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Reminder: Plan of previous lecture

1. Geometric statement of PMP for free time

2. PMP for optimal control problems

3. Statement of PMP with transversality conditions
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Plan of this lecture

1. Proof of PMP with transversality conditions

2. PMP with mixed boundary conditions
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Consider the optimal control problem:

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (1)

q(0) ∈ N0, q(t1) ∈ N1, (2)

t1 > 0 �xed, (3)

J(u) =

∫ t1

0

φ(q(t), u(t)) dt → min, (4)

where N0 and N1 are given immersed submanifolds of the state space M.
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Theorem 1

Let ũ(t), t ∈ [0, t1], be an optimal control in problem (1)�(4). De�ne a family of

Hamiltonians:

hνu(λ) = ⟨λ, fu(q)⟩+ νφ(q, u), λ ∈ T ∗
qM, q ∈ M, ν ∈ R, u ∈ U.

Then there exists a Lipschitzian curve λt ∈ T ∗
q̃(t)M, t ∈ [0, t1], and a number ν ∈ R

such that:

λ̇t =
−→
hνũ(t) (λt), (5)

hνũ(t)(λt) = max
u∈U

hνu(λt), (6)

(λt , ν) ̸≡ (0, 0), t ∈ [0, t1], (7)

ν ≤ 0, (8)

λ0 ⊥ Tq̃(0)N0, λt1 ⊥ Tq̃(t1)N1. (9)
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Figure: Transversality conditions (9)

Proof of Theorem 1.
• The scheme of proof developed in previous versions of PMP can be applied to

much more general problems after appropriate modi�cations. Now we only indicate

how the proofs of these theorems should be changed in order to cover the new

boundary conditions q(0) ∈ N0, q(t1) ∈ N1.
• (1) First consider the special case where the initial point is �xed: let N0 = {q0} for

some point q0 ∈ M.
• As in the proof of PMP for optimal control problems with two-point boundary

condition, we introduce an extended system on R×M:

q̂ =

(
y
q

)
∈ R×M, q̂(0) = q̂0 =

(
0

q0

)
,

f̂u(q) =

(
φ(q, u) + v

fu(q)

)
∈ T(y ,q̂)(R×M) = R× TqM,

d q̂

d t
= f̂u(q) ⇔

{
ẏ = φ(q, u) + v ,

q̇ = fu(q).
(10)
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• Further, in the case of �xed terminal point q(t1), the necessary condition for

optimality of the trajectory qũ(t) was the following:

q̂1 ∈ ∂Âq̂0(t1). (11)

Here Â is the attainable set of the extended system (10) and q̂1 = q̂ũ(t1).

• Now, when the target manifold N1 is not a point, we should modify the argument.

In a sense, we reduce the target manifold to a point de�ning it locally by an

equation Φ = 0.

• Choose a submersion

Φ : Oqũ(t1)
→ Rp, p = dimM − dimN1,

of a small neighborhood Oqũ(t1)
⊂ M, so that

Φ−1(0) = N1 ∩ Oqũ(t1)
.
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• Further, extend the submersion: de�ne the mapping

Φ̂ : R× Oqũ(t1)
→ R1+p, Φ̂

(
y
q

)
=

(
y

Φ(q)

)
.

• Since the control ũ(t) is optimal in our problem (1)�(4), then

Φ̂(q̂1) ∈ ∂Φ̂(Âq̂0(t1)). (12)

So we replace the necessary optimality condition (11) by (12) and return to the

scheme of proof of PMP for problems with two-point boundary condition.

• Take any k ∈ N and any needle-like variation of the optimal control:

us(t), s ∈ Rk
+, u0(t) = ũ(t), t ∈ [0, t1].

8 / 21



• De�ne the mappings

G : Rk → R×M, G (s) = q̂us (t1) = q̂0 ◦
−→
exp

∫ t1

0

f̂us(t) dt, (13)

F : Rk → R1+p, F (s) = Φ̂(G (s)) = q̂0 ◦
−→
exp

∫ t1

0

f̂us(t) dt ◦ Φ̂. (14)

• Then it follows from inclusion (12) that

Φ̂(q̂1) = F (0) ∈ ∂F (Rk
+). (15)

