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Reminder: Plan of previous lecture

1. ODEs with discontinuous right-hand side

2. De�nition of the right chronological exponential

3. Formal series expansion

4. Estimates and convergence of the series

5. Left chronological exponential

6. Uniqueness for functional and operator ODEs

7. Autonomous vector �elds
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Plan of this lecture

1. Action of di�eomorphisms on vector �elds

2. Commutation of �ows

3. Variations formula

4. Derivative of �ow with respect to parameter
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Action of di�eomorphisms on tangent vectors
• We have already found counterparts to points, di�eomorphisms, and vector �elds

among functionals and operators on C∞(M). Now we consider action of

di�eomorphisms on tangent vectors and vector �elds.
• Take a tangent vector v ∈ TqM and a di�eomorphism P ∈ DiffM. The tangent

vector P∗v ∈ TP(q)M is the velocity vector of the image of a curve starting from q
with the velocity vector v . We claim that

P∗v = v ◦ P, v ∈ TqM, P ∈ DiffM, (1)

as functionals on C∞(M).
• Take a curve

q(t) ∈ M, q(0) = q,
d

d t

∣∣∣∣
t=0

q(t) = v ,

then

P∗v a =
d

d t

∣∣∣∣
t=0

a(P(q(t))) =

(
d

d t

∣∣∣∣
t=0

q(t)

)
◦ Pa

= v ◦ Pa, a ∈ C∞(M).

•
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Action of di�eomorphisms on vector �elds
• Now we �nd expression for P∗V , V ∈ VecM, as a derivation of C∞(M).
• We have

q ◦ P ◦ P∗V = P(q) ◦ P∗V = (P∗V ) (P(q)) = P∗(V (q)) = V (q) ◦ P
= q ◦ V ◦ P, q ∈ M,

thus

P ◦ P∗V = V ◦ P,
i.e.,

P∗V = P−1 ◦ V ◦ P, P ∈ DiffM, V ∈ VecM.

• So di�eomorphisms act on vector �elds as similarities.
• In particular, di�eomorphisms preserve compositions:

P∗(V ◦W ) = P−1 ◦ (V ◦W ) ◦P = (P−1 ◦V ◦P) ◦ (P−1 ◦W ◦P) = P∗V ◦P∗W ,

thus Lie brackets of vector �elds:

P∗[V ,W ] = P∗(V ◦W −W ◦ V ) = P∗V ◦ P∗W − P∗W ◦ P∗V = [P∗V ,P∗W ].
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Action of di�eomorphisms on vector �elds

• If B : C∞(M) → C∞(M) is an automorphism, then the standard algebraic

notation for the corresponding similarity is AdB :

(AdB)V
def
= B ◦ V ◦ B−1.

• That is,

P∗ = AdP−1, P ∈ DiffM.
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• Now we �nd an in�nitesimal version of the operator Ad.
• Let Pt be a �ow on M,

P0 = Id,
d

d t

∣∣∣∣
t=0

Pt = V ∈ VecM.

• Then
d

d t

∣∣∣∣
t=0

(
Pt

)−1
= −V ,

so

d

d t

∣∣∣∣
t=0

(AdPt)W =
d

d t

∣∣∣∣
t=0

(Pt ◦W ◦ (Pt)−1) = V ◦W −W ◦ V

= [V ,W ], W ∈ VecM.

• Denote

adV = ad

(
d

d t

∣∣∣∣
t=0

Pt

)
def
=

d

d t

∣∣∣∣
t=0

AdPt ,

then

(adV )W = [V ,W ], W ∈ VecM.
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• Di�erentiation of the equality

AdPt [X ,Y ] = [AdPt X ,AdPt Y ] X ,Y ∈ VecM,

at t = 0 gives Jacobi identity for Lie bracket of vector �elds:

(adV )[X ,Y ] = [(adV )X ,Y ] + [X , (adV )Y ],

which may also be written as

[V , [X ,Y ]] = [[V ,X ],Y ] + [X , [V ,Y ]], V ,X ,Y ∈ VecM,

or, in a symmetric way

[X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0, X ,Y ,Z ∈ VecM. (2)
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• The set VecM is a vector space with an additional operation � Lie bracket, which
has the properties:

(1) bilinearity:

[αX + βY ,Z ] = α[X ,Z ] + β[Y ,Z ],

[X , αY + βZ ] = α[X ,Y ] + β[X ,Z ], X ,Y ,Z ∈ VecM, α, β ∈ R,

(2) skew-symmetry:
[X ,Y ] = −[Y ,X ], X ,Y ∈ VecM,

(3) Jacobi identity (2).

