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Reminder: Plan of previous lecture

1. Linear on fibers Hamiltonians

2. Geometric statement of PMP and discussion
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Plan of this lecture

1. Proof of the geometric statement of PMP with fixed terminal time

3/16



Proof of the geometric statement of PMP with fixed terminal time

e \We start from two auxiliary lemmas.
® Denote the positive orthant in R™ as

RT ={(x1,...,xm) €ER" | x; >0, i=1,...,m}.

Lemma 1

Let a vector-function F : R™ — R" be Lipschitzian, F(0) = 0, and differentiable at 0:

dF

0

Assume that
RRT) = R".
Then for any neighborhood of the origin Oy C R™

0 cint F(Og NRT).
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Remark 1
The statement of this lemma holds if the orthant R is replaced by an arbitrary convex
cone C C R™. In this case the proof given below works without any changes.

Proof of Lemma 1.
® Choose points yg, ..., ¥, € R" that generate an n-dimensional simplex centered at

1 n
e origin ] ,-E_O yi=0

® Since the mapping Fy : RT — R" is surjective and the positive orthant R is a
convex cone, it is easy to show that restriction to the interior F|. . pm is also
+

surjective:
Jvi €intR] suchthat Fyvi=y;, i=0,...,n.

® The points yg, ..., y, are affinely independent in R”, thus their preimages
Vo, ..., Vy are also affinely independent in R™.
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The mean
1 n

- 1

n+1 P

belongs to intR"" and satisfies the equality
Fgv = 0.

Further, the subspace

W =span{v;—v|i=0,...,n} CR™

is n-dimensional.
Since v € int R, we can find an n-dimensional ball Bs C W of a sufficiently small

radius & centered at the origin such that
v+ Bs CintRY.
® Since Fy(vi — v) = Fjv;, then FfW =1R", i.e., the linear mapping Fj : W — R”

is invertible.
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Consider the following family of mappings:
Go: Bs—=R",  a€0,a),
Go(w) = éF(a(v Fw), a0,
Go(w) = Fyw.
By the hypotheses of this lemma,
F(x) = Fix + o(x), x€eR™ x—0,
thus
Ga(w) = —(Fi(a(v + ) + ola(v + w)) = Fiw +o(1), a0, we Bs. (1)

Since the mapping F is Lipschitzian, all mappings G, are Lipschitzian with a
common constant.

Thus the family G, is equicontinuous. Equality (1) means that uniformly in
w € B;s

Gy — Gy, a — 0.
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So the continuous mapping G, o GO_1 . Go(Bs) — R is uniformly close to the
identity mapping, hence the difference Id — G, o GO_1 is uniformly close to the zero

mapping.
For any X € R" sufficiently close to the origin, the continuous mapping
Id =Gy o Gyt + %
transforms the set Go(Bjs) into itself.
By Brower’s fixed point theorem, this mapping has a fixed point x € Gy(Bs):

X — Gy o Gy H(x) + % = x,

ie.,
Ga 0 Gy H(x) = %.

It follows that int G,(Bs) > 0, consequently, int F(a(v + Bs)) > 0 for small o > 0.
Thus int F(Op NRT) > 0 for a small neighborhood Op € R™. O
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® Now we start to compute a convex approximation of the attainable set A, (t1) at
the point g1 = g(t1) corresponding to a reference control u(-).

® Take any admissible control u(t) and express the endpoint of a trajectory via
Variations Formula:

t1 t1
qu(t1) = qoo 675/ fu(r) AT = qoo 675/ far) + (fury — far)) d7
0 0
. [51 N t
= qo° exp / fU(T) dro exp / (Pﬁl)* (fu(r) — fU(T)) dr
0 0

t1
= qi° 67[)) / (Pil)* (fU(T) - fE(T)) dr.
0
¢ |ntroduce the following vector field depending on two parameters:
&ru= (Pﬁl)* (fu — fg(T)), T € [0, tl], ueU. (2)
® We showed that
— t
qu(tl) = g10 €Xp /0 &r,u(T) dr. (3)

* Notice that g, ;) =0, T € [0, t1].



Lemma 2
Let T C [0, t1] be the set of Lebesgue points of the control u(-). If

cone{gru(qu) | T€T, ue U} =TyM,

then q1 € int Ag,(t1).

Remark 2
The set cone{g, ,(q1) | 7€ T, u€ U} C Ty, M is a local convex approximation of the
attainable set A, (t1) at the point g; corresponding to a reference control u(-).