• By the �rst auxiliary lemma for the geometric statement of PMP,

F ′
0(Rk

+) = cone

{
∂ F

∂ si

∣∣∣∣
0

| i = 1, . . . , k

}
̸= R1+p,

thus there exists a plane of support, i.e.,

∃ ξ̂ ∈
(
R1+p

)∗
, ξ̂ ̸= 0,

such that 〈
ξ̂,

∂ F

∂ si

∣∣∣∣
0

〉
≤ 0, i = 1, . . . , k . (16)
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• We compute the derivative by the chain rule:

∂ F

∂ si

∣∣∣∣
0

= Φ̂∗
∂ G

∂ si

∣∣∣∣
0

, (17)

and rewrite inequalities (16) as follows:〈
Φ̂∗ξ̂,

∂ G

∂ si

∣∣∣∣
0

〉
=

〈
ξ̂, Φ̂∗

∂ G

∂ si

∣∣∣∣
0

〉
≤ 0, i = 1, . . . , k. (18)

• Then we denote the covector

λ̂t1 = Φ̂∗ξ̂ =

(
ν
λt1

)
∈ Tq̂1(R×M) (19)

and obtain conclusions (5)�(8) in the same way as in PMP for optimal control

problems with two-point boundary condition.
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• The only distinction now is that the covector λ̂t1 is not arbitrary: equality (19)
implies the second of the transversality conditions (9).

• Indeed, we have

λt1 = Φ∗ξ, ξ ∈ (Rp)∗ ,

thus

⟨λt1 ,Tqũ(t1)N1⟩ = ⟨Φ∗ξ,Tqũ(t1)N1⟩ = ⟨ξ,Φ∗Tqũ(t1)N1︸ ︷︷ ︸
=0

⟩ = 0.

• The �rst transversality condition (9) is now trivially satis�ed, so the proof of this

theorem in the case N0 = {q0} is complete.
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• (2) Let now the initial manifold N0 be an arbitrary immersed submanifold of M.

We can modify the scheme presented above to cover this case as well. Since now

the initial point q(0) is not �xed, we add variations of q(0).

• Replace mappings (13), (14) by the following ones:

G : N0 × Rk → R×M, G (q, s) = q̂ ◦ −→
exp

∫ t1

0

f̂us(t) dt,

F : N0 × Rk → R1+p, F (q, s) = Φ̂(G (q, s)) = q̂ ◦ −→
exp

∫ t1

0

f̂us(t) dt ◦ Φ̂,

where q̂ = (0, q) ∈ R×M.

• Then the necessary optimality condition (15) is replaced by the inclusion

F (q̃(0), 0) ∈ ∂F (N0 × Rk
+). (20)
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• Apply the �rst auxiliary lemma before geometric statement of PMP to restriction

of the mapping F to the space

Rm ∼= Oq̃(0) × Rk , m = l + k , l = dimN0,

where Oq̃(0) ⊂ N0 is a small neighborhood of q̃(0).
• By the remark after that lemma, inclusion (20) implies that

F ′
(q̃(0),0)(R

l ⊕ Rk
+) ̸= R1+p,

i.e., there exists a covector

ξ̂ ∈
(
R1+p

)∗
, ξ̂ ̸= 0, ξ̂ =

(
ν
ξ

)
,

such that 〈
ξ̂,

∂ F

∂ q
v

〉
≤ 0, v ∈ Tq̃(0)N0,〈

ξ̂,
∂ F

∂ si

〉
≤ 0, i = 1, . . . , k. (21)
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• In the �rst inequality v belongs to a linear space, thus it turns into equality:〈
ξ̂,

∂ F

∂ q
v

〉
= 0, v ∈ Tq̃(0)N0. (22)

• Compute by Leibniz rule the partial derivative:

∂ F

∂ q

∣∣∣∣
(q̃(0),0)

: Tq̃(0)N0 → R1+p,

∂ F

∂ q

∣∣∣∣
(q̃(0),0)

v =

(
0

v

)
◦ −→
exp

∫ t1

0

f̂ũ(t) dt ◦ Φ̂ =

(
0

v ◦ Pt1 ◦ Φ

)
=

(
0

Φ∗P
t1
∗ v

)
, v ∈ Tq̃(0)N0,

where Pt1 =
−→
exp

∫ t1

0

fũ(t) dt.
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• Then conditions (22), (21) read as follows:〈
ξ,Φ∗P

t1
∗ v

〉
= 0, v ∈ Tq̃(0)N0, (23)〈

Φ̂∗ξ̂,
∂ G

∂ si

∣∣∣∣
(q̃(0),0)

〉
≤ 0, i = 1, . . . , k .

