Smooth manifolds and vector fields

(Lecture 3)

Yuri Sachkov

Program Systems Institute
Russian Academy of Sciences
Pereslavl-Zalessky, Russia yusachkov@gmail.com
«Elements of Control Theory»
Lecture course in Program Systems Institute, Pereslavl-Zalessky
28 Febuary 2023

Reminder: Plan of previous lecture

1. Banach-Tarski Paradox
2. Reduction of Optimal Control Problem to Study of Attainable Sets
3. Filippov's theorem: Compactness of Attainable Sets
4. Time-Optimal Problem

Plan of this lecture

1. Smooth manifolds
2. Tangent space and tangent vector
3. Ordinary differential equations on manifolds

Smooth manifolds

"Smooth" (manifold, mapping, vector field etc.) means C^{∞}.

Definition 1

A subset $M \subset \mathbb{R}^{n}$ is called a smooth k-dimensional submanifold of $\mathbb{R}^{n}, k \leq n$, if any point $x \in M$ has a neighbourhood O_{x} in \mathbb{R}^{n} in which M is described in one of the following ways:
(1) there exists a smooth vector-function

$$
F: O_{x} \rightarrow \mathbb{R}^{n-k},\left.\quad \operatorname{rank} \frac{d F}{d x}\right|_{q}=n-k
$$

such that

$$
O_{x} \cap M=F^{-1}(0)
$$

(2) there exists a smooth vector-function

$$
f: V_{0} \rightarrow \mathbb{R}^{n}
$$

from a neighbourhood of the origin $0 \in V_{0} \subset \mathbb{R}^{k}$ such that

$$
\begin{gathered}
f(0)=x,\left.\quad \operatorname{rank} \frac{d f}{d x}\right|_{0}=k, \\
O_{x} \cap M=f\left(V_{0}\right)
\end{gathered}
$$

and $f: V_{0} \rightarrow O_{x} \cap M$ is a homeomorphism;
(3) there exists a smooth vector-function

$$
\Phi: O_{x} \rightarrow O_{0} \subset \mathbb{R}^{n}
$$

onto a neighbourhood of the origin $0 \in O_{0} \subset \mathbb{R}^{n}$ such that

$$
\begin{gathered}
\left.\operatorname{rank} \frac{d \Phi}{d x}\right|_{x}=n, \\
\Phi\left(O_{x} \cap M\right)=\mathbb{R}^{k} \cap O_{0} .
\end{gathered}
$$

- There are two topologically different one-dimensional manifolds: the line \mathbb{R}^{1} and the circle S^{1}.
- The sphere S^{2} and the torus $\mathbb{T}^{2}=S^{1} \times S^{1}$ are two-dimensional manifolds.
- The torus can be viewed as a sphere with a handle. Any compact orientable two-dimensional manifold is topologically a sphere with g handles, $g=0,1,2, \ldots$ is the genus of the manifold.
- Smooth manifolds appear naturally already in the basic analysis. For example, the circle S^{1} and the torus \mathbb{T}^{2} are natural domains of periodic and doubly periodic functions respectively. On the sphere S^{2}, it is convenient to consider restriction of homogeneous functions of 3 variables.

Abstract manifold

Definition 2

A smooth k-dimensional manifold M is a Hausdorff paracompact topological space endowed with a smooth structure: M is covered by a system of open subsets

$$
M=\cup_{\alpha} O_{\alpha}
$$

called coordinate neighbourhoods, in each of which is defined a homeomorphism

$$
\Phi_{\alpha}: O_{\alpha} \rightarrow \mathbb{R}^{k}
$$

called a local coordinate system such that all compositions

$$
\Phi_{\beta} \circ \Phi_{\alpha}^{-1}: \Phi_{\alpha}\left(O_{\alpha} \cap O_{\beta}\right) \subset \mathbb{R}^{k} \rightarrow \Phi_{\beta}\left(O_{\alpha} \cap O_{\beta}\right) \subset \mathbb{R}^{k}
$$

are diffeomorphisms, see fig. 1.

Coordinate system in smooth manifold M

Figure: Coordinate system in smooth manifold M

- As a rule, we denote points of a smooth manifold by q, and its coordinate representation in a local coordinate system by x :

$$
q \in M, \quad \Phi_{\alpha}: O_{\alpha} \rightarrow \mathbb{R}^{k}, \quad x=\Phi(q) \in \mathbb{R}^{k}
$$

- For a smooth submanifold in \mathbb{R}^{n}, the abstract Definition 2 holds. Conversely, any connected smooth abstract manifold can be considered as a smooth submanifold in \mathbb{R}^{n}. Before precise formulation of this statement, we give two definitions.