• In other words, the set VecM of all smooth vector �elds on a smooth manifold M
forms a Lie algebra.
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• Consider the �ow Pt =
−→
exp

∫ t

0

Vτ dτ of a nonautonomous vector �eld Vt . We

�nd an ODE for the family of operators AdPt = (Pt)−1∗ on the Lie algebra VecM.

d

d t
(AdPt)X =

d

d t

(
Pt ◦ X ◦ (Pt)−1

)
= Pt ◦ Vt ◦ X ◦ (Pt)−1 − Pt ◦ X ◦ Vt ◦ (Pt)−1

= (AdPt)[Vt ,X ] = (AdPt) adVt X , X ∈ VecM.

• Thus the family of operators AdPt satis�es the ODE

d

d t
AdPt = (AdPt) ◦ adVt (3)

with the initial condition

AdP0 = Id . (4)

• So the family AdPt is an invertible solution for the Cauchy problem

Ȧt = At ◦ adVt , A0 = Id

for operators At : VecM → VecM.
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• We can apply the same argument as for the analogous Cauchy problem for �ows to

derive the asymptotic expansion

AdPt ≈ Id+

∫ t

0

adVτ dτ + · · ·

+

∫
· · ·

∫
∆n(t)

adVτn ◦ · · · ◦ adVτ1 dτn . . . dτ1 + · · · (5)

then prove uniqueness of the solution, and justify the following notation:

−→
exp

∫ t

0

adVτ dτ
def
= AdPt = Ad

(
−→
exp

∫ t

0

Vτ dτ

)
.

• Similar identities for the left chronological exponential are

←−
exp

∫ t

0

ad(−Vτ ) dτ
def
= Ad

(
←−
exp

∫ t

0

(−Vτ ) dτ

)
≈ Id+

∞∑
n=1

∫
· · ·

∫
∆n(t)

(− adVτ1) ◦ · · · ◦ (− adVτn) dτn . . . dτ1.
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• For the asymptotic series (5), there holds an estimate of the remainder term

similar to the estimate for the �ow Pt .

• Denote the partial sum

Tm = Id+
m−1∑
n=1

∫
· · ·

∫
∆n(t)

adVτn ◦ · · · ◦ adVτ1 dτn . . . dτ1,

then for any X ∈ VecM, s ≥ 0, K ⋐ M∥∥∥∥(Ad −→exp ∫ t

0

Vτ dτ − Tm

)
X

∥∥∥∥
s,K

≤ C1e
C1

∫ t
0 ∥Vτ∥s+1,K ′ dτ 1

m!

(∫ t

0

∥Vτ∥s+m,K ′ dτ

)m

∥X∥s+m,K ′ (6)

= O(tm), t → 0,

where K ′ ⋐ M is some compactum containing K .
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• For autonomous vector �elds, we denote

et adV
def
= Ad etV ,

thus the family of operators et adV : VecM → VecM is the unique solution to the

problem

Ȧt = At ◦ adV , A0 = Id,

which admits the asymptotic expansion

et adV ≈ Id+t adV +
t2

2
ad2 V + · · · .

• Let P ∈ DiffM, and let Vt be a nonautonomous vector �eld on M. Then

P◦ −→exp
∫ t

0

Vτ dτ ◦ P−1 = −→exp
∫ t

0

AdP Vτ dτ (7)

since the both parts satisfy the same operator Cauchy problem.
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Commutation of �ows
Let Vt ∈ VecM be a nonautonomous vector �eld and Pt =

−→
exp

∫ t
0
Vτ dτ the

corresponding �ow. We are interested in the question: under what conditions the �ow

Pt preserves a vector �eld W ∈ VecM.

Proposition 1

Pt
∗W = W ∀t ⇔ [Vt ,W ] = 0 ∀t.

