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Reminder: Plan of previous lecture

1. Optimal control problem statement

2. Lebesgue measurable sets and functions

3. Lebesgue integral

4. Carath�eodory ODEs
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Plan of this lecture

1. Banach-Tarski Paradox

2. Reduction of Optimal Control Problem to Study of Attainable Sets

3. Filippov's theorem: Compactness of Attainable Sets

4. Time-Optimal Problem
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Banach-Tarski Paradox

Theorem
Let B,B ′ ⊂ R3 be balls of di�erent radii. Then there exist decompositions

B = X1 ⊔ · · · ⊔ Xn, B ′ = X ′
1 ⊔ · · · ⊔ X ′

n

such that

∃fi ∈ SE(3) : fi (Xi ) = X ′
i , i = 1, . . . , n.

• Sets Xi , X
′
i are not measurable.

• n ≥ 5.
• X ,X ′ can be raplaced by any bounded subsets in R3 with nonempty interior.
• Similar theorem for R2 instead of R3 fails.

Reason: SE(2) is solvable, while SE(3) is not:
[se(3), se(3)] = so(3), [so(3), so(3)] = so(3) ̸= {0}.
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Optimal Control Problem Statement

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (1)

q(0) = q0, (2)

q(t1) = q1, (3)

J(u) =

∫ t1

0

φ(q, u)dt → min . (4)

q = qu(·) � solution to Cauchy problem (1), (2)

corresponding to an admissible control u(·).
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Attainable sets
• Fix an initial point q0 ∈ M.

• Attainable set of control system (1) for time t ≥ 0 from q0 with measurable locally

bounded controls is de�ned as follows:

Aq0(t) = {qu(t) | u ∈ L∞([0, t],U)} .

• Similarly, one can consider the attainable sets for time not greater than t:

At
q0 =

⋃
0≤τ≤t

Aq0(τ)

and for arbitrary nonnegative time:

Aq0 =
⋃

0≤τ<∞
Aq0(τ).
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Extended system
• Optimal control problems on M can be reduced to the study of attainable sets of

some auxiliary control systems on the extended state space

M̂ = R×M = {q̂ = (y , q) | y ∈ R, q ∈ M}.
• Consider the following extended control system on M̂:

d q̂

d t
= f̂u(q̂), q̂ ∈ M̂, u ∈ U, (5)

with the right-hand side

f̂u(q̂) =

(
φ(q, u)
fu(q)

)
, q ∈ M, u ∈ U,

where φ is the integrand of the cost functional J, see (4).
• Denote by q̂u(t) the solution of the extended system (5) with the initial conditions

q̂u(0) =

(
y(0)
q(0)

)
=

(
0

q0

)
.
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Reduction to Study of Attainable Sets

Proposition

Let qũ(t), t ∈ [0, t1], be an optimal trajectory in the problem (1)�(4) with the �xed

terminal time t1. Then q̂ũ(t1) ∈ ∂Â(0,q0)(t1).
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Proof.
• Solutions q̂u(t) of the extended system are expressed through solutions qu(t) of
the original system (1) as

q̂u(t) =

(
Jt(u)
qu(t)

)
, Jt(u) =

∫ t

0

φ(qu(τ), u(τ)) dτ.

• Thus attainable sets of the extended system (5) have the form

Â(0,q0)(t) = {(Jt(u), qu(t)) | u ∈ L∞([0, t],U)} .

• The set Â(0,q0)(t1) should not intersect the ray
{
(y , q1) ∈ M̂ | y < Jt1(ũ)

}
.

• Indeed, suppose that there exists a point (y , q1) ∈ Â(0,q0)(t1), y < Jt1(ũ).
• Then the trajectory of the extended system q̂u(t) that steers (0, q0) to (y , q1):

q̂u(0) =

(
0

q0

)
, q̂u(t1) =

(
y
q1

)
,

gives a trajectory qu(t), qu(0) = q0, qu(t1) = q1, with Jt1(u) = y < Jt1(ũ), a
contradiction to optimality of ũ. □
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Existence of optimal trajectories for problems with �xed t1

Proposition

Let q1 ∈ Aq0(t1). If Â(0,q0)(t1) is compact, then there exists an optimal trajectory in

the problem (1)�(4) with the �xed terminal time t1.

Proof.

• The intersection Â(0,q0)(t1) ∩ {(y , q1) ∈ M̂} is nonempty and compact.

