Existence of optimal control

(Lecture 2)

Yuri Sachkov

Program Systems Institute Russian Academy of Sciences Pereslav!-Zalessky, Russia yusachkov@gmail.com

«Elements of Optimal Control»

Lecture course in Program Systems Institute, Pereslavl-Zalessky

7 Febuary 2023

Reminder: Plan of previous lecture

- 1. Optimal control problem statement
- 2. Lebesgue measurable sets and functions
- 3. Lebesgue integral
- 4. Carathéodory ODEs

Plan of this lecture

- 1. Banach-Tarski Paradox
- 2. Reduction of Optimal Control Problem to Study of Attainable Sets
- 3. Filippov's theorem: Compactness of Attainable Sets
- 4. Time-Optimal Problem

Banach-Tarski Paradox

Theorem

Let $B, B' \subset \mathbb{R}^3$ be balls of different radii. Then there exist decompositions

$$B = X_1 \sqcup \cdots \sqcup X_n, \qquad B' = X'_1 \sqcup \cdots \sqcup X'_n$$

such that

$$\exists f_i \in SE(3) : f_i(X_i) = X'_i, \quad i = 1, ..., n.$$

- Sets X_i , X'_i are not measurable.
- n > 5.
- X, X' can be raplaced by any bounded subsets in \mathbb{R}^3 with nonempty interior.
- Similar theorem for \mathbb{R}^2 instead of \mathbb{R}^3 fails. Reason: SE(2) is solvable, while SE(3) is not: $[\mathfrak{se}(3), \mathfrak{se}(3)] = \mathfrak{so}(3), [\mathfrak{so}(3), \mathfrak{so}(3)] = \mathfrak{so}(3) \neq \{0\}.$

Optimal Control Problem Statement

$$\dot{q} = f_u(q), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,$$
 (1)
 $q(0) = q_0,$ (2)

$$q(t_1) = q_1, (3)$$

$$J(u) = \int_0^{t_1} \varphi(q, u) dt \to \min.$$
 (4)

 $q = q_u(\cdot)$ — solution to Cauchy problem (1),(2) corresponding to an admissible control $u(\cdot)$.

Attainable sets

- Fix an initial point $q_0 \in M$.
- Attainable set of control system (1) for time $t \ge 0$ from q_0 with measurable locally bounded controls is defined as follows:

$$A_{q_0}(t) = \{q_u(t) \mid u \in L^{\infty}([0, t], U)\}.$$

• Similarly, one can consider the attainable sets for time not greater than t:

$$\mathcal{A}_{q_0}^t = igcup_{0 \leq au \leq t} \mathcal{A}_{q_0}(au)$$

and for arbitrary nonnegative time:

$$\mathcal{A}_{q_0} = \bigcup_{0 \leq au < \infty} \mathcal{A}_{q_0}(au).$$

Extended system

• Optimal control problems on M can be reduced to the study of attainable sets of some auxiliary control systems on the extended state space

$$\widehat{M} = \mathbb{R} \times M = \{\widehat{q} = (y, q) \mid y \in \mathbb{R}, \ q \in M\}.$$

• Consider the following extended control system on \widehat{M} :

$$\frac{d\widehat{q}}{dt} = \widehat{f}_u(\widehat{q}), \qquad \widehat{q} \in \widehat{M}, \ u \in U, \tag{5}$$

with the right-hand side

$$\widehat{f}_u(\widehat{q}) = \begin{pmatrix} \varphi(q, u) \\ f_u(q) \end{pmatrix}, \quad q \in M, \quad u \in U,$$

where φ is the integrand of the cost functional J, see (4).

• Denote by $\widehat{q}_u(t)$ the solution of the extended system (5) with the initial conditions

$$\widehat{q}_u(0) = \left(\begin{array}{c} y(0) \\ q(0) \end{array} \right) = \left(\begin{array}{c} 0 \\ q_0 \end{array} \right).$$

Reduction to Study of Attainable Sets

Proposition

Let $q_{\widetilde{u}}(t)$, $t \in [0, t_1]$, be an optimal trajectory in the problem (1)–(4) with the fixed terminal time t_1 . Then $\widehat{q}_{\widetilde{u}}(t_1) \in \partial \widehat{A}_{(0,q_0)}(t_1)$.