Proof.

d

d t
(Pt)

−1
∗ W =

d

d t
AdPtW =

(
d

d t

−→
exp

∫ t

0

adVτ dτ

)
W

=

(
−→
exp

∫ t

0

adVτ dτ ◦ adVτ

)
W =

(
−→
exp

∫ t

0

adVτ dτ

)
[Vt ,W ]

= (Pt)−1∗ [Vt ,W ],

thus (Pt)−1∗ W ≡ W if and only if [Vt ,W ] ≡ 0.
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• In general, �ows do not commute, neither for nonautonomous vector �elds Vt , Wt :

−→
exp

∫ t1

0

Vτ dτ ◦
−→
exp

∫ t2

0

Wτ dτ ̸= −→exp
∫ t2

0

Wτ dτ ◦
−→
exp

∫ t1

0

Vτ dτ,

nor for autonomous vector �elds V , W :

et1V ◦ et2W ̸= et2W ◦ et1V .
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Proposition 2

In the autonomous case, commutativity of �ows is equivalent to commutativity of

vector �elds: if V ,W ∈ VecM, then

et1V ◦ et2W = et2W ◦ et1V , t1, t2 ∈ R, ⇔ [V ,W ] = 0.

Proof.
Necessity:

d2

dt2
q ◦ e−tW ◦ e−tV ◦ etW ◦ etV = q ◦ 2[V ,W ].

Su�ciency. We have
(
Ad et1V

)
W = et1 adVW = W . Taking into account

equality (7), we obtain

et1V ◦ et2W ◦ e−t1V = et2(Ad e
t1V )W = et2W .
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Variations formula

• Consider an ODE of the form

q̇ = Vt(q) +Wt(q). (8)

We think of Vt as an initial vector �eld and Wt as its perturbation.

• Our aim is to �nd a formula for the �ow Qt of the new �eld Vt +Wt as a

perturbation of the �ow Pt =
−→
exp

∫ t
0
Vτ dτ of the initial �eld Vt .

• In other words, we wish to have a decomposition of the form

Qt =
−→
exp

∫ t

0

(Vτ +Wτ ) dτ = Ct ◦ Pt .
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• We proceed as in the method of variation of parameters; we substitute the

previous expression to ODE (8):

d

d t
Qt = Qt ◦ (Vt +Wt)

= Ċt ◦ Pt + Ct ◦ Pt ◦ Vt

= Ċt ◦ Pt + Qt ◦ Vt ,

cancel the common term Qt ◦ Vt :

Qt ◦Wt = Ċt ◦ Pt ,

and write down the ODE for the unknown �ow Ct :

Ċt = Qt ◦Wt ◦
(
Pt

)−1
= Ct ◦ Pt ◦Wt ◦

(
Pt

)−1
= Ct ◦

(
AdPt

)
Wt

= Ct ◦
(
−→
exp

∫ t

0

adVτ dτ

)
Wt , C0 = Id .
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• This operator Cauchy problem is of the form Ċ t = C t ◦ Vt , C
0 = Id, thus it has a

unique solution:

Ct =
−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ dθ

)
Wτ dτ.

• Hence we obtain the required decomposition of the perturbed �ow:

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ dθ

)
Wτ dτ ◦

−→
exp

∫ t

0

Vτ dτ. (9)

• This equality is called the variations formula.

• It can be written as follows:

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(AdPτ )Wτ dτ ◦ Pt .

• So the perturbed �ow is a composition of the initial �ow Pt with the �ow of the

perturbation Wt twisted by Pt .
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• Now we obtain another form of the variations formula, with the �ow Pt to the left

of the twisted �ow.

• We have

−→
exp

∫ t

0

(Vτ +Wτ ) dτ =
−→
exp

∫ t

0

(AdPτ )Wτ dτ ◦ Pt

= Pt ◦
(
Pt

)−1 ◦ −→exp ∫ t

0

(AdPτ )Wτ dτ ◦ Pt

= Pt◦ −→exp
∫ t

0

(
Ad

(
Pt

)−1 ◦ AdPτ
)
Wτ dτ

= Pt◦ −→exp
∫ t

0

(
Ad

((
Pt

)−1 ◦ Pτ
))

Wτ dτ.

• Notice that (
Pt

)−1 ◦ Pτ =
−→
exp

∫ τ

t
Vθ dθ.
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• Thus

−→
exp

∫ t

0

(Vτ +Wτ ) dτ = Pt◦ −→exp
∫ t

0

(
−→
exp

∫ τ

t
adVθ dθ

)
Wτ dτ

=
−→
exp

∫ t

0

Vτ dτ◦
−→
exp

∫ t

0

(
−→
exp

∫ τ

t
adVθ dθ

)
Wτ dτ.

