Elements of Chronological Calculus-3 (Lecture 6)

Yuri Sachkov

Program Systems Institute
Russian Academy of Sciences
Pereslavl-Zalessky, Russia yusachkov@gmail.com
«Elements of Control Theory»
Lecture course in Program Systems Institute, Pereslavl-Zalessky
21 March 2023

Reminder: Plan of previous lecture

1. ODEs with discontinuous right-hand side
2. Definition of the right chronological exponential
3. Formal series expansion
4. Estimates and convergence of the series
5. Left chronological exponential
6. Uniqueness for functional and operator ODEs
7. Autonomous vector fields

Plan of this lecture

1. Action of diffeomorphisms on vector fields
2. Commutation of flows
3. Variations formula
4. Derivative of flow with respect to parameter

Action of diffeomorphisms on tangent vectors

- We have already found counterparts to points, diffeomorphisms, and vector fields among functionals and operators on $C^{\infty}(M)$. Now we consider action of diffeomorphisms on tangent vectors and vector fields.
- Take a tangent vector $v \in T_{q} M$ and a diffeomorphism $P \in \operatorname{Diff} M$. The tangent vector $P_{*} v \in T_{P(q)} M$ is the velocity vector of the image of a curve starting from q with the velocity vector v. We claim that

$$
\begin{equation*}
P_{*} v=v \circ P, \quad v \in T_{q} M, \quad P \in \operatorname{Diff} M, \tag{1}
\end{equation*}
$$

as functionals on $C^{\infty}(M)$.

- Take a curve

$$
q(t) \in M, \quad q(0)=q,\left.\quad \frac{d}{d t}\right|_{t=0} q(t)=v
$$

then

$$
\begin{aligned}
P_{*} v a & =\left.\frac{d}{d t}\right|_{t=0} a(P(q(t)))=\left(\left.\frac{d}{d t}\right|_{t=0} q(t)\right) \circ P a \\
& =v \circ P a, \quad a \in C^{\infty}(M) .
\end{aligned}
$$

Action of diffeomorphisms on vector fields

- Now we find expression for $P_{*} V, V \in \operatorname{Vec} M$, as a derivation of $C^{\infty}(M)$.
- We have

$$
\begin{aligned}
q \circ P \circ P_{*} V & =P(q) \circ P_{*} V=\left(P_{*} V\right)(P(q))=P_{*}(V(q))=V(q) \circ P \\
& =q \circ V \circ P, \quad q \in M,
\end{aligned}
$$

thus

$$
P \circ P_{*} V=V \circ P,
$$

i.e.,

$$
P_{*} V=P^{-1} \circ V \circ P, \quad P \in \operatorname{Diff} M, V \in \operatorname{Vec} M
$$

- So diffeomorphisms act on vector fields as similarities.
- In particular, diffeomorphisms preserve compositions:

$$
P_{*}(V \circ W)=P^{-1} \circ(V \circ W) \circ P=\left(P^{-1} \circ V \circ P\right) \circ\left(P^{-1} \circ W \circ P\right)=P_{*} V \circ P_{*} W
$$

thus Lie brackets of vector fields:

$$
P_{*}[V, W]=P_{*}(V \circ W-W \circ V)=P_{*} V \circ P_{*} W-P_{*} W \circ P_{*} V=\left[P_{*} V, P_{*} W\right] .
$$

Action of diffeomorphisms on vector fields

- If $B: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is an automorphism, then the standard algebraic notation for the corresponding similarity is $\operatorname{Ad} B$:

$$
(\operatorname{Ad} B) V \stackrel{\text { def }}{=} B \circ V \circ B^{-1}
$$

- That is,

$$
P_{*}=\operatorname{Ad} P^{-1}, \quad P \in \operatorname{Diff} M
$$

- Now we find an infinitesimal version of the operator Ad.
- Let P^{t} be a flow on M,

$$
P^{0}=\mathrm{Id},\left.\quad \frac{d}{d t}\right|_{t=0} P^{t}=V \in \operatorname{Vec} M
$$

