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Reminder: Plan of previous lecture

1. Proof of the geometric statement of PMP with �xed terminal time
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Plan of this lecture

1. Geometric statement of PMP for free time

2. PMP for optimal control problems

3. Statement of PMP with transversality conditions
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Geometric statement of PMP for �xed time

Theorem 1 (PMP)

Let ũ(t), t ∈ [0, t1], be an admissible control and q̃(t) = qũ(t) the corresponding

trajectory. If q̃(t1) ∈ ∂Aq0(t1), then there exists a Lipschitzian curve in the cotangent

bundle

λt ∈ T ∗
q̃(t)M, 0 ≤ t ≤ t1,

such that

λt ̸= 0, (1)

λ̇t = h⃗ũ(t)(λt), (2)

hũ(t)(λt) = max
u∈U

hu(λt) (3)

for almost all t ∈ [0, t1].

4 / 21



Geometric statement of PMP for free time

Theorem 2
Let ũ(·) be an admissible control such that q̃(t1) ∈ ∂

(
∪|t−t1|<εAq0(t)

)
for some t1 > 0

and ε ∈ (0, t1). Then there exists a Lipschitzian curve

λt ∈ T ∗
q̃(t)M, λt ̸= 0, 0 ≤ t ≤ t1,

such that

λ̇t = h⃗ũ(t)(λt),

hũ(t)(λt) = max
u∈U

hu(λt),

hũ(t)(λt) = 0 (4)

for almost all t ∈ [0, t1].
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Remark 1
In problems with free time, there appears one more variable, the terminal time t1. In
order to eliminate it, we have one additional condition � equality (4). This condition is

indeed scalar since the previous two equalities imply that hũ(t)(λt) = const.

Proof of Theorem 3.
• We reduce the case of free time to the case of �xed time by extension of the

control system via substitution of time. Admissible trajectories of the extended

system are reparametrized admissible trajectories of the initial system (the positive

direction of time on trajectories is preserved).
• Let a new time be a smooth function

φ : R → R, φ̇ > 0.

• We �nd an ODE for a reparametrized trajectory:

d

d t
qu(φ(t)) = φ̇(t)fu(φ(t))(qu(φ(t))),

so the required equation is

q̇ = φ̇(t)fu(φ(t))(q). 6 / 21



• Now consider along with the initial control system

q̇ = fu(q), u ∈ U,

an extended system of the form

q̇ = vfu(q), u ∈ U, |v − 1| < δ, (5)

where δ = ε/t1 ∈ (0, 1).
• Admissible controls of the new system are

w(t) = (v(t), u(t)),

and the reference control corresponding to the control ũ(·) of the initial system is

w̃(t) = (1, ũ(t)).

• It is easy to see that since q̃(t1) ∈ ∂
(
∪|t−t1|<εAq0(t)

)
, then the trajectory of the

new system through the point q0 corresponding to the control w̃(·) comes at the

moment t1 to the boundary of the attainable set of the new system for time t1.
• Thus w̃(t) satis�es PMP with �xed time.
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• We apply the geometric statement of PMP for �xed time to the new system (5).

• The Hamiltonian for the new system is vhu(λ).

• Then the maximality condition reads

1 · hũ(t)(λt) = max
u∈U, |v−1|<δ

vhu(λt).

• We take u = ũ(t) under the maximum and obtain

hũ(t)(λt) = 0,

then we restrict the maximum to the set v = 1 and come to

hũ(t)(λt) = max
u∈U

hu(λt).

• The Hamiltonian systems along w̃(·) and ũ(·) coincide one with another, thus the

proposition follows.