(10)

• For autonomous vector �elds V ,W ∈ VecM, the variations formulas (9), (10)
take the form:

et(V+W ) =
−→
exp

∫ t

0

eτ adVW dτ ◦ etV = etV ◦ −→exp
∫ t

0

e(τ−t) adVW dτ. (11)

• In particular, for t = 1 we have

eV+W =
−→
exp

∫ 1

0

eτ adVW dτ ◦ eV .
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Derivative of �ow with respect to parameter

• Let Vt(s) be a nonautonomous vector �eld depending smoothly on a real

parameter s. We study dependence of the �ow of Vt(s) on the parameter s.

• We write

−→
exp

∫ t

0

Vτ (s + ε) dτ =
−→
exp

∫ t

0

(Vτ (s) + δVτ (s, ε)) dτ (12)

with the perturbation δVτ (s, ε) = Vτ (s + ε)− Vτ (s).

• By the variations formula (9), the previous �ow is equal to

−→
exp

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
δVτ (s, ε) dτ ◦

−→
exp

∫ t

0

Vτ (s) dτ.
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• Now we expand in ε:

δVτ (s, ε) = ε
∂

∂ s
Vτ (s) + O(ε2), ε → 0,

Wτ (s, ε)
def
=

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
δVτ (s, ε)

= ε

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) + O(ε2), ε → 0,

thus

−→
exp

∫ t

0

Wτ (s, ε) dτ = Id+

∫ t

0

Wτ (s, ε) dτ + O(ε2)

= Id+ε

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ + O(ε2).
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• Finally,

−→
exp

∫ t

0

Vτ (s + ε) dτ =
−→
exp

∫ t

0

Ws,τ (ε) dτ ◦
−→
exp

∫ t

0

Vτ (s) dτ

=
−→
exp

∫ t

0

Vτ (s) dτ

+ ε

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ ◦

−→
exp

∫ t

0

Vτ (s) dτ + O(ε2),

that is,

∂

∂ s

−→
exp

∫ t

0

Vτ (s) dτ

=

∫ t

0

(
−→
exp

∫ τ

0

adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ ◦

−→
exp

∫ t

0

Vτ (s) dτ. (13)
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• Similarly, we obtain from the variations formula (10) the equality

∂

∂ s

−→
exp

∫ t

0

Vτ (s) dτ

=
−→
exp

∫ t

0

Vτ (s) dτ ◦
∫ t

0

(
−→
exp

∫ τ

t
adVθ(s) dθ

)
∂

∂ s
Vτ (s) dτ. (14)

• For an autonomous vector �eld depending on a parameter V (s), formula (13)
takes the form

∂

∂ s
etV (s) =

∫ t

0

eτ adV (s) ∂ V

∂ s
dτ ◦ etV (s),

and at t = 1:
∂

∂ s
eV (s) =

∫ 1

0

eτ adV (s) ∂ V

∂ s
dτ ◦ eV (s). (15)
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Proposition 3

Assume that [∫ t

0

Vτ dτ,Vt

]
= 0 ∀t. (16)

Then
−→
exp

∫ t

0

Vτ dτ = e
∫ t
0 Vτ dτ ∀t.

That is, we state that under the commutativity assumption (16), the chronological

exponential
−→
exp

∫ t
0
Vτ dτ coincides with the �ow Qt = e

∫ t
0 Vτ dτ de�ned as follows:

Qt = Qt
1,

∂ Qt
s

∂ s
=

∫ t

0

Vτ dτ ◦ Qt
s , Qt

0 = Id .
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Proof.

• We show that the exponential in the right-hand side satis�es the same ODE as the

chronological exponential in the left-hand side.

• By (15), we have

d

d t
e
∫ t
0 Vτ dτ =

∫ 1

0

eτ ad
∫ t
0 Vθ dθ Vt dτ ◦ e

∫ t
0 Vτ dτ .

• In view of equality (16),

eτ ad
∫ t
0 Vθ dθ Vt = Vt ,

thus
d

d t
e
∫ t
0 Vτ dτ = Vt ◦ e

∫ t
0 Vτ dτ .

• By equality (16), we can permute operators in the right-hand side:

d

d t
e
∫ t
0 Vτ dτ = e

∫ t
0 Vτ dτ ◦ Vt .
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• Notice the initial condition

e
∫ t
0 Vτ dτ

∣∣∣
t=0

= Id .

• Now the statement follows since the Cauchy problem for �ows

Ȧt = At ◦ Vt , A0 = Id

has a unique solution:

At = e
∫ t
0 Vτ dτ =

−→
exp

∫ t

0

Vτ dτ.
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