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Reminder: Plan of previous lecture

1. Points, Di�eomorphisms, and Vector Fields

2. Seminorms and C∞(M)-Topology

3. Families of Functionals and Operators
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Plan of this lecture

1. ODEs with discontinuous right-hand side

2. De�nition of the right chronological exponential

3. Formal series expansion

4. Estimates and convergence of the series

5. Left chronological exponential

6. Uniqueness for functional and operator ODEs

7. Autonomous vector �elds
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ODEs with discontinuous right-hand side
• We consider a nonautonomous ordinary di�erential equation of the form

q̇ = Vt(q), q(0) = q0, (1)

where Vt is a nonautonomous vector �eld on M, and study the �ow determined by
this �eld.

• We denote by q̇ the derivative
d q

d t
, so equation (1) reads in the expanded form as

d q(t)

d t
= Vt(q(t)).

• To obtain local solutions to the Cauchy problem (1) on a manifold M, we reduce it
to a Cauchy problem in a Euclidean space.

• Choose local coordinates x = (x1, . . . , xn) in a neighborhood Oq0 of the point q0:

Φ : Oq0 ⊂ M → Ox0 ⊂ Rn, Φ : q 7→ x ,

Φ(q0) = x0.
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• In these coordinates, the �eld Vt reads

(Φ∗Vt) (x) = Ṽt(x) =
n∑

i=1

vi (t, x)
∂

∂ x i
, x ∈ Ox0 , t ∈ R, (2)

and problem (1) takes the form

ẋ = Ṽt(x), x(0) = x0, x ∈ Ox0 ⊂ Rn. (3)

• Since the nonautonomous vector �eld Vt ∈ VecM is locally bounded, the
components vi (t, x), i = 1, . . . , n, of its coordinate representation (2) are:

(1) measurable and locally bounded w.r.t. t for any �xed x ∈ Ox0 ,
(2) smooth w.r.t. x for any �xed t ∈ R,
(3) di�erentiable in x with locally bounded partial derivatives:∣∣∣∣∂ vi

∂ x
(t, x)

∣∣∣∣ ≤ CI ,K , t ∈ I ⋐ R, x ∈ K ⋐ Ox0 , i = 1, . . . , n.
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• By the classical Carath�eodory Theorem, the Cauchy problem (3) has a unique
solution, i.e., a vector-function x(t, x0), Lipschitzian w.r.t. t and smooth w.r.t. x0,
and such that:
(1) ODE (3) is satis�ed for almost all t,
(2) initial condition holds: x(0, x0) = x0.

• Then the pull-back of this solution from Rn to M

q(t, q0) = Φ−1(x(t, x0)),

is a solution to problem (1) in M.
• The mapping q(t, q0) is Lipschitzian w.r.t. t and smooth w.r.t. q0, it satis�es
almost everywhere the ODE and the initial condition in (1).

• For any q0 ∈ M, the solution q(t, q0) to the Cauchy problem (1) can be continued
to a maximal interval t ∈ Jq0 ⊂ R containing the origin and depending on q0.

• We will assume that the solutions q(t, q0) are de�ned for all q0 ∈ M and all t ∈ R,
i.e., Jq0 = R for any q0 ∈ M. Then the nonautonomous �eld Vt is called complete.

• This holds, e.g., when all the �elds Vt , t ∈ R, vanish outside of a common
compactum in M (in this case we say that the nonautonomous vector �eld Vt has
a compact support).
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De�nition of the right chronological exponential
• The Cauchy problem q̇ = Vt(q), q(0) = q0, rewritten as a linear equation for
Lipschitzian w.r.t. t families of functionals on C∞(M):

q̇(t) = q(t) ◦ Vt , q(0) = q0, (4)

is satis�ed for the family of functionals

q(t, q0) : C∞(M) → R, q0 ∈ M, t ∈ R

constructed in the previous subsection.
• We prove later that this Cauchy problem has no other solutions.
• Thus the �ow de�ned as

Pt : q0 7→ q(t, q0) (5)

is a unique solution of the operator Cauchy problem Ṗt = Pt ◦ Vt , P
0 = Id

(where Id is the identity operator), in the class of Lipschitzian �ows on M.
• The �ow Pt determined in (5) is called the right chronological exponential of the