¢ Recall that a point 7 € [0, t1] is called a Lebesgue point of a function u € L]0, t;]

if lim / ) —u(7)| d6 = 0.
t*)T‘t |

® At Lebesgue points of u, the integral / u(0) do is differentiable and
0

% </0t u(6) de) = u(t).
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® The set of Lebesgue points has the full measure in the domain [0, ;].
Proof of Lemma 2.
® We can choose vectors

gru(q) € TuyM, €T, wuel, i=1,... k,
that generate the whole tangent space as a positive convex cone:
cone {gThUi(ql) | = 17 sty k} = TCth

moreover, we can choose points 7; distinct: 7; # 7j, i # j.

® Indeed, if 7; = 7; for some i # j, we can find a sufficiently close Lebesgue point
7/ # 7j such that the difference gTJg’uj(ql) — &r,,u;(q1) is as small as we wish.

® This is possible since for any 7 € 7 and any ¢ > 0

T ’meas{t’E[T,t] | u(t) —u(T)|<e}—last—T.
-7

® We suppose that i < 7 < -+ < 7%.
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We define a family of variations of controls that follow the reference control u(-)

everywhere except neighborhoods of 7;, and follow u; near 7; (such variations are
called needle-like).

More precisely, for any s = (s1,...,5¢) € Ri consider a control of the form
uj, tG[Ti,Ti+Si],
us(t) = ~ 4
«(1) { a(t), t & U [n,7i+ s @)

For small s, the segments [7;, 7; + s;] do not overlap since 7; # 7}, i # j.
In view of formula (3), the endpoint of the trajectory corresponding to the control
constructed is expressed as follows:

51
du(tt) = goo &P / Fonte) it
0

N T1+Ss1 N T2+52
= q10 exp 8t,uy dt o exp 8tu, dt o+
T1 T2
N Tk+Sk
o exp 8t,u, dt.

Tk

12/16



® The mapping
F : s=(s1,...,5) — qu.(t1)
is Lipschitzian, differentiable at s =0, and

OF
85; s—0

= gThUi(ql)’

® By Lemma 1,
F(0) = q1 € int F(Og NRX)
for any neighborhood Oy C RX.

® But the curve q,(t), t € [0, 1], is an admissible trajectory for small s € Rk, thus
F(Oo ﬂRi) C Aqo(tl) and g € intAqo(tl).
U
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Now we can prove the geometric statement of Pontryagin Maximum Principle:

Theorem 3 (PMP)

Let u(t), t € [0, t1], be an admissible control and q(t) = q;(t) the corresponding
trajectory of the control system. If q(t1) € 0Aq,(t1), then there exists a Lipschitzian
curve in the cotangent bundle

At € Tg(t)M, 0<t<t,
such that
)-‘t 75 9: (5)
)‘t = hﬁ(t)(At)’ (6)
hae)(Ae) = maxhu(Ae) (

for almost all t € [0, t1].

~
~—
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Proof.
® Let the endpoint of the reference trajectory g1 = q(t1) € 0Ag(t1).
® By Lemma 2, the origin 0 € T4, M belongs to the boundary of the convex set
cone{gtu(q1) | t € T, u € U}, so this set has a hyperplane of support at the
origin:

I Ay € T:;l/\/l7 Ay, #0,
such that
<)‘t1>gt,u(q1)> < 0 Vae te [07 tl]a ueU.

® Taking into account definition (2) of the field g; ,, we rewrite this inequality as
follows:

<)‘t13 (Ping) (q1)> < <)‘t17 (Pttifﬁ(t)) (q1)>7

((P)" Aay, £ul@(2))) < ((PE)" ey figny (a(1))).-

15/16



The action of the flow P on covectors defines the curve in the cotangent bundle:

Ae B (PE) Ay € TiM,  te(o,n].

In terms of this covector curve, the inequality above reads

(Ar, 1u(q(1))) < (At faey (a(2)))-
Thus the maximality condition of PMP holds along the reference trajectory:
hu(/\t) < hg(t)()\t) YuelU Vae te [07 t1].

The curve \; is a trajectory of the nonautonomous Hamiltonian flow with the
Hamiltonian function fﬁ*(t) = hg(p):

t * t
At = Ay 0 (&5/ o) d9> = Ay 0 e_x{)/ hz ) d9.,
t t1

thus it satisfies the Hamiltonian equation of PMP
).\t = Eﬂ(t)o\t)-
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