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Reminder: Plan of previous lecture

1. Points, Diffeomorphisms, and Vector Fields
2. Seminorms and C*°(M)-Topology

3. Families of Functionals and Operators
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Plan of this lecture

ODEs with discontinuous right-hand side
Definition of the right chronological exponential
Formal series expansion

Estimates and convergence of the series

Left chronological exponential

Uniqueness for functional and operator ODEs

Autonomous vector fields
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ODEs with discontinuous right-hand side
We consider a nonautonomous ordinary differential equation of the form
g=Vi(q),  q(0) = qo, (1)

where V; is a nonautonomous vector field on M, and study the flow determined by
this field.

. .d . .
We denote by g the derivative d—z so equation (1) reads in the expanded form as

T _ vy (q(r)).

To obtain local solutions to the Cauchy problem (1) on a manifold M, we reduce it
to a Cauchy problem in a Euclidean space.

Choose local coordinates x = (x1,...,x") in a neighborhood Oy, of the point qo:
®: O CM— O CR", o : g x,
®(q0) = xo.
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® |n these coordinates, the field V; reads

n

(@Ve) (x) = Vi(x) = > v,-(t,x)aaxl., x € 0,, tekR, (2)
i=1

and problem (1) takes the form
x=Vi(x), x(0)=xp, xe€O,CR" (3)

® Since the nonautonomous vector field V; € Vec M is locally bounded, the
components vj(t,x), i =1,...,n, of its coordinate representation (2) are:

(1) measurable and locally bounded w.r.t. t for any fixed x € Oy,
(2) smooth w.r.t. x for any fixed t € R,
(3) differentiable in x with locally bounded partial derivatives:

ov; .
‘ d < Gk, telER, xeEKEOy, i=1,...,n

E(tv X)
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By the classical Carathéodory Theorem, the Cauchy problem (3) has a unique
solution, i.e., a vector-function x(t, xp), Lipschitzian w.r.t. t and smooth w.r.t. xp,
and such that:

(1) ODE (3) is satisfied for almost all ¢,

(2) initial condition holds: x(0, %) = xo.

Then the pull-back of this solution from R"” to M

q(t) qO) = (D_l(X(t,Xo)),
is a solution to problem (1) in M.
The mapping q(t, go) is Lipschitzian w.r.t. t and smooth w.r.t. qo, it satisfies
almost everywhere the ODE and the initial condition in (1).
For any qo € M, the solution g(t, go) to the Cauchy problem (1) can be continued
to a maximal interval t € J;, C R containing the origin and depending on qo.
We will assume that the solutions q(t, qo) are defined for all gop € M and all ¢t € R,
i.e., Jgo = R for any qo € M. Then the nonautonomous field V; is called complete.
This holds, e.g., when all the fields V;, t € R, vanish outside of a common
compactum in M (in this case we say that the nonautonomous vector field V; has
a compact support).
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Definition of the right chronological exponential

The Cauchy problem ¢ = V4(q), q(0) = qo, rewritten as a linear equation for
Lipschitzian w.r.t. t families of functionals on C*°(M):

a(t)=a(t)o Vi,  q(0) = qo, (4)
is satisfied for the family of functionals
q(t,q0) : C°(M) = R, GgeM, teR

constructed in the previous subsection.
e \We prove later that this Cauchy problem has no other solutions.

® Thus the flow defined as

P : g0+ q(t,qo) (5)
is a unique solution of the operator Cauchy problem Pt = Pt o V,, P? = Id
(where Id is the identity operator), in the class of Lipschitzian flows on M.
The flow P* determined in (5) is called the right chronological exponential of the
t

field V; and is denoted as P* :e?f)/ V. dr.
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Formal series expansion

e We rewrite differential equation in (4) as an integral one:
t
a(t) =0+ [ a(r)o Vi dr (©)
0

then substitute this expression for g(t) into the right-hand side

t T1
= qo +/ (QO +/ q(m2) o Vo, dT2) oV dn
0

=qoo <|d+/ V. dt) // q(r2) 0 Vo, 0 Vo dmadm,

<< <t

repeat this procedure iteratively, and obtain the decomposition:
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t
q(t) = qoo Id+/ deT+//vfzov71d72d71+...+
0

Do(t)
/H-/VT,,O---O Vo dry ...dn | +
Ap(t)
'./q(Tn+1)o V’Tn+1 o:---0 VTl dTn+1 P dT]_. (7)
AnJrl(t)

