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Reminder: Plan of previous lecture

1. Banach-Tarski Paradox

2. Reduction of Optimal Control Problem to Study of Attainable Sets

3. Filippov's theorem: Compactness of Attainable Sets

4. Time-Optimal Problem
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Plan of this lecture

1. Smooth manifolds

2. Tangent space and tangent vector

3. Ordinary di�erential equations on manifolds
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Smooth manifolds

�Smooth� (manifold, mapping, vector �eld etc.) means C∞.

De�nition 1
A subset M ⊂ Rn is called a smooth k-dimensional submanifold of Rn, k ≤ n, if any
point x ∈ M has a neighbourhood Ox in Rn in which M is described in one of the

following ways:

(1) there exists a smooth vector-function

F : Ox → Rn−k , rank
d F

d x

∣∣∣∣
q

= n − k

such that

Ox ∩M = F−1(0);
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(2) there exists a smooth vector-function

f : V0 → Rn

from a neighbourhood of the origin 0 ∈ V0 ⊂ Rk such that

f (0) = x , rank
d f

d x

∣∣∣∣
0

= k ,

Ox ∩M = f (V0)

and f : V0 → Ox ∩M is a homeomorphism;

(3) there exists a smooth vector-function

Φ : Ox → O0 ⊂ Rn

onto a neighbourhood of the origin 0 ∈ O0 ⊂ Rn such that

rank
d Φ

d x

∣∣∣∣
x

= n,

Φ(Ox ∩M) = Rk ∩ O0.
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• There are two topologically di�erent one-dimensional manifolds: the line R1 and

the circle S1.

• The sphere S2 and the torus T2 = S1 × S1 are two-dimensional manifolds.

• The torus can be viewed as a sphere with a handle. Any compact orientable

two-dimensional manifold is topologically a sphere with g handles, g = 0, 1, 2, . . .
is the genus of the manifold.

• Smooth manifolds appear naturally already in the basic analysis. For example, the

circle S1 and the torus T2 are natural domains of periodic and doubly periodic

functions respectively. On the sphere S2, it is convenient to consider restriction of

homogeneous functions of 3 variables.
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Abstract manifold

De�nition 2
A smooth k-dimensional manifold M is a Hausdor� paracompact topological space

endowed with a smooth structure: M is covered by a system of open subsets

M = ∪αOα

called coordinate neighbourhoods, in each of which is de�ned a homeomorphism

Φα : Oα → Rk

called a local coordinate system such that all compositions

Φβ ◦ Φ−1
α : Φα(Oα ∩ Oβ) ⊂ Rk → Φβ(Oα ∩ Oβ) ⊂ Rk

are di�eomorphisms, see �g. 1.
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Coordinate system in smooth manifold M
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Figure: Coordinate system in smooth manifold M
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• As a rule, we denote points of a smooth manifold by q, and its coordinate

representation in a local coordinate system by x :

q ∈ M, Φα : Oα → Rk , x = Φ(q) ∈ Rk .

• For a smooth submanifold in Rn, the abstract De�nition 2 holds. Conversely, any

connected smooth abstract manifold can be considered as a smooth submanifold in

Rn. Before precise formulation of this statement, we give two de�nitions.

De�nition 3
Let M and N be k- and l-dimensional smooth manifolds respectively. A continuous

mapping f : M → N is called smooth if it is smooth in coordinates. That is, let

M = ∪αOα and N = ∪βVβ be coverings of M and N by coordinate neighbourhoods

and Φα : Oα → Rk , Ψβ : Vβ → Rl the corresponding coordinate mappings. Then all

Ψβ ◦ f ◦ Φ−1
α : Φα(Oα ∩ f −1(Vβ)) ⊂ Rk → Ψβ(f (Oα) ∩ Vβ) ⊂ Rl

should be smooth.
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De�nition 4
A smooth manifold M is called di�eomorphic to a smooth manifold N if there exists a

homeomorphism

f : M → N

such that both f and its inverse f −1 are smooth mappings. Such mapping f is called a

di�eomorphism.