• Denote J̃ = min{y ∈ R | (y , q1) ∈ Â(0,q0)(t1)}.
• (J̃, q1) ∈ Â(0,q0)(t1).

• There exists an admissible control ũ such that qũ steers q0 to q1 for time t1 with

the cost J̃.

• The trajectory qũ is optimal.
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Existence of optimal trajectories for problems with free t1
Proposition

Let q1 ∈ Aq0 . Let Ât
(0,q0)

, t > 0, be compact. Let there extist u ∈ L∞[0, t1] that

steers q0 to q1 such that for any u ∈ L∞[0, t1] that steers q0 to q1:

t1 > t1 ⇒ J(u) > J(u).

Then there exists an optimal trajectory in the problem (1)�(4) with the free t1.

Proof.

• Denote I t =
{
y ∈ R | (y , q1) ∈ Ât

(0,q0)

}
, Jt = min I t .

• Since q1 ∈ Aq0(t1) for some t1 > 0, then I t1 ̸= ∅.
• Let T = max(t1, t1). We have IT ̸= ∅. Denote J̃ = JT .

• There exists ũ ∈ L∞[0, t̃1] that steers q0 to q1 with the cost J̃ = J(ũ).

• The control ũ is optimal in the problem with the free t1.
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Compactness of attainable sets

Theorem (Filippov)

Let the space of control parameters U ⋐ Rm be compact. Let there exist a compact

K ⋐ M such that fu(q) = 0 for q /∈ K , u ∈ U. Moreover, let the velocity sets

fU(q) = {fu(q) | u ∈ U} ⊂ TqM, q ∈ M,

be convex. Then the attainable sets Aq0(t) and At
q0 are compact for all q0 ∈ M, t > 0.

Remark
The condition of convexity of the velocity sets fU(q) is natural: the �ow of the ODE

q̇ = α(t)fu1(q) + (1− α(t))fu2(q), 0 ≤ α(t) ≤ 1,

can be approximated by �ows of the systems of the form

q̇ = fv (q), where v(t) ∈ {u1(t), u2(t)}.
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Sketch of the proof of Filippov's Theorem: 1/5
• All nonautonomous vector �elds fu(q) with admissible controls u have a common

compact support, thus are complete.

• Under hypotheses of the theorem, velocities fu(q), q ∈ M, u ∈ U, are uniformly

bounded, thus all trajectories q(t) of control system (1) starting at q0 are

Lipschitzian with the same Lipschitz constant.

• Embed the manifold M into a Euclidean space RN , then the space of continuous

curves q(t) becomes endowed with the uniform topology of continuous mappings

from [0, t1] to RN .

• The set of trajectories q(t) of control system (1) starting at q0 is uniformly

bounded:

∥q(t)∥ ≤ C

and equicontinous:

∀ε > 0 ∃δ > 0 ∀q(·) ∀|t1 − t2| < δ ∥q(t1)− q(t2)∥ < ε.
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Sketch of the proof of Filippov's Theorem: 2/5

Theorem (Arzel�a�Ascoli)

Consider a family of mappins F ⊂ C ([0, t1],M), where M is a complete metric space.

If F is uniformly bounded and equicontinuous, then it is precompact:

∀{qn} ⊂ F ∃ a converging subsequence qnk → q ∈ C ([0, t1],M).

• Thus the set of admissible trajectories is precompact in the topology of uniform

convergence.
• For any sequence qn(t) of admissible trajectories:

q̇n(t) = fun(qn(t)), 0 ≤ t ≤ t1, qn(0) = q0,

there exists a uniformly converging subsequence, we denote it again by qn(t):

qn(·) → q(·) in C ([0, t1],M) as n → ∞.

• Now we show that q(t) is an admissible trajectory of control system (1).
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Sketch of the proof of Filippov's Theorem: 3/5
• Fix a su�ciently small ε > 0.
• Then in local coordinates

1

ε
(qn(t + ε)− qn(t)) =

1

ε

∫ t+ε

t
fun(qn(τ)) dτ

∈ conv
⋃

τ∈[t,t+ε]

fU(qn(τ)) ⊂ conv
⋃

q∈Oq(t)(cε)

fU(q),

where c is the doubled Lipschitz constant of admissible trajectories.
• We pass to the limit n → ∞ and obtain

1

ε
(q(t + ε)− q(t)) ∈ conv

⋃
q∈Oq(t)(cε)

fU(q).