- Then

$$
\left.\frac{d}{d t}\right|_{t=0}\left(P^{t}\right)^{-1}=-V
$$

so

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{Ad} P^{t}\right) W & =\left.\frac{d}{d t}\right|_{t=0}\left(P^{t} \circ W \circ\left(P^{t}\right)^{-1}\right)=V \circ W-W \circ V \\
& =[V, W], \quad W \in \operatorname{Vec} M
\end{aligned}
$$

- Denote

$$
\operatorname{ad} V=\left.\operatorname{ad}\left(\left.\frac{d}{d t}\right|_{t=0} P^{t}\right) \stackrel{\text { def }}{=} \frac{d}{d t}\right|_{t=0} \operatorname{Ad} P^{t}
$$

then

$$
(\operatorname{ad} V) W=[V, W], \quad W \in \operatorname{Vec} M
$$

- Differentiation of the equality

$$
\operatorname{Ad} P^{t}[X, Y]=\left[\operatorname{Ad} P^{t} X, \operatorname{Ad} P^{t} Y\right] \quad X, Y \in \operatorname{Vec} M
$$

at $t=0$ gives Jacobi identity for Lie bracket of vector fields:

$$
(\operatorname{ad} V)[X, Y]=[(\operatorname{ad} V) X, Y]+[X,(\operatorname{ad} V) Y]
$$

which may also be written as

$$
[V,[X, Y]]=[[V, X], Y]+[X,[V, Y]], \quad V, X, Y \in \operatorname{Vec} M
$$

or, in a symmetric way

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0, \quad X, Y, Z \in \operatorname{Vec} M \tag{2}
\end{equation*}
$$

- The set Vec M is a vector space with an additional operation - Lie bracket, which has the properties:
(1) bilinearity:

$$
\begin{aligned}
& {[\alpha X+\beta Y, Z]=\alpha[X, Z]+\beta[Y, Z],} \\
& {[X, \alpha Y+\beta Z]=\alpha[X, Y]+\beta[X, Z], \quad X, Y, Z \in \operatorname{Vec} M, \quad \alpha, \beta \in \mathbb{R},}
\end{aligned}
$$

(2) skew-symmetry:

$$
[X, Y]=-[Y, X], \quad X, Y \in \operatorname{Vec} M
$$

(3) Jacobi identity (2).

- In other words, the set Vec M of all smooth vector fields on a smooth manifold M forms a Lie algebra.
- Consider the flow $P^{t}=\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau$ of a nonautonomous vector field V_{t}. We find an ODE for the family of operators $\operatorname{Ad} P^{t}=\left(P^{t}\right)_{*}^{-1}$ on the Lie algebra Vec M.

$$
\begin{aligned}
\frac{d}{d t}\left(\operatorname{Ad} P^{t}\right) X & =\frac{d}{d t}\left(P^{t} \circ X \circ\left(P^{t}\right)^{-1}\right) \\
& =P^{t} \circ V_{t} \circ X \circ\left(P^{t}\right)^{-1}-P^{t} \circ X \circ V_{t} \circ\left(P^{t}\right)^{-1} \\
& =\left(\operatorname{Ad} P^{t}\right)\left[V_{t}, X\right]=\left(\operatorname{Ad} P^{t}\right) \operatorname{ad} V_{t} X, \quad X \in \operatorname{Vec} M
\end{aligned}
$$

- Thus the family of operators $\operatorname{Ad} P^{t}$ satisfies the ODE

$$
\begin{equation*}
\frac{d}{d t} \operatorname{Ad} P^{t}=\left(\operatorname{Ad} P^{t}\right) \circ \operatorname{ad} V_{t} \tag{3}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
\operatorname{Ad} P^{0}=\mathrm{Id} \tag{4}
\end{equation*}
$$

- So the family $\operatorname{Ad} P^{t}$ is an invertible solution for the Cauchy problem

$$
\dot{A}_{t}=A_{t} \circ \text { ad } V_{t}, \quad A_{0}=\mathrm{Id}
$$

for operators $A_{t}: \operatorname{Vec} M \rightarrow \operatorname{Vec} M$.