Definition 3

Let M and N be k - and I-dimensional smooth manifolds respectively. A continuous mapping $f: M \rightarrow N$ is called smooth if it is smooth in coordinates. That is, let $M=\cup_{\alpha} O_{\alpha}$ and $N=\cup_{\beta} V_{\beta}$ be coverings of M and N by coordinate neighbourhoods and $\Phi_{\alpha}: O_{\alpha} \rightarrow \mathbb{R}^{k}, \Psi_{\beta}: V_{\beta} \rightarrow \mathbb{R}^{\prime}$ the corresponding coordinate mappings. Then all

$$
\Psi_{\beta} \circ f \circ \Phi_{\alpha}^{-1}: \Phi_{\alpha}\left(O_{\alpha} \cap f^{-1}\left(V_{\beta}\right)\right) \subset \mathbb{R}^{k} \rightarrow \Psi_{\beta}\left(f\left(O_{\alpha}\right) \cap V_{\beta}\right) \subset \mathbb{R}^{\prime}
$$

should be smooth.

Definition 4

A smooth manifold M is called diffeomorphic to a smooth manifold N if there exists a homeomorphism

$$
f: M \rightarrow N
$$

such that both f and its inverse f^{-1} are smooth mappings. Such mapping f is called a diffeomorphism.
The set of all diffeomorphisms $f: M \rightarrow M$ of a smooth manifold M is denoted by Diff M.

Definition 5

A smooth mapping $f: M \rightarrow N$ is called an embedding of M into N if $f: M \rightarrow f(M)$ is a diffeomorphism. A mapping $f: M \rightarrow N$ is called proper if $f^{-1}(K)$ is compact for any compactum $K \Subset N$.

Theorem 6 (Whitney)
Any smooth connected k-dimensional manifold can be properly embedded into $\mathbb{R}^{2 k+1}$.

Tangent space of a submanifold in \mathbb{R}^{n}

Definition 7

Let M be a smooth k-dimensional submanifold of \mathbb{R}^{n} and $x \in M$ its point. Then the tangent space to M at the point x is a k-dimensional linear subspace $T_{x} M \subset \mathbb{R}^{n}$ defined as follows for cases (1)-(3) of Definition 1 :
(1) $\quad T_{x} M=\left.\operatorname{Ker} \frac{d F}{d x}\right|_{x}$,
(2) $\quad T_{x} M=\left.\operatorname{lm} \frac{d f}{d x}\right|_{0}$,
(3) $\quad T_{x} M=\left(\left.\frac{d \Phi}{d x}\right|_{x}\right)^{-1} \mathbb{R}^{k}$.

Remark 1
The tangent space is a coordinate-invariant object since smooth changes of variables lead to linear transformations of the tangent space.

Tangent vector to an abstract manifold

Definition 8

Let $\gamma(\cdot)$ be a smooth curve in a smooth manifold M starting from a point $q \in M$:

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M \text { a smooth mapping, } \quad \gamma(0)=q
$$

The tangent vector $\left.\frac{d \gamma}{d t}\right|_{t=0}=\dot{\gamma}(0)$ to the curve $\gamma(\cdot)$ at the point q is the equivalence class of all smooth curves in M starting from q and having the same 1-st order Taylor polynomial as $\gamma(\cdot)$, for any coordinate system in a neighbourhood of q.

[^0]
Tangent space to an abstract manifold

Definition 9

The tangent space to a smooth manifold M at a point $q \in M$ is the set of all tangent vectors to all smooth curves in M starting at q :

$$
T_{q} M=\left\{\left.\left.\frac{d \gamma}{d t}\right|_{t=0} \right\rvert\, \gamma:(-\varepsilon, \varepsilon) \rightarrow M \text { smooth, } \gamma(0)=q\right\} .
$$

Remark 2

Let M be a smooth k-dimensional manifold and $q \in M$. Then the tangent space $T_{q} M$ has a natural structure of a linear k-dimensional space.

Figure: Tangent space $T_{q} M$

Dynamical system

Denote by $\operatorname{Vec} M$ the set of all smooth vector fields on a smooth manifold M.