�eld Vt and is denoted as Pt =
−→
exp

∫ t

0

Vτ dτ.
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Formal series expansion

• We rewrite di�erential equation in (4) as an integral one:

q(t) = q0 +

∫ t

0

q(τ) ◦ Vτ dτ (6)

then substitute this expression for q(t) into the right-hand side

= q0 +

∫ t

0

(
q0 +

∫ τ1

0

q(τ2) ◦ Vτ2 dτ2

)
◦ Vτ1 dτ1

= q0 ◦
(
Id+

∫ t

0

Vτ dt

)
+

∫∫
0≤τ2≤τ1≤t

q(τ2) ◦ Vτ2 ◦ Vτ1 dτ2 dτ1,

repeat this procedure iteratively, and obtain the decomposition:
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q(t) = q0 ◦

Id+

∫ t

0

Vτ dτ +

∫∫
∆2(t)

Vτ2 ◦ Vτ1 dτ2 dτ1 + . . .+

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1

+

∫
· · ·

∫
∆n+1(t)

q(τn+1) ◦ Vτn+1 ◦ · · · ◦ Vτ1 dτn+1 . . . dτ1. (7)

• Here
∆n(t) = {(τ1, . . . , τn) ∈ Rn | 0 ≤ τn ≤ · · · ≤ τ1 ≤ t}

is the n-dimensional simplex.
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• Purely formally passing in (7) to the limit n → ∞, we obtain a formal series for
the solution q(t) to problem (4):

q0 ◦

Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1

 ,

thus for the solution Pt to our Cauchy problem:

Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1. (8)
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Estimates and convergence of the series
• Unfortunately, series (8) never converge on C∞(M) in the weak sense (if Vt ̸≡ 0):
there always exists a smooth function on M, on which they diverge.

• Although, one can show that series (8) gives an asymptotic expansion for the

chronological exponential Pt =
−→
exp

∫ t

0

Vτ dτ .

• There holds the following bound of the remainder term: denote the m-th partial
sum of series (8) as Sm(t) = Id+

∑m−1
n=1

∫
·· ·

∫
∆n(t)

Vτn ◦ · · · ◦Vτ1 dτn . . . dτ1, then for

any a ∈ C∞(M), s ≥ 0, K ⋐ M∥∥∥∥( −→exp ∫ t

0

Vτ dτ − Sm(t)

)
a

∥∥∥∥
s,K

≤ CeC
∫ t
0 ∥Vτ∥s,K ′ dτ 1

m!

(∫ t

0

∥Vτ∥s+m−1,K ′ dτ

)m

∥a∥s+m,K ′ (9)

= O(tm), t → 0,

where K ′ ⋐ M is some compactum containing K , see the proof in [AS]. 11 / 24



• It follows from estimate (9) that∥∥∥∥( −→exp ∫ t

0

εVτ dτ − Sε
m(t)

)
a

∥∥∥∥
s,K

= O(εm), ε → 0,

where Sε
m(t) is the m-th partial sum of series (8) for the �eld εVt .

• Thus we have an asymptotic series expansion:

−→
exp

∫ t

0

Vτ dτ ≈ Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 dτn . . . dτ1. (10)

• In the sequel we will use terms of the zeroth, �rst, and second orders of the series
obtained:

−→
exp

∫ t

0

Vτ dτ ≈ Id+

∫ t

0

Vτ dτ +

∫∫
0≤τ2≤τ1≤t

Vτ2 ◦ Vτ1 dτ2 dτ1 + · · · .
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• We prove now that the asymptotic series converges to the chronological
exponential on any normed subspace L ⊂ C∞(M) where Vt is well-de�ned and
bounded:

VtL ⊂ L, ∥Vt∥ = sup {∥Vta∥ | a ∈ L, ∥a∥ ≤ 1} < ∞. (11)

• We apply operator series (10) to any a ∈ L and bound terms of the series obtained:

a+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 a dτn . . . dτ1. (12)
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∥∥∥∥∥∥∥
∫

· · ·
∫

∆n(t)

Vτn ◦ · · · ◦ Vτ1 a dτn . . . dτ1

∥∥∥∥∥∥∥
≤

∫
· · ·

∫
0≤τn≤···≤τ1≤t

∥Vτn∥ · · · · · ∥Vτ1∥ dτn . . . dτ1 · ∥a∥

=

∫
· · ·

∫
0≤τσ(n)≤···≤τσ(1)≤t

∥Vτn∥ · · · · · ∥Vτ1∥ dτn . . . dτ1 · ∥a∥

=
1

n!