- We can apply the same argument as for the analogous Cauchy problem for flows to derive the asymptotic expansion

$$
\begin{align*}
\operatorname{Ad} P^{t} \approx \mathrm{Id}+\int_{0}^{t} \operatorname{ad} V_{\tau} d \tau & +\cdots \\
& +\int_{\Delta_{n}(t)} \ldots \int \text { ad } V_{\tau_{n}} \circ \cdots \circ \text { ad } V_{\tau_{1}} d \tau_{n} \ldots d \tau_{1}+\cdots \tag{5}
\end{align*}
$$

then prove uniqueness of the solution, and justify the following notation:

$$
\overrightarrow{\exp } \int_{0}^{t} \operatorname{ad} V_{\tau} d \tau \stackrel{\text { def }}{=} \operatorname{Ad} P^{t}=\operatorname{Ad}\left(\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau\right)
$$

- Similar identities for the left chronological exponential are

$$
\begin{aligned}
\overleftarrow{\exp } \int_{0}^{t} \operatorname{ad}\left(-V_{\tau}\right) d \tau & \stackrel{\text { def }}{=} \operatorname{Ad}\left(\overleftarrow{\exp } \int_{0}^{t}\left(-V_{\tau}\right) d \tau\right) \\
& \approx \mathrm{Id}+\sum_{n=1}^{\infty} \int^{\infty} \ldots \int\left(-\operatorname{ad} V_{\tau_{1}}\right) \circ \cdots \circ\left(-\operatorname{ad} V_{\tau_{n}}\right) d \tau_{n} \ldots d \tau_{1}
\end{aligned}
$$

- For the asymptotic series (5), there holds an estimate of the remainder term similar to the estimate for the flow P^{t}.
- Denote the partial sum

$$
T_{m}=\mathrm{Id}+\sum_{n=1}^{m-1} \int \ldots \int \operatorname{ad} V_{\tau_{n}} \circ \cdots \circ \text { ad } V_{\tau_{1}} d \tau_{n} \ldots d \tau_{1},
$$

then for any $X \in \operatorname{Vec} M, s \geq 0, K \Subset M$

$$
\begin{align*}
\|(\text { Ad } \overrightarrow{\exp } & \left.\int_{0}^{t} V_{\tau} d \tau-T_{m}\right) X \|_{s, K} \\
& \leq C_{1} e^{C_{1} \int_{0}^{t}\left\|V_{\tau}\right\|_{s+1, K^{\prime}} d \tau} \frac{1}{m!}\left(\int_{0}^{t}\left\|V_{\tau}\right\|_{s+m, K^{\prime}} d \tau\right)^{m}\|X\|_{s+m, K^{\prime}} \tag{6}\\
& =O\left(t^{m}\right), \quad t \rightarrow 0
\end{align*}
$$

where $K^{\prime} \Subset M$ is some compactum containing K.

- For autonomous vector fields, we denote

$$
e^{t \operatorname{ad} V} \stackrel{\text { def }}{=} \operatorname{Ad} e^{t V}
$$

thus the family of operators $e^{t a d} V: \operatorname{Vec} M \rightarrow \operatorname{Vec} M$ is the unique solution to the problem

$$
\dot{A}_{t}=A_{t} \circ \operatorname{ad} V, \quad A_{0}=\mathrm{Id}
$$

which admits the asymptotic expansion

$$
e^{t \operatorname{tad} V} \approx \mathrm{Id}+t \operatorname{ad} V+\frac{t^{2}}{2} \mathrm{ad}^{2} V+\cdots
$$

- Let $P \in \operatorname{Diff} M$, and let V_{t} be a nonautonomous vector field on M. Then

$$
\begin{equation*}
P \circ \overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau \circ P^{-1}=\overrightarrow{\exp } \int_{0}^{t} \operatorname{Ad} P V_{\tau} d \tau \tag{7}
\end{equation*}
$$

since the both parts satisfy the same operator Cauchy problem.