Figure: $q_{\widetilde{u}}(t)$ optimal

Proof.

• Solutions $\widehat{q}_u(t)$ of the extended system are expressed through solutions $q_u(t)$ of the original system (1) as

$$\widehat{q}_u(t) = \begin{pmatrix} J_t(u) \\ q_u(t) \end{pmatrix}, \qquad J_t(u) = \int_0^t \varphi(q_u(\tau), u(\tau)) d\tau.$$

• Thus attainable sets of the extended system (5) have the form

$$\widehat{\mathcal{A}}_{(0,q_0)}(t) = \{ (J_t(u), q_u(t)) \mid u \in L^{\infty}([0,t], U) \}.$$

- ullet The set $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)$ should not intersect the ray $\left\{(y,q_1)\in \widehat{M}\mid y< J_{t_1}(\widetilde{u})
 ight\}.$
- Indeed, suppose that there exists a point $(y, q_1) \in \widehat{\mathcal{A}}_{(0,q_0)}(t_1), \quad y < J_{t_1}(\widetilde{u}).$
- Then the trajectory of the extended system $\widehat{q}_u(t)$ that steers $(0, q_0)$ to (y, q_1) :

$$\widehat{q}_u(0) = \left(egin{array}{c} 0 \ q_0 \end{array}
ight), \qquad \widehat{q}_u(t_1) = \left(egin{array}{c} y \ q_1 \end{array}
ight),$$

gives a trajectory $q_u(t)$, $q_u(0) = q_0$, $q_u(t_1) = q_1$, with $J_{t_1}(u) = y < J_{t_1}(\widetilde{u})$, a contradiction to optimality of \widetilde{u} .

Existence of optimal trajectories for problems with fixed t_1

Proposition

Let $q_1 \in \mathcal{A}_{q_0}(t_1)$. If $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)$ is compact, then there exists an optimal trajectory in the problem (1)–(4) with the fixed terminal time t_1 .

Proof.

- The intersection $\widehat{\mathcal{A}}_{(0,q_0)}(t_1)\cap\{(y,q_1)\in\widehat{M}\}$ is nonempty and compact.
- Denote $\widetilde{J} = \min\{y \in \mathbb{R} \mid (y,q_1) \in \widehat{\mathcal{A}}_{(0,q_0)}(t_1)\}$.
- $ullet (\widetilde{J},q_1)\in \widehat{\mathcal{A}}_{(0,q_0)}(t_1).$
- There exists an admissible control \widetilde{u} such that $q_{\widetilde{u}}$ steers q_0 to q_1 for time t_1 with the cost \widetilde{J} .
- The trajectory $q_{\widetilde{u}}$ is optimal.

Existence of optimal trajectories for problems with free t_1

Proposition

Let $q_1 \in \mathcal{A}_{q_0}$. Let $\widehat{\mathcal{A}}_{(0,q_0)}^t$, t > 0, be compact. Let there extist $\overline{u} \in L^{\infty}[0,\overline{t}_1]$ that steers q_0 to q_1 such that for any $u \in L^{\infty}[0,t_1]$ that steers q_0 to q_1 :

$$t_1 > \overline{t}_1 \quad \Rightarrow \quad J(u) > J(\overline{u}).$$

Then there exists an optimal trajectory in the problem (1)–(4) with the free t_1 .

Proof.

- Denote $I^t = \left\{ y \in \mathbb{R} \mid (y,q_1) \in \widehat{A}^t_{(0,q_0)}
 ight\}$, $J^t = \min I^t$.
- Since $q_1 \in \mathcal{A}_{q_0}(t_1)$ for some $t_1 > 0$, then $I^{t_1} \neq \emptyset$.
- Let $T = \max(t_1, \overline{t}_1)$. We have $I^T \neq \emptyset$. Denote $\widetilde{J} = J^T$.
- There exists $\widetilde{u} \in L^{\infty}[0,\widetilde{t}_1]$ that steers q_0 to q_1 with the cost $\widetilde{J} = J(\widetilde{u})$.
- The control \widetilde{u} is optimal in the problem with the free t_1 .

