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Reminder: Plan of previous lectures

1. Optimal Control Problem: Statement end existence of solutions

2. Chronological calculus
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Plan of this lecture

1. Differential 1-forms
2. Differential k-forms
3. Exterior differential
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Differential 1-forms

Linear forms

E a real vector space of finite dimension n.
A linear form on E is a linear function £ : E — R.

The set of linear forms on E has a natural structure of a vector space called the
dual space to E and denoted by E*.

If vectors ey, ..., e, form a basis of E, then the corresponding dual basis of E* is
formed by the covectors €], ..., e} such that
<e,7‘,ej>:5,-j, i j=1,...n.

So the dual space has the same dimension as the initial one:

dmE*=n=dmE.
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Cotangent bundle

M a smooth manifold and T4 M its tangent space at a point g € M.
The space of linear forms on TqM, i.e., the dual space (TyM)* to TqM, is called
the cotangent space to M at q and is denoted as T;M.

The disjoint union of all cotangent spaces is called the cotangent bundle of M:
def *
™M < || oM.
qgeM

The set T*M has a natural structure of a smooth manifold of dimension 2n, where
n=dimM.

Local coordinates on T*M are constructed from local coordinates on M.

Let O C M be a coordinate neighborhood and let

d: 0—=R" ®(q) = (x(q), -, xa(q)),

be a local coordinate system.
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Differentials of the coordinate functions
dx,-|qET;I\/I, i=1,...,n, g€ 0,

form a basis in the cotangent space T, M.
The dual basis in the tangent space TqM is formed by the vectors

e T M, i=1,...,n, qg€Oo,
aX,'q 9 q9

0 o
<d><i,axj>:5,-j, i, j=1,...,n.

Any linear form £ € T;M can be decomposed via the basis forms:

£=) &idx.
i—1

So any covector £ € T*M is characterized by n coordinates (xi, ..., x,) of the
point g € M where £ is attached, and by n coordinates (&1, ...,&,) of the linear
form & in the basis dxi, ..., dx,.
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® Mappings of the form
E &y oy &n X1y o vy Xn)

define local coordinates on the cotangent bundle. Consequently, T*M is a
2n-dimensional manifold.
¢ Coordinates of the form (&, x) are called canonical coordinates on T*M.
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e If F: M— N is a smooth mapping between smooth manifolds, then the
differential
F* : TqM — TF(q)N

has the adjoint (dual) mapping
F e (F): TEgN = TeM
defined as follows:

F*£:§OF*, §€ T;(Q)N’
(F*¢,v) = (&, Fav),  veTgM.

® A vector v € TyM is pushed forward by the differential F, to the vector
F.v € Tr(q)yN, while a covector § € T,’_i(q)N is pulled back to the covector
F¢ € TiM.
® So a smooth mapping F : M — N between manifolds induces a smooth mapping

F* : T*N — T*M between their cotangent bundles.
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Differential 1-forms

A differential 1-form on M is a smooth mapping q — wq € T;M, g€ M, i.e, a
family w = {wq} of linear forms on the tangent spaces T,M smoothly depending
on the point g € M.

The set of all differential 1-forms on M has a natural structure of an
infinite-dimensional vector space denoted as Al M.

Like linear forms on a vector space are dual objects to vectors of the space,
differential forms on a manifold are dual objects to smooth curves in the manifold.
The pairing operation is the integral of a differential 1-form w € AL M along a
smooth oriented curve v : [ty, t1] — M, defined as follows:

/ def/ w0, 4(1)) dt.

The integral of a 1-form along a curve does not change under
orientation-preserving smooth reparametrizations of the curve and changes its sign
under change of orientation.



Differential k-forms

A differential k-form on M is an object to integrate over k-dim. surfaces in M.
Infinitesimally, a k-dimensional surface is presented by its tangent space, i.e., a
k-dimensional subspace in TqM.

We need a dual object to the set of k-dim. subspaces in the linear space.

Fix a linear space E.

A k-dimensional subspace is defined by its basis v¢,..., v, € E.

The dual objects should be mappings

(vl,...,vk)»—>w(v1,...7vk) eR
such that w(vi, ..., vk) depend only on the linear hull span{vi,..., v} and the
oriented volume of the k-dimensional parallelepiped generated by vp, ..., vi.

® Moreover, the dependence on the volume should be linear.
® Recall that the ratio of volumes of the parallelepipeds generated by vectors

w; = Zﬁ:l ajvj, i =1,...,k, and the vectors vq,..., v, equals det(a,-j)f-‘,jzl, and

that determinant of a k x k matrix is a multilinear skew-symmetric form of the

columns of the matrix. 1025



Exterior k-forms

Let E be a finite-dimensional real vector space, dim E = n, and let k € N.
An exterior k-form on E is a mapping

w: Ex---xE—=R,
————

k times
which is multilinear:
1 2
w(vi,...,a1vi +agvi, ..., )

_ 1 2 R
=arw(ve, ..., Vi, Vi) Faow(vi, .o Ve k), a1, as € R,

and skew-symmetric:
Wi, ooy Viy ooy Voo Vi) = —w(Va, oo, Voo, Vi, Vi), 0y =1, k.