® Here
A”(t):{(Tlv"'77—n)€Rn‘OSTHS"'STlSt}

is the n-dimensional simplex.
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® Purely formally passing in (7) to the limit n — oo, we obtain a formal series for
the solution g(t) to problem (4):

o © Id+2/ /ano oV, dr, ... dn |,

nlA(t

thus for the solution P! to our Cauchy problem:

Id+Z/~~-/VT,,O"'OVndTn-~~d7'1- (8)
n=1 An(t)
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Estimates and convergence of the series

® Unfortunately, series (8) never converge on C*°(M) in the weak sense (if V; # 0):
there always exists a smooth function on M, on which they diverge.
e Although, one can show that series (8) gives an asymptotic expansion for the
t

chronological exponential P! :e_x[; / V. dr.

0
® There holds the following bound of the remainder term: denote the m-th partial
sum of series (8) as Sp(t) = Id+ > 1, f [V 0.0V, dr, ... dm, then for
An(t)

) (1)
anya€ C*(M),s>0, KeM

‘(exp/o V. dr — t)>aSK

< CeC I Vel o L (/ |rvus+mwd7) ——

= 0(t™), t — 0,

where K’ € M is some compactum containing K, see the proof in [AS]. 11/2a




e |t follows from estimate (9) that

H <ex—£> /OtgvT dr — 5;(r)> 2

where 52 (t) is the m-th partial sum of series (8) for the field £ V.

= 0(eM), e—0,
s,K

® Thus we have an asymptotic series expansion:

t e}
exp VTdT%Id—I-Z/--'/VTnO---oVTldTn...dTl. (10)
0 n=1 An(t)

® |n the sequel we will use terms of the zeroth, first, and second orders of the series
obtained:

t t
e?{)/ VTdeldJF/ V.dr + // VoV, dndm +--- .
° ° 0<m2<n <t
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® \We prove now that the asymptotic series converges to the chronological
exponential on any normed subspace L C C°°(M) where V; is well-defined and
bounded:
Vil C L, | Vel = sup{||Viall | a € L, ||a|| <1} < 0. (11)
[ ]

We apply operator series (10) to any a € L and bound terms of the series obtained:

a+Z/ /V o---oVpadr,...dn. (12)

nlA(t
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/ /V o---oV,adr,...dn
An(t)
// Warll - - [ Vaull d7n ... dry - 3]

0<rp << <t

- // el

0<T <<7'
/ /Hvﬁu NValldra .. dry - [a]

-1 </0 Vs d7> -|lall-
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So series (12) is majorized by the exponential series, thus the operator series (10)
converges on L.
Series (12) can be differentiated termwise, thus it satisfies the same ODE as the
function Pta:

a; = Viay, ag = a.

Consequently,
o0
Pta—a-l-Z/---/VTno~--oVTladT,,... dry.
n=1 An(t)

So in the case (11) the asymptotic series converges to the chronological
exponential and there holds the bound

t
|Ptall < elo IVol9m|ja)|, ae L,
Moreover, one can show that the bound and convergence hold not only for locally
t
bounded, but also for integrable on [0, t] vector fields: / | Vi dT < 0.
0
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® Notice that conditions (11) are satisfied for any finite-dimensional V;-invariant
subspace L C C*°(M). In particular, this is the case when M = R", L is the space
of linear vector fields, and V; is a linear vector field on R".

e If M, V4, and a are real analytic, then series (12) converges for sufficiently small t.

16 /24



Left chronological exponential

Consider the inverse operator Qf = (P’f)_1 to the right chronological exponential
—

P! =exp /t V. dr.
We find anOODE for the flow Q! by differentiation of the identity
PtoQ!=1Id.
Leibniz rule yields Pt o Qf + Pt o Qf = 0, thus, in view of the ODE for the flow P,
PtoV,ioQ!+ Plo Qt =0.
We multiply this equality by Q* from the left and obtain

Vio Q'+ Q" =0.
That is, the flow Q! is a solution of the Cauchy problem
JQ= Vo, Q=i (13)

which is dual to the Cauchy problem for Pt.
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e The flow Q! is called the /eft chronological exponential and is denoted as
t
Qi=éxp [ (-V,)dr.
0

e \We find an asymptotic expansion for the left chronological exponential in the same
way as for the right one, by successive substitutions into the right-hand side:

t
Qf:|d+/( V.)o Q" dr

= |d+/ dT-l-// 71 7—2) o Q" dmdr =

Do(t)