Commutation of flows

Let $V_{t} \in \operatorname{Vec} M$ be a nonautonomous vector field and $P^{t}=\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau$ the corresponding flow. We are interested in the question: under what conditions the flow P^{t} preserves a vector field $W \in \operatorname{Vec} M$.
Proposition 1
$P_{*}^{t} W=W \quad \forall t \quad \Leftrightarrow \quad\left[V_{t}, W\right]=0 \quad \forall t$.
Proof.

$$
\begin{aligned}
\frac{d}{d t}\left(P_{t}\right)_{*}^{-1} W & =\frac{d}{d t} \operatorname{Ad} P^{t} W=\left(\frac{d}{d t} \overrightarrow{\exp } \int_{0}^{t} \operatorname{ad} V_{\tau} d \tau\right) W \\
& =\left(\overrightarrow{\exp } \int_{0}^{t} \operatorname{ad} V_{\tau} d \tau \circ \operatorname{ad} V_{\tau}\right) W=\left(\overrightarrow{\exp } \int_{0}^{t} \operatorname{ad} V_{\tau} d \tau\right)\left[V_{t}, W\right] \\
& =\left(P^{t}\right)_{*}^{-1}\left[V_{t}, W\right]
\end{aligned}
$$

thus $\left(P^{t}\right)_{*}^{-1} W \equiv W$ if and only if $\left[V_{t}, W\right] \equiv 0$.

- In general, flows do not commute, neither for nonautonomous vector fields V_{t}, W_{t} :

$$
\overrightarrow{\exp } \int_{0}^{t_{1}} V_{\tau} d \tau \circ \overrightarrow{\exp } \int_{0}^{t_{2}} W_{\tau} d \tau \neq \overrightarrow{\exp } \int_{0}^{t_{2}} W_{\tau} d \tau \circ \overrightarrow{\exp } \int_{0}^{t_{1}} V_{\tau} d \tau
$$

nor for autonomous vector fields V, W :

$$
e^{t_{1} V} \circ e^{t_{2} W} \neq e^{t_{2} W} \circ e^{t_{1} V}
$$

Proposition 2

In the autonomous case, commutativity of flows is equivalent to commutativity of vector fields: if $V, W \in \operatorname{Vec} M$, then

$$
e^{t_{1} V} \circ e^{t_{2} W}=e^{t_{2} W} \circ e^{t_{1} V}, \quad t_{1}, t_{2} \in \mathbb{R}, \quad \Leftrightarrow \quad[V, W]=0
$$

Proof.

Necessity:

$$
\frac{d^{2}}{d t^{2}} q \circ e^{-t W} \circ e^{-t V} \circ e^{t W} \circ e^{t V}=q \circ 2[V, W]
$$

Sufficiency. We have $\left(\operatorname{Ad~}^{t_{1} V}\right) W=e^{t_{1} \text { ad } V} W=W$. Taking into account equality (7), we obtain

$$
e^{t_{1} V} \circ e^{t_{2} W} \circ e^{-t_{1} V}=e^{t_{2}\left(\operatorname{Ade} e^{t_{1} V}\right) W}=e^{t_{2} W}
$$

Variations formula

- Consider an ODE of the form

$$
\begin{equation*}
\dot{q}=V_{t}(q)+W_{t}(q) \tag{8}
\end{equation*}
$$

We think of V_{t} as an initial vector field and W_{t} as its perturbation.