• As before, introduce the covector λ̂t1 = (ν, λt1) by equality (19), then
conclusions (5)�(8) of this theorem and the second transversality condition (9)
follows.
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• The �rst transversality condition is also satis�ed: equality (23) can be rewritten as〈
λt1 ,P

t1
∗ v

〉
= 0, v ∈ Tq̃(0)N0.

• But λ0 = P∗
t1λt1 , thus

⟨λ0, v⟩ =
〈
P∗
t1λt1 , v

〉
= 0, v ∈ Tq̃(0)N0.

• The theorem is completely proved.
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• Now consider even more general problem with mixed boundary conditions, see

inclusion (25) below. Pontryagin Maximum Principle easily generalizes to this case,

both in formulation and in proof.
• We study optimal control problem of the form:

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (24)

(q(0), q(t1)) ∈ N ⊂ M ×M, (25)

t1 > 0 �xed, (26)

J(u) =

∫ t1

0

φ(q(t), u(t)) dt → min, (27)

where N is a smooth immersed submanifold of M ×M.

Theorem 2

Let ũ be an optimal control in problem (24)�(27). Then there hold all statements of

Theorem 1 except its transversality condition (9), which is replaced now by the relation

(−λ0, λt1) ⊥ T(q̃(0),q̃(t1))N. (28)
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Remarks

(1) We identify

T ∗
(q0,q1)

(M ×M) ∼= T ∗
q0M ⊕ T ∗

q1M,

so the transversality condition (28) makes sense.

(2) An important particular case of mixed boundary conditions (25) is the case of

periodic trajectories:

q(t1) = q(0). (29)

Indeed, then

N = ∆
def
= {(q, q) | q ∈ M} ⊂ M ×M, (30)

the diagonal of the product M ×M. In this case the transversality condition (28) reads

⟨(−λ0, λt1), (v , v)⟩ = −⟨λ0, v⟩+ ⟨λt1 , v⟩ = 0, v ∈ Tq(0)M = Tq(t1)M,

i.e., λ0 = λt1 . That is, an optimal trajectory in the problem with periodic boundary

conditions (29) possesses a periodic Hamiltonian lift (extremal).
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Proof of Theorem 2.
• We reduce our problem to the case of separated boundary conditions by

introducing an auxiliary problem on M ×M:{
ẋ = 0,

q̇ = fu(q),
(x , q) ∈ M ×M, u ∈ U,

(x(0), q(0)) ∈ ∆, (x(t1), q(t1)) ∈ N,

(the diagonal ∆ is de�ned in (30) above)

J(u) =

∫ t1

0

φ(q(t), u(t)) dt → min .

• It is obvious that this problem is equivalent to our problem (24)�(27).
• We apply a version of PMP (Theorem 1) to the auxiliary problem.
• The Hamiltonian is the same as for the initial problem:

hνu(η, λ) = hνu(λ) = ⟨λ, fu(q)⟩+ νφ(q, u), (η, λ) ∈ T ∗M ⊕ T ∗M.
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• The corresponding Hamiltonian system is{
η̇t = 0,

λ̇t =
−→
hνũ(t) (λt).

(31)

• All required statements of PMP obviously follow, we should only check

transversality conditions.
• At the initial instant t = 0 the �rst of conditions (9) reads:

⟨(η0, λ0), (v , v)⟩ = ⟨η0, v⟩+ ⟨λ0, v⟩ = 0, v ∈ Tq̃(0)M,

i.e., η0 + λ0 = 0, or, taking into account the �rst of equations (31), ηt1 = −λ0.
• And at the terminal instant t = t1:

(ηt1 , λt1) ⊥ T(x̃(t1),q̃(t1))N,

that is,

(−λ0, λt1) ⊥ T(q̃(0),q̃(t1))N,

which is the required transversality condition (28). □
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Remarks

(1) Needless to say, if the terminal time t1 is free, then one should add to statements of

Theorem 2 the additional equality hνũ(t)(λt) ≡ 0.

(2) Pontryagin Maximum Principle withstands further generalizations to wider classes

of cost functionals and boundary conditions. After certain modi�cations of argument,

the general scheme provides necessary optimality conditions for more general problems.
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