□
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PMP for optimal control problems
• Now we apply PMP in geometric form to optimal control problems, starting from

problems with �xed time.
• For a control system

q̇ = fu(q), q ∈ M, u ∈ U, (6)

with the boundary conditions

q(0) = q0, q(t1) = q1, q0, q1 ∈ M �xed, (7)

t1 > 0 �xed, (8)

and the cost functional

J(u) =

∫ t1

0

φ(qu(t), u(t)) dt (9)

we consider the optimal control problem

J(u) → min . (10)

• We transform the problem to a geometric one. 9 / 21



• We extend the state space:

q̂ =

(
y
q

)
∈ R×M,

de�ne the extended vector �eld f̂u ∈ Vec(R×M):

f̂u(q) =

(
φ(q, u)
fu(q)

)
,

and come to the new control system:

d q̂

d t
= f̂u(q) ⇔

{
ẏ = φ(q, u),

q̇ = fu(q)
(11)

with the boundary conditions

q̂(0) = q̂0 =

(
0

q0

)
, q̂(t1) =

(
J(u)
q1

)
.
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• If a control ũ(·) is optimal for problem (6)�(10), then the trajectory q̂ũ(t) of the
extended system (11) starting from q̂0 satis�es the condition

q̂ũ(t1) ∈ ∂Âq̂0(t1),

where Âq̂0(t1) is the attainable set of system (11) from the point q̂0 for time t1.

• So we can apply the geometric statement of PMP.

• But the geometric statement of PMP applied to the extended system (11) does
not distinguish minimum and maximum of the cost J(u).

• In order to have conditions valid only for minimum, we introduce a new control

parameter v and consider a new system of the form{
ẏ = φ(q, u) + v ,

q̇ = fu(q),
v ≥ 0, u ∈ U. (12)

• Now the trajectory of system (12) corresponding to the controls ṽ(t) ≡ 0, ũ(t),
comes to the boundary of the attainable set of this system at time t1.

11 / 21



• We apply the geometric statement of PMP to system (12).

• We have

T(y ,q)(R×M) = R⊕ TqM,

T ∗
(y ,q)(R×M) = R⊕ T ∗

qM = {(ν, λ)}.

• The Hamiltonian function for system (12) has the form

ĥ(v ,u)(ν, λ) = ⟨λ, fu⟩+ ν(φ+ v),

and the Hamiltonian system of PMP is
ν̇ = ∂ ĥ

∂ y = 0,

ẏ = φ(q, u) + v ,

λ̇ = h⃗ũ(t)(ν, λ).

(13)

• Here h⃗u(ν, λ) is the Hamiltonian vector �eld with the Hamiltonian function

hu(ν, λ) = ⟨λ, fu⟩+ νφ.
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• The �rst of equations (13) means that

ν = const

along the reference trajectory.

• The maximality condition has the form

⟨λt , fũ(t)⟩+ νφ(q̃(t), ũ(t)) = max
u∈U, v≥0

(⟨λt , fu⟩+ νφ(q̃(t), u) + νv) .

• Since the previous maximum is attained, we have

ν ≤ 0,

thus we can set v = 0 in the right-hand side of the maximality condition:

⟨λt , fũ(t)⟩+ νφ(q̃(t), ũ(t)) = max
u∈U

(⟨λt , fu⟩+ νφ(q̃(t), u)) .

• So we proved the PMP for optimal control problems with �xed terminal time.
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Theorem 3
Let ũ(t), t ∈ [0, t1], be an optimal control for problem (6)�(10):

J(ũ) = min{J(u) | qu(t1) = q1}.

De�ne a Hamiltonian function

hνu(λ) = ⟨λ, fu⟩+ νφ(q, u), λ ∈ T ∗
qM, u ∈ U, ν ∈ R.

Then there exists a nontrivial pair:

(ν, λt) ̸= 0, ν ∈ R, λt ∈ T ∗
q̃(t)M,

such that the following conditions hold:

λ̇t = h⃗νũ(t)(λt),

hνũ(t)(λt) = max
u∈U

hνu(λt) ∀ a.e. t ∈ [0, t1],

ν ≤ 0. 14 / 21



Remarks
(1) If we have a maximization problem instead of minimization problem (10), then the

preceding inequality for ν should be reversed:

ν ≥ 0.

(2) For the problem with free time t1: (6), (7), (9), (10), necessary optimality

conditions of PMP are the same as in Theorem 3 plus one additional scalar equality

hνũ(t)(λt) ≡ 0 (exercise).