- Our aim is to find a formula for the flow Q^{t} of the new field $V_{t}+W_{t}$ as a perturbation of the flow $P^{t}=\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau$ of the initial field V_{t}.
- In other words, we wish to have a decomposition of the form

$$
Q^{t}=\overrightarrow{\exp } \int_{0}^{t}\left(V_{\tau}+W_{\tau}\right) d \tau=C_{t} \circ P^{t}
$$

- We proceed as in the method of variation of parameters; we substitute the previous expression to ODE (8):

$$
\begin{aligned}
\frac{d}{d t} Q^{t} & =Q^{t} \circ\left(V_{t}+W_{t}\right) \\
& =\dot{C}_{t} \circ P^{t}+C_{t} \circ P^{t} \circ V_{t} \\
& =\dot{C}_{t} \circ P^{t}+Q^{t} \circ V_{t},
\end{aligned}
$$

cancel the common term $Q^{t} \circ V_{t}$:

$$
Q^{t} \circ W_{t}=\dot{C}_{t} \circ P^{t}
$$

and write down the ODE for the unknown flow C_{t} :

$$
\begin{aligned}
\dot{C}_{t} & =Q^{t} \circ W_{t} \circ\left(P^{t}\right)^{-1} \\
& =C_{t} \circ P^{t} \circ W_{t} \circ\left(P^{t}\right)^{-1} \\
& =C_{t} \circ\left(\operatorname{Ad} P^{t}\right) W_{t} \\
& =C_{t} \circ\left(\overrightarrow{\exp } \int_{0}^{t} \operatorname{ad} V_{\tau} d \tau\right) W_{t}, \quad C_{0}=\mathrm{Id}
\end{aligned}
$$

- This operator Cauchy problem is of the form $\dot{C}^{t}=C^{t} \circ V_{t}, C^{0}=I d$, thus it has a unique solution:

$$
C_{t}=\overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} V_{\theta} d \theta\right) W_{\tau} d \tau
$$

- Hence we obtain the required decomposition of the perturbed flow:

$$
\begin{equation*}
\overrightarrow{\exp } \int_{0}^{t}\left(V_{\tau}+W_{\tau}\right) d \tau=\overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} V_{\theta} d \theta\right) W_{\tau} d \tau \circ \overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau \tag{9}
\end{equation*}
$$

- This equality is called the variations formula.
- It can be written as follows:

$$
\overrightarrow{\exp } \int_{0}^{t}\left(V_{\tau}+W_{\tau}\right) d \tau=\overrightarrow{\exp } \int_{0}^{t}\left(\operatorname{Ad} P^{\tau}\right) W_{\tau} d \tau \circ P^{t}
$$

- So the perturbed flow is a composition of the initial flow P^{t} with the flow of the perturbation W_{t} twisted by P^{t}.
- Now we obtain another form of the variations formula, with the flow P^{t} to the left of the twisted flow.
- We have

$$
\begin{aligned}
\overrightarrow{\exp } \int_{0}^{t}\left(V_{\tau}+W_{\tau}\right) d \tau & =\overrightarrow{\exp } \int_{0}^{t}\left(\operatorname{Ad} P^{\tau}\right) W_{\tau} d \tau \circ P^{t} \\
& =P^{t} \circ\left(P^{t}\right)^{-1} \circ \overrightarrow{\exp } \int_{0}^{t}\left(\operatorname{Ad} P^{\tau}\right) W_{\tau} d \tau \circ P^{t} \\
& =P^{t} \circ \overrightarrow{\exp } \int_{0}^{t}\left(\operatorname{Ad}\left(P^{t}\right)^{-1} \circ \operatorname{Ad} P^{\tau}\right) W_{\tau} d \tau \\
& =P^{t} \circ \overrightarrow{\exp } \int_{0}^{t}\left(\operatorname{Ad}\left(\left(P^{t}\right)^{-1} \circ P^{\tau}\right)\right) W_{\tau} d \tau
\end{aligned}
$$

- Notice that

$$
\left(P^{t}\right)^{-1} \circ P^{\tau}=\overrightarrow{\exp } \int_{t}^{\tau} V_{\theta} d \theta
$$

- Thus

$$
\begin{align*}
\overrightarrow{\exp } \int_{0}^{t}\left(V_{\tau}+W_{\tau}\right) d \tau & =P^{t} \circ \overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{\exp } \int_{t}^{\tau} \operatorname{ad} V_{\theta} d \theta\right) W_{\tau} d \tau \\
& =\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau \circ \overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{\exp } \int_{t}^{\tau} \operatorname{ad} V_{\theta} d \theta\right) W_{\tau} d \tau \tag{10}
\end{align*}
$$