Definition 10

A smooth dynamical system, or an ordinary differential equation (ODE), on a smooth manifold M is an equation of the form $\frac{d q}{d t}=V(q), \quad q \in M$, or, equivalently, $\dot{q}=V(q), \quad q \in M$, where $V(q)$ is a smooth vector field on M. A solution to this system is a smooth mapping $\gamma: I \rightarrow M$, where $I \subset \mathbb{R}$ is an interval, such that $\frac{d \gamma}{d t}=V(\gamma(t)) \quad \forall t \in I$.

Differential of a smooth mapping

Definition 11

Let $\Phi: M \rightarrow N$ be a smooth mapping between smooth manifolds M and N. The differential of Φ at a point $q \in M$ is a linear mapping

$$
D_{q} \Phi: T_{q} M \rightarrow T_{\Phi(q)} N
$$

defined as follows:

$$
D_{q} \Phi\left(\left.\frac{d \gamma}{d t}\right|_{t=0}\right)=\left.\frac{d}{d t}\right|_{t=0} \Phi(\gamma(t))
$$

where

$$
\gamma:(-\varepsilon, \varepsilon) \subset \mathbb{R} \rightarrow M, \quad \gamma(0)=q
$$

is a smooth curve in M starting at q.

Action of diffeomorphisms on vector fields

- Let $V \in \operatorname{Vec} M$ be a vector field on M and

$$
\begin{equation*}
\dot{q}=V(q) \tag{1}
\end{equation*}
$$

the corresponding ODE.

- To find the action of a diffeomorphism

$$
\Phi: M \rightarrow N, \quad \Phi: q \mapsto x=\Phi(q)
$$

on the vector field $V(q)$, take a solution $q(t)$ of (1) and compute the ODE satisfied by the image $x(t)=\Phi(q(t))$:

$$
\dot{x}(t)=\frac{d}{d t} \Phi(q(t))=\left(D_{q} \Phi\right) \dot{q}(t)=\left(D_{q} \Phi\right) V(q(t))=\left(D_{\Phi^{-1}(x)} \Phi\right) V\left(\Phi^{-1}(x(t))\right) .
$$

- So the required ODE is

$$
\begin{equation*}
\dot{x}=\left(D_{\Phi^{-1}(x)} \Phi\right) V\left(\Phi^{-1}(x)\right) . \tag{2}
\end{equation*}
$$

The right-hand side here is the transformed vector field on N induced by the diffeomorphism Φ :

$$
\left(\Phi_{*} V\right)(x) \stackrel{\text { def }}{=}\left(D_{\Phi^{-1}(x)} \Phi\right) V\left(\Phi^{-1}(x)\right)
$$

- The notation $\Phi_{* q}$ is used, along with $D_{q} \Phi$, for differential of a mapping Φ at a point q.
- In general, a smooth mapping Φ induces transformation of tangent vectors, not of vector fields.
- In order that $D \Phi$ transform vector fields to vector fields, Φ should be a diffeomorphism.

Smooth ODEs and flows on manifolds

Theorem 12
Consider a smooth ODE

$$
\begin{equation*}
\dot{q}=V(q), \quad q \in M \subset \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

on a smooth submanifold M of \mathbb{R}^{n}. For any initial point $q_{0} \in M$, there exists a unique solution

$$
q\left(t, q_{0}\right), \quad t \in(a, b), \quad a<0<b
$$

of equation (3) with the initial condition $q\left(0, q_{0}\right)=q_{0}$, defined on a sufficiently short interval (a, b). The mapping

$$
\left(t, q_{0}\right) \mapsto q\left(t, q_{0}\right)
$$

is smooth. In particular, the domain (a, b) of the solution $q\left(\cdot, q_{0}\right)$ can be chosen smoothly depending on q_{0}.

Proof.

We prove the theorem by reduction to its classical analogue in \mathbb{R}^{n}. The statement of the theorem is local. We rectify the submanifold M in the neighbourhood of the point q_{0} :

$$
\begin{aligned}
& \Phi: O_{q_{0}} \subset \mathbb{R}^{n} \rightarrow O_{0} \subset \mathbb{R}^{n} \\
& \Phi\left(O_{q_{0}} \cap M\right)=\mathbb{R}^{k}
\end{aligned}
$$

