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Reminder: Plan of previous lecture

1. Linear on �bers Hamiltonians

2. Geometric statement of PMP and discussion
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Plan of this lecture

1. Proof of the geometric statement of PMP with �xed terminal time
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Proof of the geometric statement of PMP with �xed terminal time
• We start from two auxiliary lemmas.
• Denote the positive orthant in Rm as

Rm
+ = {(x1, . . . , xm) ∈ Rm | xi ≥ 0, i = 1, . . . ,m}.

Lemma 1
Let a vector-function F : Rm → Rn be Lipschitzian, F (0) = 0, and di�erentiable at 0:

∃ F ′
0 =

d F

d x

∣∣∣∣
0

.

Assume that

F ′
0(Rm

+) = Rn.

Then for any neighborhood of the origin O0 ⊂ Rm

0 ∈ intF (O0 ∩ Rm
+).
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Remark 1
The statement of this lemma holds if the orthant Rm

+ is replaced by an arbitrary convex

cone C ⊂ Rm. In this case the proof given below works without any changes.

Proof of Lemma 1.

• Choose points y0, . . . , yn ∈ Rn that generate an n-dimensional simplex centered at

the origin:
1

n + 1

n∑
i=0

yi = 0.

• Since the mapping F ′
0 : Rm

+ → Rn is surjective and the positive orthant Rm
+ is a

convex cone, it is easy to show that restriction to the interior F ′
0|intRm

+
is also

surjective:

∃ vi ∈ intRm
+ such that F ′

0vi = yi , i = 0, . . . , n.

• The points y0, . . . , yn are a�nely independent in Rn, thus their preimages

v0, . . . , vn are also a�nely independent in Rm.
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• The mean

v =
1

n + 1

n∑
i=0

vi

belongs to intRm
+ and satis�es the equality

F ′
0v = 0.

• Further, the subspace

W = span{vi − v | i = 0, . . . , n} ⊂ Rm

is n-dimensional.

• Since v ∈ intRm
+, we can �nd an n-dimensional ball Bδ ⊂ W of a su�ciently small

radius δ centered at the origin such that

v + Bδ ⊂ intRm
+.

• Since F ′
0(vi − v) = F ′

0vi , then F ′
0W = Rn, i.e., the linear mapping F ′

0 : W → Rn

is invertible.
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• Consider the following family of mappings:

Gα : Bδ → Rn, α ∈ [0, α0),

Gα(w) =
1

α
F (α(v + w)), α > 0,

G0(w) = F ′
0w .

• By the hypotheses of this lemma,

F (x) = F ′
0x + o(x), x ∈ Rm, x → 0,

thus

Gα(w) =
1

α
(F ′

0(α(v + w)) + o(α(v + w))) = F ′
0w + o(1), α → 0, w ∈ Bδ. (1)

• Since the mapping F is Lipschitzian, all mappings Gα are Lipschitzian with a

common constant.
• Thus the family Gα is equicontinuous. Equality (1) means that uniformly in

w ∈ Bδ

Gα → G0, α → 0.
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• So the continuous mapping Gα ◦ G−1
0 : G0(Bδ) → Rn is uniformly close to the

identity mapping, hence the di�erence Id−Gα ◦ G−1
0 is uniformly close to the zero

mapping.

• For any x̃ ∈ Rn su�ciently close to the origin, the continuous mapping

Id−Gα ◦ G−1
0 + x̃

transforms the set G0(Bδ) into itself.

• By Brower's �xed point theorem, this mapping has a �xed point x ∈ G0(Bδ):

x − Gα ◦ G−1
0 (x) + x̃ = x ,

i.e.,

Gα ◦ G−1
0 (x) = x̃ .

• It follows that intGα(Bδ) ∋ 0, consequently, intF (α(v + Bδ)) ∋ 0 for small α > 0.

Thus intF (O0 ∩ Rm
+) ∋ 0 for a small neighborhood O0 ∈ Rm. □
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• Now we start to compute a convex approximation of the attainable set Aq0(t1) at
the point q1 = q̃(t1) corresponding to a reference control ũ(·).

• Take any admissible control u(t) and express the endpoint of a trajectory via

Variations Formula:

qu(t1) = q0◦
−→
exp

∫ t1

0

fu(τ) dτ = q0◦
−→
exp

∫ t1

0

fũ(τ) + (fu(τ) − fũ(τ)) dτ

= q0◦
−→
exp

∫ t1

0

fũ(τ) dτ◦
−→
exp

∫ t1

0

(
Pt1
τ

)
∗ (fu(τ) − fũ(τ)) dτ

= q1◦
−→
exp

∫ t1

0

(
Pt1
τ

)
∗ (fu(τ) − fũ(τ)) dτ.

• Introduce the following vector �eld depending on two parameters:

gτ,u =
(
Pt1
τ

)
∗ (fu − fũ(τ)), τ ∈ [0, t1], u ∈ U. (2)

• We showed that

qu(t1) = q1◦
−→
exp

∫ t1

0

gτ,u(τ) dτ. (3)

• Notice that gτ,ũ(τ) ≡ 0, τ ∈ [0, t1]. 9 / 16



Lemma 2
Let T ⊂ [0, t1] be the set of Lebesgue points of the control ũ(·). If

cone{gτ,u(q1) | τ ∈ T , u ∈ U} = Tq1M,

then q1 ∈ intAq0(t1).

Remark 2
The set cone{gτ,u(q1) | τ ∈ T , u ∈ U} ⊂ Tq1M is a local convex approximation of the

attainable set Aq0(t1) at the point q1 corresponding to a reference control ũ(·).
• Recall that a point τ ∈ [0, t1] is called a Lebesgue point of a function u ∈ L1[0, t1]

if lim
t→τ

1

|t − τ |

∫ t

τ
|u(θ)− u(τ)| dθ = 0.

