F̂ω2.

Exercise 2

Prove the composition law for pull-back of di�erential forms:

F̂2 ◦ F1 = F̂1 ◦ F̂2, (4)

where F1 : M1 → M2 and F2 : M2 → M3 are smooth mappings.
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• Now we can de�ne the integral of a k-form over an oriented k-dimensional surface.
• Let Π ⊂ Rk be a k-dimensional open oriented domain and Φ : Π → Φ(Π) ⊂ M a

di�eomorphism.
• Then the integral of a k-form ω ∈ ΛkM over the k-dimensional oriented surface

Φ(Π) is de�ned as follows: ∫
Φ(Π)

ω
def
=

∫
Π
Φ̂ω,

it remains only to de�ne the integral over Π in the right-hand side.
• Since Φ̂ω ∈ ΛkRk is a k-form on Rk , it is expressed via the standard volume form

dx1 ∧ . . . ∧ dxk ∈ ΛkRk :

(Φ̂ω)x = a(x) dx1 ∧ · · · ∧ dxk , x ∈ Π.

• We set ∫
Π
Φ̂ω

def
=

∫
Π
a(x) dx1 . . . dxk ,

a usual multiple integral.
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• The integral
∫
Φ(Π) ω is de�ned correctly with respect to orientation-preserving

reparametrizations of the surface Φ(Π).
• Although, if a parametrization changes orientation, then the integral changes sign.
• The notion of integral is extended to arbitrary submanifolds as follows.
• Let N ⊂ M be a k-dimensional submanifold and let ω ∈ ΛkM.
• Consider a covering of N by coordinate neighborhoods Oi ⊂ M:

N =
⋃
i

(N ∩ Oi ).

• Take a partition of unity subordinated to this covering:

αi ∈ C∞(M), suppαi ⊂ Oi , 0 ≤ αi ≤ 1,∑
i

αi ≡ 1.

• Then ∫
N
ω

def
=

∑
i

∫
N∩Oi

αiω.

• The integral thus de�ned does not depend upon the choice of partition of unity. 20 / 25



Exterior di�erential
• Exterior di�erential of a function (i.e., a 0-form) is a 1-form: if

a ∈ C∞(M) = Λ0M, then its di�erential dqa ∈ T ∗
qM is the functional (directional

derivative)

⟨dqa, v⟩ = va, v ∈ TqM, (5)

so da ∈ Λ1M.
• By the Newton-Leibniz formula, if γ ⊂ M is a smooth oriented curve starting at a

point q0 ∈ M and terminating at q1 ∈ M, then∫
γ
da = a(q1)− a(q0).

• The right-hand side can be considered as the integral of the function a over the

oriented boundary of the curve: ∂γ = q1 − q0, thus∫
γ
da =

∫
∂γ

a. (6)
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• In the exposition above, Newton-Leibniz formula (6) comes as a consequence of

de�nition (5) of di�erential of a function. But one can go the reverse way: if we

postulate Newton-Leibniz formula (6) for any smooth curve γ ⊂ M and pass to

the limit q1 → q0, we necessarily obtain de�nition (5) of di�erential of a function.
• Such approach can be realized for higher order di�erential forms as well.
• Let ω ∈ ΛkM. We de�ne the exterior di�erential

dω ∈ Λk+1M

as the di�erential (k + 1)-form for which Stokes formula holds:∫
N
dω =

∫
∂N

ω (7)

for (k + 1)-dimensional submanifolds with boundary N ⊂ M (for simplicity, one can

take here N equal to a di�eomorphic image of a (k + 1)-dimensional polytope).
• The boundary ∂N is oriented by a frame of tangent vectors e1, . . . ek ∈ Tq(∂N) in
such a way that the frame enorm, e1, . . . , ek ∈ TqN de�ne a positive orientation of

N, where enorm is the outward normal vector to N at q.
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• The existence of a form dω that satis�es Stokes formula (7) comes from the fact

that the mapping N 7→
∫
∂N ω is additive w.r.t. domain: if N = N1 ∪ N2,

N1 ∩ N2 = ∂N1 ∩ ∂N2, then∫
∂N

ω =

∫
∂N1

ω +

∫
∂N2

ω

(notice that orientation of the boundaries is coordinated: ∂N1 and ∂N2 have

mutually opposite orientations at points of their intersection).

• Thus the integral
∫
∂N ω is a kind of measure w.r.t. N, and one can recover (dω)q

passing to limit in (7) as the submanifold N contracts to a point q.
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• We recall some basic properties of exterior di�erential.
• First of all, it is obvious from the Stokes formula that d : ΛkM → Λk+1M is a

linear operator.
• Further, if F : M → N is a di�eomorphism, then

dF̂ω = F̂ dω, ω ∈ ΛkN. (8)

• Indeed, if W ⊂ M, then∫
F (W )

ω =

∫
W

F̂ω, ω ∈ ΛkN,

thus ∫
W

dF̂ω =

∫
∂W

F̂ω =

∫
F (∂W )

ω =

∫
∂F (W )

ω =

∫
F (W )

dω

=

∫
W

F̂ dω,

and equality (8) follows.
24 / 25



• Another basic property of exterior di�erential is given by the equality

d ◦ d = 0,

which follows since ∂(∂N) = ∅ for any submanifold with boundary N ⊂ M.

• Exterior di�erential is an antiderivation:

d(ω1 ∧ ω2) = (dω1) ∧ ω2 + (−1)k1ω1 ∧ dω2, ωi ∈ ΛkiM,

this equality is dual to the formula of boundary ∂(N1 × N2).
• In local coordinates exterior di�erential is computed as follows: if

ω =
∑

i1<···<ik

ai1...ikdxi1 ∧ . . . ∧ dxik , ai1...ik ∈ C∞,

then

dω =
∑

i1<···<ik

(dai1...ik ) ∧ dxi1 ∧ . . . ∧ dxik ,

this formula is forced by above properties of di�erential forms.
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