- For autonomous vector fields $V, W \in \operatorname{Vec} M$, the variations formulas (9), (10) take the form:

$$
\begin{equation*}
e^{t(V+W)}=\overrightarrow{\exp } \int_{0}^{t} e^{\tau \operatorname{ad} V} W d \tau \circ e^{t V}=e^{t V} \circ \overrightarrow{\exp } \int_{0}^{t} e^{(\tau-t) \operatorname{ad} V} W d \tau \tag{11}
\end{equation*}
$$

- In particular, for $t=1$ we have

$$
e^{V+W}=\overrightarrow{\exp } \int_{0}^{1} e^{\tau \operatorname{ad} V} W d \tau \circ e^{V}
$$

Derivative of flow with respect to parameter

- Let $V_{t}(s)$ be a nonautonomous vector field depending smoothly on a real parameter s. We study dependence of the flow of $V_{t}(s)$ on the parameter s.
- We write

$$
\begin{equation*}
\overrightarrow{\exp } \int_{0}^{t} V_{\tau}(s+\varepsilon) d \tau=\overrightarrow{\exp } \int_{0}^{t}\left(V_{\tau}(s)+\delta V_{\tau}(s, \varepsilon)\right) d \tau \tag{12}
\end{equation*}
$$

with the perturbation $\delta_{V_{\tau}}(s, \varepsilon)=V_{\tau}(s+\varepsilon)-V_{\tau}(s)$.

- By the variations formula (9), the previous flow is equal to

$$
\overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} V_{\theta}(s) d \theta\right) \delta V_{\tau}(s, \varepsilon) d \tau \circ \overrightarrow{\exp } \int_{0}^{t} V_{\tau}(s) d \tau
$$

- Now we expand in ε :

$$
\begin{aligned}
\delta_{V_{\tau}}(s, \varepsilon) & =\varepsilon \frac{\partial}{\partial s} V_{\tau}(s)+O\left(\varepsilon^{2}\right), \quad \varepsilon \rightarrow 0 \\
W_{\tau}(s, \varepsilon) & \stackrel{\text { def }}{=}\left(\overrightarrow{\exp } \int_{0}^{\tau} \text { ad } V_{\theta}(s) d \theta\right) \delta V_{\tau}(s, \varepsilon) \\
& =\varepsilon\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} V_{\theta}(s) d \theta\right) \frac{\partial}{\partial s} V_{\tau}(s)+O\left(\varepsilon^{2}\right), \quad \varepsilon \rightarrow 0
\end{aligned}
$$

thus

$$
\begin{aligned}
\overrightarrow{\exp } \int_{0}^{t} W_{\tau}(s, \varepsilon) d \tau & =\mathrm{Id}+\int_{0}^{t} W_{\tau}(s, \varepsilon) d \tau+O\left(\varepsilon^{2}\right) \\
& =\mathrm{Id}+\varepsilon \int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} V_{\theta}(s) d \theta\right) \frac{\partial}{\partial s} V_{\tau}(s) d \tau+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

- Finally,

$$
\begin{aligned}
\overrightarrow{\exp } & \int_{0}^{t} V_{\tau}(s+\varepsilon) d \tau=\overrightarrow{\exp } \int_{0}^{t} W_{s, \tau}(\varepsilon) d \tau \circ \overrightarrow{\exp } \int_{0}^{t} V_{\tau}(s) d \tau \\
= & \overrightarrow{\exp } \int_{0}^{t} V_{\tau}(s) d \tau \\
& +\varepsilon \int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} V_{\theta}(s) d \theta\right) \frac{\partial}{\partial s} V_{\tau}(s) d \tau \circ \overrightarrow{\exp } \int_{0}^{t} V_{\tau}(s) d \tau+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

that is,

$$
\begin{align*}
\frac{\partial}{\partial s} \overrightarrow{\exp } \int_{0}^{t} & V_{\tau}(s) d \tau \\
& =\int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} V_{\theta}(s) d \theta\right) \frac{\partial}{\partial s} V_{\tau}(s) d \tau \circ \overrightarrow{\exp } \int_{0}^{t} V_{\tau}(s) d \tau \tag{13}
\end{align*}
$$