∫ t

0

. . .

∫ t

0

∥Vτn∥ · · · · · ∥Vτ1∥ dτn . . . dτ1 · ∥a∥

=
1

n!

(∫ t

0

∥Vτ∥ dτ
)n

· ∥a∥.
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• So series (12) is majorized by the exponential series, thus the operator series (10)
converges on L.

• Series (12) can be di�erentiated termwise, thus it satis�es the same ODE as the
function Pta:

ȧt = Vtat , a0 = a.

• Consequently,

Pta = a+
∞∑
n=1

∫
· · ·

∫
∆n(t)

Vτn ◦ · · · ◦ Vτ1 a dτn . . . dτ1.

• So in the case (11) the asymptotic series converges to the chronological
exponential and there holds the bound

∥Pta∥ ≤ e
∫ t
0 ∥Vτ∥ dτ∥a∥, a ∈ L.

• Moreover, one can show that the bound and convergence hold not only for locally

bounded, but also for integrable on [0, t] vector �elds:

∫ t

0

∥Vτ∥ dτ < ∞.
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• Notice that conditions (11) are satis�ed for any �nite-dimensional Vt-invariant
subspace L ⊂ C∞(M). In particular, this is the case when M = Rn, L is the space
of linear vector �elds, and Vt is a linear vector �eld on Rn.

• If M, Vt , and a are real analytic, then series (12) converges for su�ciently small t.
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Left chronological exponential
• Consider the inverse operator Qt = (Pt)−1 to the right chronological exponential

Pt =
−→
exp

∫ t

0

Vτ dτ .

• We �nd an ODE for the �ow Qt by di�erentiation of the identity

Pt ◦ Qt = Id .

• Leibniz rule yields Ṗt ◦Qt +Pt ◦ Q̇t = 0, thus, in view of the ODE for the �ow Pt ,

Pt ◦ Vt ◦ Qt + Pt ◦ Q̇t = 0.

• We multiply this equality by Qt from the left and obtain

Vt ◦ Qt + Q̇t = 0.

That is, the �ow Qt is a solution of the Cauchy problem

d

d t
Qt = −Vt ◦ Qt , Q0 = Id, (13)

which is dual to the Cauchy problem for Pt .
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• The �ow Qt is called the left chronological exponential and is denoted as

Qt =
←−
exp

∫ t

0

(−Vτ ) dτ.

• We �nd an asymptotic expansion for the left chronological exponential in the same
way as for the right one, by successive substitutions into the right-hand side:

Qt = Id+

∫ t

0

(−Vτ ) ◦ Qτ dτ

= Id+

∫ t

0

(−Vτ ) dτ +

∫∫
∆2(t)

(−Vτ1) ◦ (−Vτ2) ◦ Qτ2 dτ2 dτ1 = · · ·

= Id+
m−1∑
n=1

∫
· · ·

∫
∆n(t)

(−Vτ1) ◦ · · · ◦ (−Vτn) dτn . . . dτ1

+

∫
· · ·

∫
∆m(t)

(−Vτ1) ◦ · · · ◦ (−Vτm) ◦ Qτm dτm . . . dτ1.
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• For the left chronological exponential holds an estimate of the remainder term
as (9) for the right one, and the series obtained is asymptotic:

←−
exp

∫ t

0

(−Vτ ) dτ ≈ Id+
∞∑
n=1

∫
· · ·

∫
∆n(t)

(−Vτ1) ◦ · · · ◦ (−Vτn) dτn . . . dτ1.

• Notice that the reverse arrow in the left chronological exponential
←−
exp corresponds

to the reverse order of the operators (−Vτ1) ◦ · · · ◦ (−Vτn), τn ≤ . . . ≤ τ1.
• The right and left chronological exponentials satisfy the corresponding di�erential
equations:

d

d t

−→
exp

∫ t

0

Vτ dτ =
−→
exp

∫ t

0

Vτ dτ ◦ Vt ,

d

d t

←−
exp

∫ t

0

(−Vτ ) dτ = −Vt ◦
←−
exp

∫ t

0

(−Vτ ) dτ.