• Now let ε → 0. If t is a point of di�erentiability of q(t), then

q̇(t) ∈ fU(q)

since fU(q) is convex. 15 / 21



Sketch of the proof of Filippov's Theorem: 4/5
• In order to show that q(t) is an admissible trajectory of control system (1), we
should �nd a measurable selection u(t) ∈ U that generates q(t).

• We do this via the lexicographic order on the set U = {(u1, . . . , um)} ⊂ Rm.
• The set

Vt = {v ∈ U | q̇(t) = fv (q(t))}
is a compact subset of U, thus of Rm.

• There exists a vector vmin(t) ∈ Vt minimal in the sense of lexicographic order. To

�nd vmin(t), we minimize the �rst coordinate on Vt :

vmin
1 = min{ v1 | v = (v1, . . . , vm) ∈ Vt },

then minimize the second coordinate on the compact set found at the �rst step:

vmin
2 = min{ v2 | v = (vmin

1 , v2, . . . , vm) ∈ Vt }, . . . ,

vmin
m = min{ vm | v = (vmin

1 , . . . , vmin
m−1, vm) ∈ Vt }.
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Sketch of the proof of Filippov's Theorem: 5/5

• The control vmin(t) = (vmin
1 (t), . . . , vmin

m (t)) is measurable, thus q(t) is an
admissible trajectory of system (1) generated by this control.

• The proof of compactness of the attainable set Aq0(t) is complete.

• Compactness of At
q0 is proved similarly. □
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Discussion on completeness

• In Filippov's theorem, the hypothesis of common compact support of the vector

�elds in the right-hand side is essential to ensure the uniform boundedness of

velocities and completeness of vector �elds.

• On a manifold, su�cient conditions for completeness of a vector �eld cannot be

given in terms of boundedness of the vector �eld and its derivatives: a constant

vector �eld is not complete on a bounded domain in Rn.

• Nevertheless, one can prove compactness of attainable sets for many systems

without the assumption of common compact support. If for such a system we have

a priori bounds on solutions, then we can multiply its right-hand side by a cut-o�

function, and obtain a system with vector �elds having compact support.

• We can apply Filippov's theorem to the new system. Since trajectories of the

initial and new systems coincide in a domain of interest for us, we obtain a

conclusion on compactness of attainable sets for the initial system.
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A priori bound in Rn

• For control systems on M = Rn, there exist well-known su�cient conditions for

completeness of vector �elds.

• If the right-hand side grows at in�nity not faster than a linear �eld, i.e.,

|fu(x)| ≤ C (1+ |x |), x ∈ Rn, u ∈ U, (6)

for some constant C , then the nonautonomous vector �elds fu(x) are complete

(here |x | =
√

x21 + · · ·+ x2n is the norm of a point x = (x1, . . . , xn) ∈ Rn).

• These conditions provide an a priori bound for solutions: any solution x(t) of the
control system

ẋ = fu(x), x ∈ Rn, u ∈ U, (7)

with the right-hand side satisfying (6) admits the bound

|x(t)| ≤ e2Ct (|x(0)|+ 1) , t ≥ 0.
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Compactness of attainable sets in Rn

• Filippov's theorem plus the previous remark imply the following su�cient condition

for compactness of attainable sets for systems in Rn.

Corollary

Let system (7) have a compact space of control parameters U ⋐ Rm and convex

velocity sets fU(x), x ∈ Rn.

Suppose moreover that the right-hand side of the system satis�es a sublinear bound of

the form (6).
Then the attainable sets Ax0(t) and At

x0 are compact for all x0 ∈ Rn, t > 0.
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Time-optimal problem

• Given a pair of points q0 ∈ M and q1 ∈ Aq0 , the time-optimal problem consists in

minimizing the time of motion from q0 to q1 via admissible controls of control

system (1):
min
u

{t1 | qu(t1) = q1}. (8)

• That is, we consider the optimal control problem with the integrand φ(q, u) ≡ 1

and free terminal time t1.

• Reduction of optimal control problems to the study of attainable sets and

Filippov's Theorem yield the following existence result.

Corollary

Under the hypotheses of Filippov's Theorem 2, time-optimal problem (1), (8) has a
solution for any points q0 ∈ M, q1 ∈ Aq0 .
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