The set of all di�eomorphisms f : M → M of a smooth manifold M is denoted by

DiffM.

De�nition 5
A smooth mapping f : M → N is called an embedding of M into N if f : M → f (M)
is a di�eomorphism. A mapping f : M → N is called proper if f −1(K ) is compact for

any compactum K ⋐ N.

Theorem 6 (Whitney)

Any smooth connected k-dimensional manifold can be properly embedded into R2k+1.
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Tangent space of a submanifold in Rn

De�nition 7
Let M be a smooth k-dimensional submanifold of Rn and x ∈ M its point. Then the

tangent space to M at the point x is a k-dimensional linear subspace TxM ⊂ Rn

de�ned as follows for cases (1)�(3) of De�nition 1:

(1) TxM = Ker
d F

d x

∣∣∣∣
x

,

(2) TxM = Im
d f

d x

∣∣∣∣
0

,

(3) TxM =

(
d Φ

d x

∣∣∣∣
x

)−1

Rk .

Remark 1
The tangent space is a coordinate-invariant object since smooth changes of variables

lead to linear transformations of the tangent space.
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Tangent vector to an abstract manifold

De�nition 8
Let γ(·) be a smooth curve in a smooth manifold M starting from a point q ∈ M:

γ : (−ε, ε) → M a smooth mapping, γ(0) = q.

The tangent vector d γ
d t

∣∣∣
t=0

= γ̇(0) to the curve γ(·) at the point q is the equivalence

class of all smooth curves in M starting from q and having the same 1-st order Taylor

polynomial as γ(·), for any coordinate system in a neighbourhood of q.

(0)

_(0)

(t)

Figure: Tangent vector γ̇(0)
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Tangent space to an abstract manifold

De�nition 9
The tangent space to a smooth manifold M at a point q ∈ M is the set of all tangent

vectors to all smooth curves in M starting at q:

TqM =

{
d γ

d t

∣∣∣∣
t=0

| γ : (−ε, ε) → M smooth, γ(0) = q

}
.

Remark 2
Let M be a smooth k-dimensional manifold and q ∈ M. Then the tangent space TqM
has a natural structure of a linear k-dimensional space.

q γ(t)

γ̇(0)

TqM

M

Figure: Tangent space TqM
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Dynamical system
Denote by VecM the set of all smooth vector �elds on a smooth manifold M.

De�nition 10
A smooth dynamical system, or an ordinary di�erential equation (ODE), on a smooth

manifold M is an equation of the form d q
d t = V (q), q ∈ M, or, equivalently,

q̇ = V (q), q ∈ M, where V (q) is a smooth vector �eld on M.

A solution to this system is a smooth mapping γ : I → M, where I ⊂ R is an interval,

such that d γ
d t = V (γ(t)) ∀ t ∈ I .

(t)

V ((t))

Figure: Solution to ODE q̇ = V (q) 14 / 30



Di�erential of a smooth mapping

De�nition 11
Let Φ : M → N be a smooth mapping between smooth manifolds M and N. The

di�erential of Φ at a point q ∈ M is a linear mapping

DqΦ : TqM → TΦ(q)N

de�ned as follows:

DqΦ

(
d γ

d t

∣∣∣∣
t=0

)
=

d

d t

∣∣∣∣
t=0

Φ(γ(t)),

where

γ : (−ε, ε) ⊂ R → M, γ(0) = q,

is a smooth curve in M starting at q.

15 / 30



Action of di�eomorphisms on vector �elds

• Let V ∈ VecM be a vector �eld on M and

q̇ = V (q) (1)

the corresponding ODE.