The set of all exterior k-forms on E is denoted by AXE.
By the skew-symmetry, any exterior form of order k > n is zero, thus AKE = {0}
for k > n.
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Exterior forms can be multiplied by real numbers, and exterior forms of the same
order k can be added one with another, so each AXE is a vector space.

We construct a basis of AKE after we consider another operation between exterior
forms — the exterior product.

The exterior product of two forms w; € AE, wo € A®E is an exterior form
wy A wy of order ky + ko.

Given linear 1-forms wy,w> € ALE, we have a natural (tensor) product for them:
w1 X wy (v1,v2)»—>w1(v1)w2(v2), vi,w € E.

The result is a bilinear but not a skew-symmetric form.

The exterior product is the anti-symmetrization of the tensor one:

w1 Awy  (va, v2) = wi(vi)wa(ve) — wi(va)wa(va), vi,w € E.
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® Similarly, the tensor and exterior products of forms w; € AKE and wo € ARE are
the following forms of order ki + ko:

w1 Quwy (V1>~-7Vk1+k2)'_>Wl(Vlan->Vkl)w2(Vk1+1a---7Vk1+k2)a
wl/\WQ : (V1,.. Vk1+k2)’_>

Py k2| Z 1)" w1 (Vo(1ys - - - Vo k) )02 (Vo(ka £1)s - - > Vo(katka))s (1)

where the sum is taken over all permutations o of order k; + ky and v(o) is parity
of a permutation o.

® The factor ﬁ normalizes the sum in (1) since it contains k;! ky! identically
equal terms: e.g., if permutations o do not mix the first k; and the last k,
arguments, then all terms of the form

(=11 (Voays - - Vo (k) )02 (Vor(ka 1) - - - » Vor(ke k)

are equal to

qu(Vl7 ey Vkl)w2(Vk1+1; ey Vk1+k2)-
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This guarantees the associative property of the

exterior product:

wl/\(wz /\w3):(w1/\w2)/\w3, w,'E/\k"E,

Further, the exterior product is skew-commutat

wr ANwy = (—1)k1k2wl N wa,

ive:

w; € NNE.

Let er,..., e, be a basis of the space E and e, ..., e} the corresponding dual
basis of E*.
If 1 < k < n, then the following Ck = k!(:ik)! elements form a basis of the space
NFE:

e N...Nep, 1<i<ip<---<ig<n.
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® The equalities

(e Ao Nep )€ €i)

: =1
n ’
(e Ao )€ ) =0, if (i) # (o)

for 1 < iy <ip<---< i <nimply that any k-form w € AXE has a unique
decomposition of the form

* *
w= E Wiy..ip€; N Nej
1<ii<ip<--<ik<n
with
Wiy..ip, = w(epy, ..., ep).

Exercise 1

Show that for any 1-forms wy,...wp € AYE and any vectors vy, ..., vp € E there holds

the equality
(Wi AL Awp)(va, -, vp) = det ({wi, vi))F ;g -

(2)
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® Notice that the space of n-forms of an n-dimensional space E is one-dimensional.
® Any nonzero n-form on E is called a volume form.

® For example, the value of the standard volume form e A ... A e} on an n-tuple of
vectors (vi,...,V,) is

(& A A (Vi v) = det (e, v))l.,

the oriented volume of the parallelepiped generated by the vectors v, ..., v,.
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Differential k-forms

A differential k-form on M is a mapping
w:q»—>wq€/\kqu\/l, qge M,

smooth w.r.t. g € M.
The set of all differential k-forms on M is denoted by AXM.

It is natural to consider smooth functions on M as 0-forms, so A°M = C>®(M).