Consider the restriction $\varphi=\left.\Phi\right|_{M}$. Then a curve $q(t)$ in M is a solution to (3) if and only if its image $x(t)=\varphi(q(t))$ in \mathbb{R}^{k} is a solution to the induced system:

$$
\dot{x}=\Phi_{*} V(x), \quad x \in \mathbb{R}^{k}
$$

Theorem 13
Let $M \subset \mathbb{R}^{n}$ be a smooth submanifold and let

$$
\begin{equation*}
\dot{q}=V(q), \quad q \in \mathbb{R}^{n}, \tag{4}
\end{equation*}
$$

be a system of ODEs in \mathbb{R}^{n} such that

$$
q \in M \Rightarrow V(q) \in T_{q} M .
$$

Then for any initial point $q_{0} \in M$, the corresponding solution $q\left(t, q_{0}\right)$ to (4) with $q\left(0, q_{0}\right)=q_{0}$ belongs to M for all sufficiently small $|t|$.

Proof.

Consider the restricted vector field:

$$
f=\left.V\right|_{M}
$$

By the existence theorem for M, the system

$$
\dot{q}=f(q), \quad q \in M
$$

has a solution $q\left(t, q_{0}\right), q\left(0, q_{0}\right)=q_{0}$, with

$$
\begin{equation*}
q\left(t, q_{0}\right) \in M \quad \text { for small }|t| \tag{5}
\end{equation*}
$$

On the other hand, the curve $q\left(t, q_{0}\right)$ is a solution of (4) with the same initial condition. Then inclusion (5) proves the theorem.

Complete vector fields

Definition 14

A vector field $V \in \operatorname{Vec} M$ is called complete, if for all $q_{0} \in M$ the solution $q\left(t, q_{0}\right)$ of the Cauchy problem

$$
\begin{equation*}
\dot{q}=V(q), \quad q\left(0, q_{0}\right)=q_{0} \tag{6}
\end{equation*}
$$

is defined for all $t \in \mathbb{R}$.

Example 15

The vector field $V(x)=x$ is complete on \mathbb{R}, as well as on $\mathbb{R} \backslash\{0\},(-\infty, 0),(0,+\infty)$, and $\{0\}$, but not complete on other submanifolds of \mathbb{R}.
The vector field $V(x)=x^{2}$ is not complete on any submanifolds of \mathbb{R} except $\{0\}$.

Proposition 1

Suppose that there exists $\varepsilon>0$ such that for any $q_{0} \in M$ the solution $q\left(t, q_{0}\right)$ to Cauchy problem (6) is defined for $t \in(-\varepsilon, \varepsilon)$. Then the vector field $V(q)$ is complete.

Remark 3

In this proposition it is required that there exists $\varepsilon>0$ common for all initial points $q_{0} \in M$. In general, ε may be not bounded away from zero for all $q_{0} \in M$. E.g., for the vector field $V(x)=x^{2}$ we have $\varepsilon \rightarrow 0$ as $x_{0} \rightarrow \infty$.

Proof.
Suppose that the hypothesis of the proposition is true. Then we can introduce the following family of mappings in M :

$$
\begin{aligned}
& P^{t}: M \rightarrow M, \quad t \in(-\varepsilon, \varepsilon), \\
& P^{t}: q_{0} \mapsto q\left(t, q_{0}\right) .
\end{aligned}
$$

$P^{t}\left(q_{0}\right)$ is the shift of a point $q_{0} \in M$ along the trajectory of the vector field $V(q)$ for time t.
By Theorem 12, all mappings P^{t} are smooth. Moreover, the family $\left\{P^{t} \mid t \in(-\varepsilon, \varepsilon)\right\}$ is a smooth family of mappings.
A very important property of this family is that it forms a local one-parameter group, i.e.,

$$
P^{t}\left(P^{s}(q)\right)=P^{s}\left(P^{t}(q)\right)=P^{t+s}(q), \quad q \in M, \quad t, s, t+s \in(-\varepsilon, \varepsilon)
$$

Indeed, the both curves in M :

$$
t \mapsto P^{t}\left(P^{s}(q)\right) \quad \text { and } \quad t \mapsto P^{t+s}(q)
$$

satisfy the ODE $\dot{q}=V(q)$ with the same initial value $P^{0}\left(P^{s}(q)\right)=P^{0+s}(q)=P^{s}(q)$. By uniqueness, $P^{t}\left(P^{s}(q)\right)=P^{t+s}(q)$. The equality for $P^{s}\left(P^{t}(q)\right)$ is obtained by switching t and s.
So we have the following local group properties of the mappings P^{t} :

$$
\begin{aligned}
& P^{t} \circ P^{s}=P^{s} \circ P^{t}=P^{t+s}, \quad t, s, t+s \in(-\varepsilon, \varepsilon), \\
& P^{0}=\mathrm{Id}, \\
& P^{-t} \circ P^{t}=P^{t} \circ P^{-t}=\mathrm{Id}, \quad t \in(-\varepsilon, \varepsilon), \\
& P^{-t}=\left(P^{t}\right)^{-1}, \quad t \in(-\varepsilon, \varepsilon) .
\end{aligned}
$$

In particular, all P^{t} are diffeomorphisms.