Compactness of attainable sets

Theorem (Filippov)

Let the space of control parameters $U \subseteq \mathbb{R}^m$ be compact. Let there exist a compact $K \subseteq M$ such that $f_u(q) = 0$ for $q \notin K$, $u \in U$. Moreover, let the velocity sets

$$f_U(q) = \{f_u(q) \mid u \in U\} \subset T_q M, \qquad q \in M,$$

be convex. Then the attainable sets $A_{q_0}(t)$ and $A_{q_0}^t$ are compact for all $q_0 \in M$, t > 0.

Remark

The condition of convexity of the velocity sets $f_U(q)$ is natural: the flow of the ODE

$$\dot{q} = \alpha(t)f_{\mu_1}(q) + (1 - \alpha(t))f_{\mu_2}(q), \qquad 0 \le \alpha(t) \le 1,$$

can be approximated by flows of the systems of the form

$$\dot{q}=f_{v}(q), \quad ext{where} \quad v(t)\in\{u_{1}(t),\,u_{2}(t)\}.$$

Sketch of the proof of Filippov's Theorem: 1/5

- All nonautonomous vector fields $f_u(q)$ with admissible controls u have a common compact support, thus are complete.
- Under hypotheses of the theorem, velocities $f_u(q)$, $q \in M$, $u \in U$, are uniformly bounded, thus all trajectories q(t) of control system (1) starting at q_0 are Lipschitzian with the same Lipschitz constant.
- Embed the manifold M into a Euclidean space \mathbb{R}^N , then the space of continuous curves q(t) becomes endowed with the uniform topology of continuous mappings from $[0, t_1]$ to \mathbb{R}^N .
- The set of trajectories q(t) of control system (1) starting at q_0 is uniformly bounded:

$$||q(t)|| \leq C$$

and equicontinous:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall q(\cdot) \ \forall |t_1 - t_2| < \delta \quad \|q(t_1) - q(t_2)\| < \varepsilon.$$

Sketch of the proof of Filippov's Theorem: 2/5

Theorem (Arzelà-Ascoli)

Consider a family of mappins $\mathcal{F} \subset C([0,t_1],M)$, where M is a complete metric space. If \mathcal{F} is uniformly bounded and equicontinuous, then it is precompact:

$$\forall \{q_n\} \subset \mathcal{F} \exists a \text{ converging subsequence } q_{n_k} \rightarrow q \in C([0, t_1], M).$$

- Thus the set of admissible trajectories is precompact in the topology of uniform convergence.
- For any sequence $q_n(t)$ of admissible trajectories:

$$\dot{q}_n(t) = f_{u_n}(q_n(t)), \qquad 0 \le t \le t_1, \quad q_n(0) = q_0,$$

there exists a uniformly converging subsequence, we denote it again by $q_n(t)$:

$$q_n(\cdot) \to q(\cdot)$$
 in $C([0, t_1], M)$ as $n \to \infty$.

• Now we show that q(t) is an admissible trajectory of control system (1).

Sketch of the proof of Filippov's Theorem: 3/5

- Fix a sufficiently small $\varepsilon > 0$.
- Then in local coordinates

$$egin{aligned} rac{1}{arepsilon}(q_n(t+arepsilon)-q_n(t)) &= rac{1}{arepsilon}\int_t^{t+arepsilon}f_{u_n}(q_n(au))\,d au \ &\in \mathsf{conv}igcup_{ au\in[t,t+arepsilon]}f_U(q_n(au))\subset \mathsf{conv}igcup_{q\in O_{q(t)}(carepsilon)}f_U(q_n(au)) \end{aligned}$$

where c is the doubled Lipschitz constant of admissible trajectories.

• We pass to the limit $n \to \infty$ and obtain

$$rac{1}{arepsilon}(q(t+arepsilon)-q(t))\in\operatorname{\mathsf{conv}}igcup_{q(t)}(carepsilon)f_U(q).$$

• Now let $\varepsilon \to 0$. If t is a point of differentiability of q(t), then

$$\dot{q}(t) \in f_U(q)$$

since $f_U(q)$ is convex.

Sketch of the proof of Filippov's Theorem: 4/5

- In order to show that q(t) is an admissible trajectory of control system (1), we should find a measurable selection $u(t) \in U$ that generates q(t).
- We do this via the lexicographic order on the set $U = \{(u_1, \dots, u_m)\} \subset \mathbb{R}^m$.
- The set

$$V_t = \{ v \in U \mid \dot{q}(t) = f_v(q(t)) \}$$

is a compact subset of U, thus of \mathbb{R}^m .