• To �nd the action of a di�eomorphism

Φ : M → N, Φ : q 7→ x = Φ(q)

on the vector �eld V (q), take a solution q(t) of (1) and compute the ODE

satis�ed by the image x(t) = Φ(q(t)):

ẋ(t) =
d

d t
Φ(q(t)) = (DqΦ) q̇(t) = (DqΦ)V (q(t)) = (DΦ−1(x)Φ)V (Φ−1(x(t))).
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• So the required ODE is

ẋ =
(
DΦ−1(x)Φ

)
V (Φ−1(x)). (2)

The right-hand side here is the transformed vector �eld on N induced by the

di�eomorphism Φ:

(Φ∗V )(x)
def
=

(
DΦ−1(x)Φ

)
V (Φ−1(x)).

• The notation Φ∗q is used, along with DqΦ, for di�erential of a mapping Φ at a

point q.

• In general, a smooth mapping Φ induces transformation of tangent vectors, not of

vector �elds.

• In order that DΦ transform vector �elds to vector �elds, Φ should be a

di�eomorphism.
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Smooth ODEs and �ows on manifolds

Theorem 12
Consider a smooth ODE

q̇ = V (q), q ∈ M ⊂ Rn, (3)

on a smooth submanifold M of Rn. For any initial point q0 ∈ M, there exists a unique

solution

q(t, q0), t ∈ (a, b), a < 0 < b,

of equation (3) with the initial condition q(0, q0) = q0, de�ned on a su�ciently short

interval (a, b). The mapping

(t, q0) 7→ q(t, q0)

is smooth. In particular, the domain (a, b) of the solution q(·, q0) can be chosen

smoothly depending on q0.
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Proof.
We prove the theorem by reduction to its classical analogue in Rn.

The statement of the theorem is local. We rectify the submanifold M in the

neighbourhood of the point q0:

Φ : Oq0 ⊂ Rn → O0 ⊂ Rn,

Φ(Oq0 ∩M) = Rk .

Consider the restriction φ = Φ|M . Then a curve q(t) in M is a solution to (3) if and

only if its image x(t) = φ(q(t)) in Rk is a solution to the induced system:

ẋ = Φ∗V (x), x ∈ Rk .
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Theorem 13
Let M ⊂ Rn be a smooth submanifold and let

q̇ = V (q), q ∈ Rn, (4)

be a system of ODEs in Rn such that

q ∈ M ⇒ V (q) ∈ TqM.

Then for any initial point q0 ∈ M, the corresponding solution q(t, q0) to (4) with
q(0, q0) = q0 belongs to M for all su�ciently small |t|.
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Proof.
Consider the restricted vector �eld:

f = V |M .

By the existence theorem for M, the system

q̇ = f (q), q ∈ M,

has a solution q(t, q0), q(0, q0) = q0, with

q(t, q0) ∈ M for small |t|. (5)

On the other hand, the curve q(t, q0) is a solution of (4) with the same initial

condition. Then inclusion (5) proves the theorem.
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Complete vector �elds

De�nition 14
A vector �eld V ∈ VecM is called complete, if for all q0 ∈ M the solution q(t, q0) of
the Cauchy problem

q̇ = V (q), q(0, q0) = q0 (6)

is de�ned for all t ∈ R.

Example 15

The vector �eld V (x) = x is complete on R, as well as on R \ {0}, (−∞, 0), (0,+∞),
and {0}, but not complete on other submanifolds of R.
The vector �eld V (x) = x2 is not complete on any submanifolds of R except {0}.
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Proposition 1

Suppose that there exists ε > 0 such that for any q0 ∈ M the solution q(t, q0) to
Cauchy problem (6) is de�ned for t ∈ (−ε, ε). Then the vector �eld V (q) is complete.

Remark 3
In this proposition it is required that there exists ε > 0 common for all initial points

q0 ∈ M. In general, ε may be not bounded away from zero for all q0 ∈ M. E.g., for the

vector �eld V (x) = x2 we have ε → 0 as x0 → ∞.
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Proof.

Suppose that the hypothesis of the proposition is true. Then we can introduce the

following family of mappings in M:

Pt : M → M, t ∈ (−ε, ε),

Pt : q0 7→ q(t, q0).

Pt(q0) is the shift of a point q0 ∈ M along the trajectory of the vector �eld V (q) for
time t.
By Theorem 12, all mappings Pt are smooth. Moreover, the family {Pt | t ∈ (−ε, ε) }
is a smooth family of mappings.