Now we extend the mappings P^{t} for all $t \in \mathbb{R}$. Any $t \in \mathbb{R}$ can be represented as

$$
t=\frac{\varepsilon}{2} K+\tau, \quad 0 \leq \tau<\frac{\varepsilon}{2}, \quad K=0, \pm 1, \pm 2, \ldots .
$$

We set

$$
P^{t} \stackrel{\text { def }}{=} P^{\tau} \circ \underbrace{P^{ \pm \varepsilon / 2} \circ \cdots \circ P^{ \pm \varepsilon / 2}}_{|K| \text { times }}, \quad \pm=\operatorname{sgn} t
$$

Then the curve

$$
t \mapsto P^{t}\left(q_{0}\right), \quad t \in \mathbb{R},
$$

is a solution to Cauchy problem (6).

The flow of a vector field

Definition 16

For a complete vector field $V \in \operatorname{Vec} M$, the mapping

$$
t \mapsto P^{t}, \quad t \in \mathbb{R}
$$

is called the flow generated by V.

Example 17

The linear vector field $V(x)=A x, x \in \mathbb{R}^{n}$, has the flow $P^{t}=e^{t A}=\sum_{k=0}^{\infty} \frac{(t A)^{k}}{k!}$. By this reason the flow of any complete vector field $V \in \operatorname{Vec} M$ is denoted as $P^{t}=e^{t V}$.

Remark 4

It is useful to imagine a vector field $V \in \operatorname{Vec} M$ as a field of velocity vectors of a moving liquid in M. Then the flow P^{t} takes any particle of the liquid from a position $q \in M$ and transfers it for a time $t \in \mathbb{R}$ to the position $P^{t}(q) \in M$.

Sufficient conditions for completeness of a vector field

Proposition 2

Let $K \subset M$ be a compact subset, and let $V \in \operatorname{Vec} M$. Then there exists $\varepsilon_{K}>0$ such that for all $q_{0} \in K$ the solution $q\left(t, q_{0}\right)$ to Cauchy problem (6) is defined for all $t \in\left(-\varepsilon_{K}, \varepsilon_{K}\right)$.

Proof.

By Theorem 12, domain of the solution $q\left(t, q_{0}\right)$ can be chosen continuously depending on q_{0}. The diameter of this domain has a positive infimum $2 \varepsilon_{K}$ for q_{0} in the compact set K.

Corollary 18
If a smooth manifold M is compact, then any vector field $V \in \mathrm{Vec} M$ is complete.

Corollary 19

Suppose that a vector field $V \in \operatorname{Vec} M$ has a compact support:

$$
\text { supp } V \stackrel{\text { def }}{=} \overline{\{q \in M \mid V(q) \neq 0\}} \text { is compact. }
$$

Then V is complete.
Proof.
Indeed, by Proposition 2, there exists $\varepsilon>0$ such that all trajectories of V starting in supp V are defined for $t \in(-\varepsilon, \varepsilon)$. But $\left.V\right|_{M \backslash \text { supp }} V=0$, and all trajectories of V starting outside of supp V are constant, thus defined for all $t \in \mathbb{R}$. By Proposition 1, the vector field V is complete.

Remark 5

If we are interested in the behaviour of (trajectories of) a vector field $V \in \operatorname{Vec} M$ in a compact subset $K \subset M$, we can suppose that V is complete. Indeed, take an open neighbourhood O_{K} of K with the compact closure $\overline{O_{K}}$. We can find a function $a \in C^{\infty}(M)$ such that

$$
a(q)=\left\{\begin{array}{lr}
1, & q \in K, \\
0, & q \in M \backslash O_{K} .
\end{array}\right.
$$

Then the vector field $a(q) V(q) \in \operatorname{Vec} M$ is complete since it has a compact support. On the other hand, in K the vector fields $a(q) V(q)$ and $V(q)$ coincide, thus have the same trajectories.

[^0]: Figure: Tangent vector $\dot{\gamma}(0)$