- Similarly, we obtain from the variations formula (10) the equality

$$
\begin{align*}
\frac{\partial}{\partial s} \overrightarrow{\exp } \int_{0}^{t} & V_{\tau}(s) d \tau \\
& =\overrightarrow{\exp } \int_{0}^{t} V_{\tau}(s) d \tau \circ \int_{0}^{t}\left(\overrightarrow{\exp } \int_{t}^{\tau} \operatorname{ad} V_{\theta}(s) d \theta\right) \frac{\partial}{\partial s} V_{\tau}(s) d \tau \tag{14}
\end{align*}
$$

- For an autonomous vector field depending on a parameter $V(s)$, formula (13) takes the form

$$
\frac{\partial}{\partial s} e^{t V(s)}=\int_{0}^{t} e^{\tau \operatorname{ad} V(s)} \frac{\partial V}{\partial s} d \tau \circ e^{t V(s)}
$$

and at $t=1$:

$$
\begin{equation*}
\frac{\partial}{\partial s} e^{V(s)}=\int_{0}^{1} e^{\tau \operatorname{ad} V(s)} \frac{\partial V}{\partial s} d \tau \circ e^{V(s)} \tag{15}
\end{equation*}
$$

Proposition 3

Assume that

$$
\begin{equation*}
\left[\int_{0}^{t} V_{\tau} d \tau, V_{t}\right]=0 \quad \forall t \tag{16}
\end{equation*}
$$

Then

$$
\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau=e^{\int_{0}^{t} V_{\tau} d \tau} \quad \forall t
$$

That is, we state that under the commutativity assumption (16), the chronological exponential $\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau$ coincides with the flow $Q^{t}=e^{\int_{0}^{t} V_{\tau} d \tau}$ defined as follows:

$$
\begin{aligned}
& Q^{t}=Q_{1}^{t} \\
& \frac{\partial Q_{s}^{t}}{\partial s}=\int_{0}^{t} V_{\tau} d \tau \circ Q_{s}^{t}, \quad Q_{0}^{t}=\mathrm{Id}
\end{aligned}
$$

Proof.

- We show that the exponential in the right-hand side satisfies the same ODE as the chronological exponential in the left-hand side.
- By (15), we have

$$
\frac{d}{d t} e^{\int_{0}^{t} V_{\tau} d \tau}=\int_{0}^{1} e^{\tau \text { ad } \int_{0}^{t} V_{\theta} d \theta} V_{t} d \tau \circ e^{\int_{0}^{t} V_{\tau} d \tau}
$$

- In view of equality (16),

$$
e^{\tau \operatorname{ad} \int_{0}^{t} V_{\theta} d \theta} V_{t}=V_{t}
$$

thus

$$
\frac{d}{d t} e^{\int_{0}^{t} V_{\tau} d \tau}=V_{t} \circ e^{\int_{0}^{t} V_{\tau} d \tau}
$$

- By equality (16), we can permute operators in the right-hand side:

$$
\frac{d}{d t} e^{\int_{0}^{t} V_{\tau} d \tau}=e^{\int_{0}^{t} V_{\tau} d \tau} \circ V_{t}
$$

- Notice the initial condition

$$
\left.e^{\int_{0}^{t} V_{\tau} d \tau}\right|_{t=0}=\operatorname{ld}
$$

- Now the statement follows since the Cauchy problem for flows

$$
\dot{A}_{t}=A_{t} \circ V_{t}, \quad A_{0}=\mathrm{ld}
$$

has a unique solution:

$$
A_{t}=e^{\int_{0}^{t} V_{\tau} d \tau}=\overrightarrow{\exp } \int_{0}^{t} V_{\tau} d \tau
$$