The directions of arrows correlate with the direction of appearance of the operators
Vt and (−Vt) in the right-hand side of these ODEs.
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• If the initial value is prescribed at a moment of time t0 ̸= 0, then the lower limit of
integrals in the chronological exponentials is t0.

• There holds the following obvious rule for composition of �ows:

−→
exp

∫ t1

t0

Vτ dτ ◦
−→
exp

∫ t2

t1

Vτ dτ =
−→
exp

∫ t2

t0

Vτ dτ.

• There hold the identities

−→
exp

∫ t1

t0

Vτ dτ =

(
−→
exp

∫ t0

t1

Vτ dτ

)−1
=
←−
exp

∫ t0

t1

(−Vτ ) dτ. (14)

• We saw that equation (4) for Lipschitzian families of functionals has a solution

q(t) = q0◦
−→
exp

∫ t

0

Vτ dτ . We can prove now that this equation has no other

solutions.
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Proposition 1

Let Vt be a complete nonautonomous vector �eld on M. Then Cauchy problem (4) has

a unique solution in the class of Lipschitzian families of functionals on C∞(M).

Proof.
Let a Lipschitzian family of functionals qt be a solution to problem (4). Then

d

d t

(
qt ◦ (Pt)−1

)
=

d

d t

(
qt ◦ Qt

)
= qt ◦ Vt ◦ Qt − qt ◦ Vt ◦ Qt = 0,

thus qt ◦ Qt ≡ const. But Q0 = Id, consequently, qt ◦ Qt ≡ q0, hence

qt = q0 ◦ Pt = q0 ◦ −→exp
∫ t

0

Vτ dτ

is a unique solution of Cauchy problem (4).

Similarly, the both operator equations Ṗt = Pt ◦ Vt and Q̇t = −Vt ◦ Qt have no other
solutions in addition to the chronological exponentials.
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Autonomous vector �elds
• For an autonomous vector �eld

Vt ≡ V ∈ VecM,

the �ow generated by a complete �eld is called the exponential and is denoted as
etV .

• The asymptotic series for the exponential takes the form

etV ≈
∞∑
n=0

tn

n!
V n = Id+tV +

t2

2
V ◦ V + · · · ,

i.e, it is the standard exponential series.

• The exponential of an autonomous vector �eld satis�es the ODEs

d

d t
etV = etV ◦ V = V ◦ etV , etV

∣∣∣
t=0

= Id .
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• We apply the asymptotic series for exponential to �nd the Lie bracket of
autonomous vector �elds V ,W ∈ VecM.

• We compute the �rst nonconstant term in the asymptotic expansion at t = 0 of
the curve:

q(t) = q ◦ etV ◦ etW ◦ e−tV ◦ e−tW

= q ◦
(
Id+tV +

t2

2
V 2 + · · ·

)
◦
(
Id+tW +

t2

2
W 2 + · · ·

)
◦
(
Id−tV +

t2

2
V 2 + · · ·

)
◦
(
Id−tW +

t2

2
W 2 + · · ·

)
= q ◦

(
Id+t(V +W ) +

t2

2
(V 2 + 2V ◦W +W 2) + · · ·

)
◦
(
Id−t(V +W ) +

t2

2
(V 2 + 2V ◦W +W 2) + · · ·

)
= q ◦ (Id+t2(V ◦W −W ◦ V ) + · · · ) .
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• So the Lie bracket of the vector �elds as operators (directional derivatives) in
C∞(M) is

[V ,W ] = V ◦W −W ◦ V .

• This proves the formula in local coordinates: if

V =
n∑

i=1

ai
∂

∂ xi
, W =

n∑
i=1

bi
∂

∂ xi
, ai , bi ∈ C∞(M),

then

[V ,W ] =
n∑

i ,j=1

(
aj
∂ bi
∂ xj

− bj
∂ ai
∂ xj

)
∂

∂ xi
=

d W

d x
V − d V

d x
W .

• Similarly,

q ◦ etV ◦ esW ◦ e−tV = q ◦ (Id+tV + · · · ) ◦ (Id+sW + · · · ) ◦ (Id−tV + · · · )
= q ◦ (Id+sW + ts[V ,W ] + · · · ),

and

q ◦ [V ,W ] =
∂2

∂s∂t

∣∣∣∣
s=t=0

q ◦ etV ◦ esW ◦ e−tV .
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