Existence of optimal control

(Lecture 2)

Yuri Sachkov

Program Systems Institute
Russian Academy of Sciences
Pereslavl-Zalessky, Russia
yusachkov@gmail.com

«Elements of Optimal Control»
Lecture course in Program Systems Institute, Pereslavl-Zalessky

7 Febuary 2023

1/21



B w NN =

Reminder: Plan of previous lecture

. Optimal control problem statement

. Lebesgue measurable sets and functions
. Lebesgue integral

. Carathéodory ODEs
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Plan of this lecture

Banach-Tarski Paradox
Reduction of Optimal Control Problem to Study of Attainable Sets
Filippov's theorem: Compactness of Attainable Sets

Time-Optimal Problem
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Banach-Tarski Paradox

Theorem
Let B, B’ C R? be balls of different radii. Then there exist decompositions

B=XU---UX,, B =X{u---uX

such that
3f, € SE(3) : f(X;) = X! i=1,...,n.

i

Sets Xj, X! are not measurable.
n>5.

Similar theorem for R? instead of R3 fails.
Reason: SE(2) is solvable, while SE(3) is not:

[se(3),5¢(3)] = s0(3), [s0(3),50(3)] = s0(3) # {0}.

X, X' can be raplaced by any bounded subsets in R3 with nonempty interior.
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Optimal Control Problem Statement

g = fu(q), geM, uvuelUcCR™,
q(0) = qo,
q(t1) = q1,

J(u) = /Otl (g, u)dt — min.

q = qu(+) — solution to Cauchy problem (1), (2)

corresponding to an admissible control u(-).
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Attainable sets
® Fix an initial point gg € M.

e Attainable set of control system (1) for time t > 0 from qo with measurable locally
bounded controls is defined as follows:

Ago(t) = {au(t) | v e L([0,¢], U)} .

® Similarly, one can consider the attainable sets for time not greater than t:

Ay = U Aa(7)

0<r<t

and for arbitrary nonnegative time:

AQO: U AQO(T)‘

0<r<0
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Extended system

e Optimal control problems on M can be reduced to the study of attainable sets of
some auxiliary control systems on the extended state space

M=RxM={G=(y,q)|y €R, g€ M}.
¢ Consider the following extended control system on M:
da ~ R ~
9-7@. §eM ueu, (5)
with the right-hand side
o v(q, u) )
f, = , eM, welU,
4(q) ( f.(q) q
where ¢ is the integrand of the cost functional J, see (4).
® Denote by g,(t) the solution of the extended system (5) with the initial conditions

“0-(50)-(a)

7/21



Reduction to Study of Attainable Sets

Proposition
Let q5(t), t € [0, t1], be an optimal trajectory in the problem (1)-(4) with the fixed
terminal time t1. Then gg(t1) € 0A(0,40)(t1)-

Y1 +

Figure: gz(t) optimal
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Proof.
¢ Solutions g,(t) of the extended system are expressed through solutions q,(t) of
the original system (1) as

a0 = (59 ). ww-= " o(au(r). u(r)) dr-

qu(t)
Thus attainable sets of the extended system (5) have the form

A0.00)(1) = {(Je(u), qu(8)) | w € L([0, 1], U)}
The set ./Zl\(o,qo)(tl) should not intersect the ray {(y, Q) EM|y< Jtl(ﬁ)}.

® Indeed, suppose that there exists a point (y,q1) € “‘T(O,qo)(tl)v y < Jy (0).
Then the trajectory of the extended system g,(t) that steers (0, qo) to (v, q1):

a0 -(g)  aw=(2).

gives a trajectory q,(t), qu(0) = qo, qu(t1) = g1, with J, (v) =y < J,(u), a
contradiction to optimality of ©. O
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Existence of optimal trajectories for problems with fixed t;

Proposition
Let g1 € Ag(t1). If ﬁ(quo)(tl) is compact, then there exists an optimal trajectory in
the problem (1)—(4) with the fixed terminal time ;.
Proof.
® The intersection ﬁ(o,qo)(tl) N{(y,q1) € M} is nonempty and compact.

* Denote J = min{y € R | (y,q1) € A q)(t1)}-

® (J,q1) € Ag,q0)(t1)-

® There exists an admissible control u such that g steers qo to gy for time t; with
the cost J.

The trajectory g is optimal.
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Existence of optimal trajectories for problems with free t;

Proposition
Let g1 € Ag,. Let .Afo o) £ 0, be compact. Let there extist 7 € L*°[0, #1] that
steers qo to gj such that for any u € L*°[0, t;] that steers qp to gi:

1>t = J(u) > J().

Then there exists an optimal trajectory in the problem (1)—(4) with the free t;.
Proof.

¢ Denote It = {y eER|(y,q) € E(tquo)}, Jt=min/t.

® Since g1 € Ag,(t1) for some t; > 0, then /™ £ ().

° Let 7 = max(t1,1). We have IT # (). Denote J = JT.

® There exists I € L™[0, ;] that steers gy to gy with the cost J = J(&).

® The control U is optimal in the problem with the free t;.
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Compactness of attainable sets

Theorem (Filippov)

Let the space of control parameters U € R™ be compact. Let there exist a compact
K € M such that f,(q) =0 for q ¢ K, u € U. Moreover, let the velocity sets

fu(q) = {fu(q) | u € U} C TyM, ge M,

be convex. Then the attainable sets Aq,(t) and Ay are compact for all go € M, t > 0.

Remark
The condition of convexity of the velocity sets fy(q) is natural: the flow of the ODE

q=a(t)fy(q) + (1 - a(t)f,(q),  0<at) <1,

can be approximated by flows of the systems of the form

g="1,(q), where v(t)e {ui(t), u(t)}.
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Sketch of the proof of Filippov's Theorem: 1/5
All nonautonomous vector fields 7,(g) with admissible controls u have a common
compact support, thus are complete.