• There exists a vector $v^{\min}(t) \in V_t$ minimal in the sense of lexicographic order. To find $v^{\min}(t)$, we minimize the first coordinate on V_t :

$$v_1^{\min} = \min\{v_1 \mid v = (v_1, \dots, v_m) \in V_t\},\$$

then minimize the second coordinate on the compact set found at the first step:

$$v_2^{\min} = \min\{ v_2 \mid v = (v_1^{\min}, v_2, \dots, v_m) \in V_t \}, \dots, v_m^{\min} = \min\{ v_m \mid v = (v_1^{\min}, \dots, v_{m-1}^{\min}, v_m) \in V_t \}.$$

Sketch of the proof of Filippov's Theorem: 5/5

- The control $v^{\min}(t) = (v_1^{\min}(t), \dots, v_m^{\min}(t))$ is measurable, thus q(t) is an admissible trajectory of system (1) generated by this control.
- The proof of compactness of the attainable set $A_{q_0}(t)$ is complete.
- Compactness of $\mathcal{A}_{q_0}^t$ is proved similarly.

Discussion on completeness

- In Filippov's theorem, the hypothesis of common compact support of the vector fields in the right-hand side is essential to ensure the uniform boundedness of velocities and completeness of vector fields.
- On a manifold, sufficient conditions for completeness of a vector field cannot be given in terms of boundedness of the vector field and its derivatives: a constant vector field is not complete on a bounded domain in \mathbb{R}^n .
- Nevertheless, one can prove compactness of attainable sets for many systems without the assumption of common compact support. If for such a system we have a priori bounds on solutions, then we can multiply its right-hand side by a cut-off function, and obtain a system with vector fields having compact support.
- We can apply Filippov's theorem to the new system. Since trajectories of the initial and new systems coincide in a domain of interest for us, we obtain a conclusion on compactness of attainable sets for the initial system.

A priori bound in \mathbb{R}^n

- For control systems on $M = \mathbb{R}^n$, there exist well-known sufficient conditions for completeness of vector fields.
- If the right-hand side grows at infinity not faster than a linear field, i.e.,

$$|f_u(x)| \le C(1+|x|), \qquad x \in \mathbb{R}^n, \quad u \in U,$$
 (6)

for some constant C, then the nonautonomous vector fields $f_u(x)$ are complete (here $|x| = \sqrt{x_1^2 + \dots + x_n^2}$ is the norm of a point $x = (x_1, \dots, x_n) \in \mathbb{R}^n$).

• These conditions provide an a priori bound for solutions: any solution x(t) of the control system

$$\dot{x} = f_u(x), \qquad x \in \mathbb{R}^n, \quad u \in U,$$
 (7)

with the right-hand side satisfying (6) admits the bound

$$|x(t)| \le e^{2Ct} (|x(0)| + 1), \qquad t \ge 0.$$

Compactness of attainable sets in \mathbb{R}^n

• Filippov's theorem plus the previous remark imply the following sufficient condition for compactness of attainable sets for systems in \mathbb{R}^n .

Corollary

Let system (7) have a compact space of control parameters $U \in \mathbb{R}^m$ and convex velocity sets $f_U(x)$, $x \in \mathbb{R}^n$.

Suppose moreover that the right-hand side of the system satisfies a sublinear bound of the form (6).

Then the attainable sets $A_{x_0}(t)$ and $A_{x_0}^t$ are compact for all $x_0 \in \mathbb{R}^n$, t > 0.

Time-optimal problem

• Given a pair of points $q_0 \in M$ and $q_1 \in \mathcal{A}_{q_0}$, the *time-optimal problem* consists in minimizing the time of motion from q_0 to q_1 via admissible controls of control system (1):

$$\min_{u} \{t_1 \mid q_u(t_1) = q_1\}. \tag{8}$$

- That is, we consider the optimal control problem with the integrand $\varphi(q, u) \equiv 1$ and free terminal time t_1 .
- Reduction of optimal control problems to the study of attainable sets and Filippov's Theorem yield the following existence result.

Corollary

Under the hypotheses of Filippov's Theorem 2, time-optimal problem (1), (8) has a solution for any points $q_0 \in M$, $q_1 \in A_{q_0}$.