Id+Z/ / Vo)o-o(=Vy)dr, ... dn

n=1 An(t)

_|_/.../(_VT1)O...O(—\/Tm)oQT’"dTm ... dn.
Ap(t)
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® For the left chronological exponential holds an estimate of the remainder term
as (9) for the right one, and the series obtained is asymptotic:

exp ( dr~ld+2/ / Vi)o---o(=V,)dr, ... dn.
An(t)

® Notice that the reverse arrow in the left chronological exponential é?p corresponds
to the reverse order of the operators (—V,,)o---o(=V,), 7 < ... <71,

® The right and left chronological exponentials satisfy the corresponding differential
equations:

d t t
e_x{)/ deT:ex_ﬁ/ V. dro V,,

d t t
—— &p (—VT)dT:—vtoe?p/(—vT)dT.
dt 0 0
The directions of arrows correlate with the direction of appearance of the operators

Vi and (—V4) in the right-hand side of these ODEs.
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If the initial value is prescribed at a moment of time ty # 0, then the lower limit of

integrals in the chronological exponentials is t;.
There holds the following obvious rule for composition of flows:

YL ., [t ., [t
exp / V. dro exp / V. dr = exp / V., dr.
1

0 t1 to

There hold the identities

N t1 N to -1 - to
exp/ V,dr = (exp/ V., d7'> = exp/ (=V;)dr.
to t1 t1

We saw that equation (4) for Lipschitzian families of functionals has a solution

t
q(t) = qoo e?f) / V- d7. We can prove now that this equation has no other
0

solutions.

(14)
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Proposition 1

Let V; be a complete nonautonomous vector field on M. Then Cauchy problem (4) has
a unique solution in the class of Lipschitzian families of functionals on C*°(M).

Proof.
Let a Lipschitzian family of functionals g; be a solution to problem (4). Then

i (qt o (Pt)_l)

dt (QtOQt)ZQtOVtOQt—QtOVtOQtZO,

T dt
thus g; o Q! = const. But Qp = Id, consequently, g; o Q' = qg, hence

t
qtzquPthOOGTP/ V. dr
0

is a unique solution of Cauchy problem (4). O

Similarly, the both operator equations Pt = Pto V, and Qt = —V; o Q* have no other

solutions in addition to the chronological exponentials.
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Autonomous vector fields

® For an autonomous vector field
Vi=V eVecM,

the flow generated by a complete field is called the exponential and is denoted as
etV.

e The asymptotic series for the exponential takes the form

v oC tﬂ t2

~ n__

e NEO !V —Id—l—tV—|—2VoV+ ,
n

i.e, it is the standard exponential series.
® The exponential of an autonomous vector field satisfies the ODEs

d
— etV =etYoV =Vo e, etV =1d.
dt t=0
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e \We apply the asymptotic series for exponential to find the Lie bracket of
autonomous vector fields V, W € Vec M.

e \We compute the first nonconstant term in the asymptotic expansion at t = 0 of
the curve:

14 o tW —tV —tW

q(t) = qoeoeoeoe

2 2
= gqgo <|d+tv+2v2+-~> o <Id+tW+tQW2+..->
t2 2
O<|d—tV+2V2—i—-~> o <Id—tW+2W2+--.>
t2
= qo (Id+t(V+ W)+§(V2+2VOW+ W2)+--->

2
o(ld—t(v+ W)+%(V2+2VOW+ W2)+...>
= go(ld %—tz(\/ oW —-WoV)+--)
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® So the Lie bracket of the vector fields as operators (directional derivatives) in
C>®(M) is
[V.W]=VoW—-WoV.

® This proves the formula in local coordinates: if

n n
B B .
V = E a,-a—Xi, W = E b,’ai)(i, aj, b,‘ eC (/\/’)7
i=1 i=1

then
: d b; daj\ 0 dW dVv
V. W] = i— —b— ) —=—V - — W.
[ 7 ] é;<%8ﬁ 18@>8m dx XmN
e Similarly,
tvV sW -tV _
goeV oe®oe = qo(ld+tV+---)o(ld+sW +---)o(ld—tV + --
= qo(ld+sW +ts[V, W] +---),
and
0? v w v
qO[V,W]:@q:EOqoet oeoet

)
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