In local coordinates (xi,...,x,) on a domain O C M, any differential k-form
w € N*M can be uniquely decomposed as follows:

we= Y ap.i(X)dx A Adx,,  x€O0, ay.; € C0).

i <<

(3)
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° Any smooth mapping F : M — N induces a mapping of differential forms
/\kN — A*M in the following way: given a differential k-form w € AKN, the
k form Fw € A“M is defined as

(I?w)q(vl7 s Vi) = wr(g)(Fevt, - Fav), ge M, vie TgM.
e For 0-forms, pull-back is a substitution of variables:
Fa(q) = ao F(q), ae C*(M), qgeM.
® The pull-back F is linear w.r.t. forms and preserves the exterior product:
//-_\(wl ANwp) = I?wl A //-_\wg.
Exercise 2
Prove the composition law for pull-back of differential forms:

FaoFy=Fo Fa, (4)

where F; : My — My and F, : My — M3 are smooth mappings.
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® Now we can define the integral of a k-form over an oriented k-dimensional surface.

e Let M C R¥ be a k-dimensional open oriented domain and ® : M — &(M) C M a
diffeomorphism.
Then the integral of a k-form w € AKM over the k-dimensional oriented surface

® (M) is defined as follows:
/ o / S,
o(N) n

it remains only to define the integral over 1 in the right-hand side.
Since dw € AKRX is a k-form on RX, it is expressed via the standard volume form
dxi A ... Adxe € NFRk:

(Pw)y = a(x) dxg A - -+ A dxg, x eIl

/a\)w def /a(x)dxl...dxk7
M n

We set

a usual multiple integral.
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The integral f(b(n) w is defined correctly with respect to orientation-preserving
reparametrizations of the surface ®([1).

Although, if a parametrization changes orientation, then the integral changes sign.

The notion of integral is extended to arbitrary submanifolds as follows.
Let N C M be a k-dimensional submanifold and let w € AXM.
Consider a covering of N by coordinate neighborhoods O; ¢ M:

N=[J(NnOy).

Take a partition of unity subordinated to this covering:

aj € C*¥(M), suppa; C 05y 0<q; <1,

Za;z 1.
i

/ def
w = Z ajw.
N i NNO;

The integral thus defined does not depend upon the choice of partition of unity.

Then
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Exterior differential

Exterior differential of a function (i.e., a 0-form) is a 1-form: if
a € C®(M) = A°M, then its differential dga € T;M is the functional (directional

derivative)
(dga, v) = va, ve TqM, (5)

so da € A'M.
By the Newton-Leibniz formula, if ¥ C M is a smooth oriented curve starting at a
point go € M and terminating at g; € M, then

Lda = a(q1) — a(qo)-

The right-hand side can be considered as the integral of the function a over the
oriented boundary of the curve: 0y = g1 — qo, thus

/Wda:/ava. (6)
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® In the exposition above, Newton-Leibniz formula (6) comes as a consequence of
definition (5) of differential of a function. But one can go the reverse way: if we
postulate Newton-Leibniz formula (6) for any smooth curve v C M and pass to
the limit g1 — qo, we necessarily obtain definition (5) of differential of a function.

® Such approach can be realized for higher order differential forms as well.

® Let w € AKM. We define the exterior differential

dw € N1 m

as the differential (k + 1)-form for which Stokes formula holds:

L

for (k + 1)-dimensional submanifolds with boundary N C M (for simplicity, one can
take here N equal to a diffeomorphic image of a (k + 1)-dimensional polytope).

® The boundary ON is oriented by a frame of tangent vectors ej,... e € T4(ON) in
such a way that the frame enorm, €1,...,ex € TgN define a positive orientation of

N, where enorm is the outward normal vector to N at q.
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® The existence of a form dw that satisfies Stokes formula (7) comes from the fact
that the mapping N — fan is additive w.r.t. domain: if N = Ny U N,
Ny N Ny = 0Ny N ON,, then

S o
onN ONy ON;

(notice that orientation of the boundaries is coordinated: 9Ny and 9N, have
mutually opposite orientations at points of their intersection).

® Thus the integral [;, w is a kind of measure w.r.t. N, and one can recover (dw)q
passing to limit in (7) as the submanifold N contracts to a point g.
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We recall some basic properties of exterior differential.

First of all, it is obvious from the Stokes formula that d : AKM — A*tI1M is a
linear operator.

Further, if F : M — N is a diffeomorphism, then

dFw = Fdw,  w e NN. (8)
Indeed, if W C M, then

U/P w ::U/” fiu, we NN
F(W) w

/dﬁw = / l/:\w:/ w:/ w:/ dw
w ow F(oW) AF (W) F(W)
= /ﬁdw,
w

and equality (8) follows.

thus
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® Another basic property of exterior differential is given by the equality
dod=0,

which follows since 9(ON) = 0 for any submanifold with boundary N C M.
e Exterior differential is an antiderivation:

d(wl /\O)Q) = (dw1) N wo + (—1)k1W1 A dwy, wj € /\k’M,

this equality is dual to the formula of boundary O(N; x Ny).
® In local coordinates exterior differential is computed as follows: if

w = Z é),‘l__,'kC/X,'1 VANRAN dX,'k, aj,..i, € COO,
i< <l
then
dw = Z (da,-l_,_,-k) N (J'X,'1 VANPAN dX,'k,
i< <ig

this formula is forced by above properties of differential forms.
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