• There are two distinct possibilities for the constant parameter ν in Theorem 3:

(a) if ν ̸= 0, then the curve λt is called a normal extremal. Since the pair (ν, λt)
can be multiplied by any positive number, we can normalize ν < 0 and assume

that ν = −1 in the normal case;

(b) if ν = 0, then λt is an abnormal extremal.

• So we can always assume that ν = −1 or 0.
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Time-optimal problem

q̇ = fu(q), q ∈ M, u ∈ U,

q(0) = q0, q(t1) = q1, q0, q1 �xed, t1 =

∫ t1

0

1 dt → min .

Corollary 4

Let an admissible control ũ(t), t ∈ [0, t1], be time-optimal. De�ne a Hamiltonian

function hu(λ) = ⟨λ, fu⟩, λ ∈ T ∗
qM, u ∈ U. Then there exists a Lipschitzian

curve λt ∈ T ∗M, λt ̸= 0, t ∈ [0, t1], such that the following conditions hold for

almost all t ∈ [0, t1]:

λ̇t = h⃗ũ(t)(λt),

hũ(t)(λt) = max
u∈U

hu(λt),

hũ(t)(λt) ≥ 0. (14)
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Proof of Corollary 1.

• Apply PMP for optimal control problems with free terminal time, taking φ ≡ 1.

• Then the Hamiltonian system and the maximality condition follow.

• Inequality (14) is equivalent to conditions hũ(t)(λt) + ν = 0 and ν ≤ 0.

• The inequality λt ̸= 0 is obtained as follows: if λt = 0, then hũ(t)(λt) = 0, thus

ν = 0.

• But the pair (ν, λt) must be nontrivial, consequently, λt ̸= 0.

□
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PMP with general boundary conditions

• We prove versions of Pontryagin Maximum Principle for optimal control problems

in which boundary points of trajectories belong to prescribed manifolds.

• First consider the following problem:

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (15)

q(0) ∈ N0, q(t1) ∈ N1, (16)

t1 > 0 �xed, (17)

J(u) =

∫ t1

0

φ(q(t), u(t)) dt → min . (18)

• Here N0 and N1 are given immersed submanifolds of the state space M.

• So the boundary points q(0) and q(t1) are not �xed as before, but should belong

to N0 and N1 respectively.
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• If a trajectory q̃(t) is optimal for this problem, then it is optimal as well for the

problem with the �xed boundary points q̃(0), q̃(t1) considered before.

• Consequently, the statement of Theorem 3 should be satis�ed for q̃(t).

• But now we need additional conditions that select boundary points q̃(0) ∈ N0 and

q̃(t1) ∈ N1.

• It is reasonable to expect that they should be determined by (dimN0 + dimN1)
scalar equalities.

• Such conditions can easily be formulated in the Hamiltonian framework, they are

called transversality conditions, see (23) below.
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Theorem 5
Let ũ(t), t ∈ [0, t1], be an optimal control in problem (15)�(18). De�ne a family of

Hamiltonians:

hνu(λ) = ⟨λ, fu(q)⟩+ νφ(q, u), λ ∈ T ∗
qM, q ∈ M, ν ∈ R, u ∈ U.

Then there exists a Lipschitzian curve λt ∈ T ∗
q̃(t)M, t ∈ [0, t1], and a number ν ∈ R

such that:

λ̇t =
−→
hνũ(t) (λt), (19)

hνũ(t)(λt) = max
u∈U

hνu(λt), (20)

(λt , ν) ̸≡ (0, 0), t ∈ [0, t1], (21)

ν ≤ 0, (22)

λ0 ⊥ Tq̃(0)N0, λt1 ⊥ Tq̃(t1)N1. (23)
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Figure: Transversality conditions (23)

• Any linear functional on a linear space acts naturally on a subspace by restriction,

so transversality conditions (23) read respectively as follows:

⟨λ0, v⟩ = 0, v ∈ Tq̃(0)N0, ⟨λt1 ,w⟩ = 0, w ∈ Tq̃(t1)N1.

• The problem with free time: (15), (16), (18), is reduced to the case of �xed t1 as

before, so for this problem holds the previous theorem with the additional

condition hνũ(t)(λt) ≡ 0.
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