• At Lebesgue points of u, the integral

∫ t

0

u(θ) dθ is di�erentiable and

d

d t

(∫ t

0

u(θ) dθ

)
= u(t).
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• The set of Lebesgue points has the full measure in the domain [0, t1].

Proof of Lemma 2.

• We can choose vectors

gτi ,ui (q1) ∈ Tq1M, τi ∈ T , ui ∈ U, i = 1, . . . , k ,

that generate the whole tangent space as a positive convex cone:

cone {gτi ,ui (q1) | i = 1, . . . , k} = Tq1M,

moreover, we can choose points τi distinct: τi ̸= τj , i ̸= j .
• Indeed, if τi = τj for some i ̸= j , we can �nd a su�ciently close Lebesgue point

τ ′j ̸= τj such that the di�erence gτ ′j ,uj (q1)− gτj ,uj (q1) is as small as we wish.

• This is possible since for any τ ∈ T and any ε > 0

1

|t − τ |
meas{t ′ ∈ [τ, t] | |u(t ′)− u(τ)| ≤ ε} → 1 as t → τ.

• We suppose that τ1 < τ2 < · · · < τk .
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• We de�ne a family of variations of controls that follow the reference control ũ(·)
everywhere except neighborhoods of τi , and follow ui near τi (such variations are

called needle-like).
• More precisely, for any s = (s1, . . . , sk) ∈ Rk

+ consider a control of the form

us(t) =

{
ui , t ∈ [τi , τi + si ],
ũ(t), t ̸∈ ∪k

i=1[τi , τi + si ].
(4)

• For small s, the segments [τi , τi + si ] do not overlap since τi ̸= τj , i ̸= j .
• In view of formula (3), the endpoint of the trajectory corresponding to the control

constructed is expressed as follows:

qus (t1) = q0◦
−→
exp

∫ t1

0

fus(t) dt

= q1◦
−→
exp

∫ τ1+s1

τ1

gt,u1 dt ◦ −→
exp

∫ τ2+s2

τ2

gt,u2 dt ◦ · · ·

◦ −→
exp

∫ τk+sk

τk

gt,uk dt.
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• The mapping

F : s = (s1, . . . , sk) 7→ qus (t1)

is Lipschitzian, di�erentiable at s = 0, and

∂ F

∂ si

∣∣∣∣
s=0

= gτi ,ui (q1).

• By Lemma 1,

F (0) = q1 ∈ intF (O0 ∩ Rk
+)

for any neighborhood O0 ⊂ Rk .

• But the curve qus (t), t ∈ [0, t1], is an admissible trajectory for small s ∈ Rk
+, thus

F (O0 ∩ Rk
+) ⊂ Aq0(t1) and q1 ∈ intAq0(t1).

□
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Now we can prove the geometric statement of Pontryagin Maximum Principle:

Theorem 3 (PMP)

Let ũ(t), t ∈ [0, t1], be an admissible control and q̃(t) = qũ(t) the corresponding

trajectory of the control system. If q̃(t1) ∈ ∂Aq0(t1), then there exists a Lipschitzian

curve in the cotangent bundle

λt ∈ T ∗
q̃(t)M, 0 ≤ t ≤ t1,

such that

λt ̸= 0, (5)

λ̇t = h⃗ũ(t)(λt), (6)

hũ(t)(λt) = max
u∈U

hu(λt) (7)

for almost all t ∈ [0, t1].
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Proof.

• Let the endpoint of the reference trajectory q1 = q̃(t1) ∈ ∂Aq0(t1).

• By Lemma 2, the origin 0 ∈ Tq1M belongs to the boundary of the convex set

cone{gt,u(q1) | t ∈ T , u ∈ U}, so this set has a hyperplane of support at the

origin:

∃ λt1 ∈ T ∗
q1M, λt1 ̸= 0,

such that

⟨λt1 , gt,u(q1)⟩ ≤ 0 ∀ a.e. t ∈ [0, t1], u ∈ U.

• Taking into account de�nition (2) of the �eld gt,u, we rewrite this inequality as

follows:

⟨λt1 ,
(
Pt1
t∗fu

)
(q1)⟩ ≤ ⟨λt1 ,

(
Pt1
t∗fũ(t)

)
(q1)⟩,

i.e.,

⟨
(
Pt1
t

)∗
λt1 , fu(q̃(t))⟩ ≤ ⟨

(
Pt1
t

)∗
λt1 , fũ(t)(q̃(t))⟩.
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• The action of the �ow Pt1
t on covectors de�nes the curve in the cotangent bundle:

λt
def
=

(
Pt1
t

)∗
λt1 ∈ T ∗

q̃(t)M, t ∈ [0, t1].

• In terms of this covector curve, the inequality above reads

⟨λt , fu(q̃(t))⟩ ≤ ⟨λt , fũ(t)(q̃(t))⟩.
• Thus the maximality condition of PMP holds along the reference trajectory:

hu(λt) ≤ hũ(t)(λt) ∀ u ∈ U ∀ a.e. t ∈ [0, t1].

• The curve λt is a trajectory of the nonautonomous Hamiltonian �ow with the

Hamiltonian function f ∗ũ(t) = hũ(t):

λt = λt1 ◦
(

−→
exp

∫ t1

t
fũ(θ) dθ

)∗
= λt1◦

−→
exp

∫ t

t1

h⃗ũ(θ) dθ,

thus it satis�es the Hamiltonian equation of PMP

λ̇t = h⃗ũ(t)(λt).

□
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