Under hypotheses of the theorem, velocities f,(q), g € M, u € U, are uniformly
bounded, thus all trajectories g(t) of control system (1) starting at go are
Lipschitzian with the same Lipschitz constant.

Embed the manifold M into a Euclidean space RV, then the space of continuous
curves g(t) becomes endowed with the uniform topology of continuous mappings
from [0, ;] to RV,

The set of trajectories g(t) of control system (1) starting at qg is uniformly
bounded:

la(8)ll < €

and equicontinous:

Ve>030>0Vq() Vit — | <d |lg(t1) — q(t2)]| < e.
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Sketch of the proof of Filippov's Theorem: 2/5

Theorem (Arzela—Ascoli)

Consider a family of mappins F C C([0, t1], M), where M is a complete metric space.
If F is uniformly bounded and equicontinuous, then it is precompact:

V{qgn} C F 3 a converging subsequence q,, — q € C([0, 1], M).

® Thus the set of admissible trajectories is precompact in the topology of uniform
convergence.
® For any sequence g,(t) of admissible trajectories:

qn(t) = fun(qn(t))a 0<t<t, qn(o) = qo,
there exists a uniformly converging subsequence, we denote it again by g,(t):
an(-) — q(-) in C([0, t1], M) as n — oc.

® Now we show that g(t) is an admissible trajectory of control system (1).
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Sketch of the proof of Filippov's Theorem: 3/5

Fix a sufficiently small € > 0.
Then in local coordinates

t+e
St —al) =2 [ o) er
€ conv U fu(gn(7)) C conv U fu(q),

Te[t7t+5] qeoq(t)(ce)

where c is the doubled Lipschitz constant of admissible trajectories.
We pass to the limit n — co and obtain

1
“(a(t+e)—q() econv ] fu(a).
q€O0q(1)(ce)
Now let € — 0. If t is a point of differentiability of g(t), then
q(t) € fu(q)

since fy(q) is convex.
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Sketch of the proof of Filippov's Theorem: 4/5
In order to show that g(t) is an admissible trajectory of control system (1), we
should find a measurable selection u(t) € U that generates q(t).
We do this via the lexicographic order on the set U = {(u1,...,um)} C R™.
The set

Ve ={v e Uld4(t) = f(q(t))}

is a compact subset of U, thus of R™.
There exists a vector v™"(t) € V; minimal in the sense of lexicographic order. To
find v™n(t), we minimize the first coordinate on V;:

v =min{vi [ v =(vi,...,Vm) € Vi },

then minimize the second coordinate on the compact set found at the first step:

V2min:min{V2’V:(V{nin7v27'-'7Vm)€Vt}’ Tt
v = min{ v [ v = (" ... v, V) € Ve )
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Sketch of the proof of Filippov's Theorem: 5/5

® The control v™n(t) = (v{""(t),...,v™i"(t)) is measurable, thus q(t) is an

r'm
admissible trajectory of system (1) generated by this control.

® The proof of compactness of the attainable set A4, (t) is complete.

e Compactness of Af,o is proved similarly. O
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Discussion on completeness

In Filippov’'s theorem, the hypothesis of common compact support of the vector
fields in the right-hand side is essential to ensure the uniform boundedness of
velocities and completeness of vector fields.

On a manifold, sufficient conditions for completeness of a vector field cannot be
given in terms of boundedness of the vector field and its derivatives: a constant
vector field is not complete on a bounded domain in R".

Nevertheless, one can prove compactness of attainable sets for many systems
without the assumption of common compact support. If for such a system we have
a priori bounds on solutions, then we can multiply its right-hand side by a cut-off
function, and obtain a system with vector fields having compact support.

We can apply Filippov's theorem to the new system. Since trajectories of the
initial and new systems coincide in a domain of interest for us, we obtain a
conclusion on compactness of attainable sets for the initial system.
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A priori bound in R”

® For control systems on M = R", there exist well-known sufficient conditions for
completeness of vector fields.
e |f the right-hand side grows at infinity not faster than a linear field, i.e.,

fu(x)] <CA+|x]), xeR" wel, (6)
for some constant C, then the nonautonomous vector fields 7,(x) are complete

(here |x| = /x2 + -+ + x2 is the norm of a point x = (x1,...,X,) € R").

® These conditions provide an a priori bound for solutions: any solution x(t) of the

control system
x = fu(x), x€eR" wel, (7)

with the right-hand side satisfying (6) admits the bound
x()] < < (Ix(0)[ +1),  t>0.
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Compactness of attainable sets in R”

e Filippov's theorem plus the previous remark imply the following sufficient condition
for compactness of attainable sets for systems in R”.

Corollary

Let system (7) have a compact space of control parameters U € R™ and convex
velocity sets fy(x), x € R".

Suppose moreover that the right-hand side of the system satisfies a sublinear bound of
the form (6).

Then the attainable sets A, (t) and AL are compact for all xo € R", t > 0.
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Time-optimal problem

® Given a pair of points gg € M and q; € Ag,, the time-optimal problem consists in
minimizing the time of motion from gg to g; via admissible controls of control
system (1):
min {t; | qu(t1) = a1}, (8)
® That is, we consider the optimal control problem with the integrand ¢(q,u) =1
and free terminal time t7.

® Reduction of optimal control problems to the study of attainable sets and
Filippov's Theorem yield the following existence result.

Corollary

Under the hypotheses of Filippov's Theorem 2, time-optimal problem (1), (8) has a
solution for any points qo € M, q1 € Ag,.
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