A very important property of this family is that it forms a local one-parameter group,

i.e.,

Pt(Ps(q)) = Ps(Pt(q)) = Pt+s(q), q ∈ M, t, s, t + s ∈ (−ε, ε).
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Indeed, the both curves in M:

t 7→ Pt(Ps(q)) and t 7→ Pt+s(q)

satisfy the ODE q̇ = V (q) with the same initial value P0(Ps(q)) = P0+s(q) = Ps(q).
By uniqueness, Pt(Ps(q)) = Pt+s(q). The equality for Ps(Pt(q)) is obtained by

switching t and s.
So we have the following local group properties of the mappings Pt :

Pt ◦ Ps = Ps ◦ Pt = Pt+s , t, s, t + s ∈ (−ε, ε),

P0 = Id,

P−t ◦ Pt = Pt ◦ P−t = Id, t ∈ (−ε, ε),

P−t =
(
Pt

)−1
, t ∈ (−ε, ε).

In particular, all Pt are di�eomorphisms.
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Now we extend the mappings Pt for all t ∈ R. Any t ∈ R can be represented as

t =
ε

2
K + τ, 0 ≤ τ <

ε

2
, K = 0,±1,±2, . . . .

We set

Pt def
= Pτ ◦ P±ε/2 ◦ · · · ◦ P±ε/2︸ ︷︷ ︸

|K | times

, ± = sgn t.

Then the curve

t 7→ Pt(q0), t ∈ R,

is a solution to Cauchy problem (6). □
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The �ow of a vector �eld

De�nition 16
For a complete vector �eld V ∈ VecM, the mapping

t 7→ Pt , t ∈ R,

is called the �ow generated by V .

Example 17

The linear vector �eld V (x) = Ax , x ∈ Rn, has the �ow Pt = etA =
∑∞

k=0
(tA)k

k! .

By this reason the �ow of any complete vector �eld V ∈ VecM is denoted as Pt = etV .

Remark 4
It is useful to imagine a vector �eld V ∈ VecM as a �eld of velocity vectors of a

moving liquid in M. Then the �ow Pt takes any particle of the liquid from a position

q ∈ M and transfers it for a time t ∈ R to the position Pt(q) ∈ M.
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Su�cient conditions for completeness of a vector �eld

Proposition 2

Let K ⊂ M be a compact subset, and let V ∈ VecM. Then there exists εK > 0 such

that for all q0 ∈ K the solution q(t, q0) to Cauchy problem (6) is de�ned for all

t ∈ (−εK , εK ).

Proof.
By Theorem 12, domain of the solution q(t, q0) can be chosen continuously depending

on q0. The diameter of this domain has a positive in�mum 2εK for q0 in the compact

set K .

Corollary 18

If a smooth manifold M is compact, then any vector �eld V ∈ VecM is complete.
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Corollary 19

Suppose that a vector �eld V ∈ VecM has a compact support:

suppV
def
= { q ∈ M | V (q) ̸= 0 } is compact.

Then V is complete.

Proof.
Indeed, by Proposition 2, there exists ε > 0 such that all trajectories of V starting in

suppV are de�ned for t ∈ (−ε, ε). But V |M\suppV = 0, and all trajectories of V
starting outside of suppV are constant, thus de�ned for all t ∈ R. By Proposition 1,

the vector �eld V is complete.
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Remark 5
If we are interested in the behaviour of (trajectories of) a vector �eld V ∈ VecM in a

compact subset K ⊂ M, we can suppose that V is complete. Indeed, take an open

neighbourhood OK of K with the compact closure OK . We can �nd a function

a ∈ C∞(M) such that

a(q) =

{
1, q ∈ K ,
0, q ∈ M \ OK .

Then the vector �eld a(q)V (q) ∈ VecM is complete since it has a compact support.

On the other hand, in K the vector �elds a(q)V (q) and V (q) coincide, thus have the

same trajectories.
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