Optimal Control Problem Statement. Lebesgue measure and integral *(Lecture 1)*

Yuri Sachkov

Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia yusachkov@gmail.com

«Elements of Optimal Control»

Lecture course in Program Systems Institute, Pereslavl-Zalessky

24 January 2023

Plan of lecture

- 1. Optimal Control Problem Statement
- 2. Lebesgue measurable sets and functions
- 3. Lebesgue integral
- 4. Carathéodory ODEs

Optimal Control Problem Statement

Control system:

$$\dot{q} = f_u(q), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m.$$
 (1)

- *M* a smooth manifold
- U an arbitrary subset of \mathbb{R}^m
- right-hand side of (1):

 $q\mapsto f_u(q)$ is a smooth vector field on M for any fixed $u\in U,$ (2)

$$(q,u)\mapsto f_u(q)$$
 is a continuous mapping for $q\in M,\;u\in\overline{U},$ (3)

and moreover, in any local coordinates on M

$$(q, u) \mapsto \frac{\partial f_u}{\partial q}(q)$$
 is a continuous mapping for $q \in M, \ u \in \overline{U}$. (4)

• Admissible controls are measurable locally bounded mappings

 $u : t \mapsto u(t) \in U,$

i.e.,
$$u \in L_{\infty}([0, t_1], U)$$
.

• Substitute such a control u = u(t) for control parameter into system (1)

•
$$\Rightarrow$$
 nonautonomous ODE $\dot{q} = f_u(q)$

• By Carathéodory's Theorem, for any point $q_0 \in M$, the Cauchy problem

$$\dot{q}=f_u(q), \qquad q(0)=q_0, \tag{5}$$

has a unique solution $q_u(t)$.

• In order to compare admissible controls one with another on a segment [0, t₁], introduce a *cost functional*:

$$J(u) = \int_0^{t_1} \varphi(q_u(t), u(t)) dt$$
(6)

with an integrand

$$\varphi : M \times U \to \mathbb{R}$$

satisfying the same regularity assumptions as the right-hand side f, see (2)-(4).

- Take any pair of points $q_0, q_1 \in M$.
- Consider the following *optimal control problem*:

Problem

Minimize the functional J among all admissible controls u = u(t), $t \in [0, t_1]$, for which the corresponding solution $q_u(t)$ of Cauchy problem (5) satisfies the boundary condition

$$q_u(t_1) = q_1. \tag{7}$$

• This problem can also be written as follows:

$$\dot{q} = f_u(q), \qquad q \in M, \quad u \in U \subset \mathbb{R}^m,$$
 (8)

$$q(0) = q_0, \qquad q(t_1) = q_1,$$
 (9)

$$J(u) = \int_0^{t_1} \varphi(q(t), u(t)) \, dt \to \min \,. \tag{10}$$

- Two types of problems: with fixed terminal time t_1 and free t_1 .
- A solution u of this problem is called an *optimal control*, and the corresponding curve $q_u(t)$ is an *optimal trajectory*.

Definition of Lebesgue measure in I = [0, 1]: H. Lebesgue, 1902¹

• Measure of intervals:

$$m(\emptyset) := 0,$$
 $m(|a, b|) := b - a,$ $b \ge a,$ $| = [\text{ or }].$

- Measure of elementary sets: $m'(\sqcup_{i=1}^\infty |a_i,b_i|):=\sum_{i=1}^\infty m(|a_i,b_i|)$
- Outer measure: $\mu^*(A) := \inf \left\{ \sum_{i=1}^\infty m(P_i) \mid A \subset \cup_{i=1}^\infty P_i, \ P_i \text{ intervals} \right\}.$
- Lebesgue measure:
 - $A \subset I$ is called *measurable* if

 $\forall \ \varepsilon > 0 \ \exists \ \mathsf{elementary \ set} \ B \subset I: \ \mu^*(A \triangle B) < \varepsilon, \qquad A \triangle B := (A \setminus B) \cup (B \setminus A).$

• A measurable \Rightarrow Lebesgue measure $\mu(A) := \mu^*(A)$.

¹A.N. Kolmogorov, S.V. Fomin, "Elements of theory of functions and functional analysis"

Properties of Lebesgue measure

- 1. System of measurable sets is closed w.r.t. $\cup_{i=1}^{\infty}$, $\cap_{i=1}^{\infty}$, \setminus , \triangle
- 2. σ -additivity: A_i measurable $\Rightarrow \mu(\sqcup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}\mu(A_i)$.
- 3. Continuity: $A_1 \supset A_2 \supset \cdots$ measurable $\Rightarrow \mu(\cap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$
- 4. Open, closed sets are measurable.
- 5. There exist non-measurable sets (G. Vitali, 1905)
- 6. $A \subset \mathbb{R}$ is measurable if $\forall A \cap I_n$ is measurable, $I_n = (n, n+1]$, $n \in \mathbb{Z}$,

7.
$$\mu(A) := \sum_{n=-\infty}^{+\infty} \mu(A \cap I_n) \in [0, +\infty].$$

- 8. $\mu(A) = 0 \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists \text{ intervals: } \cup_{i=1}^{\infty} P_i \supset A, \ \sum_{i=1}^{\infty} m(P_i) < \varepsilon.$
- A property P holds almost everywhere (a.e.) on a set X if ∃ A ⊂ X, μ(A) = 0, s.t. P holds on X \ A.
- 10. $f : \mathbb{R} \to \mathbb{R}^m$ is *measurable* if $f^{-1}(O)$ is measurable for any open $O \subset \mathbb{R}^m$.

Lebesgue integral: Definition

- Let $\mu(X) < +\infty$. A function $f : X \to \mathbb{R}$ is simple if it is measurable and takes not more than countable number of values.
- Th.: A function f(x) taking not more than countable number of values y_1 , y_2 , ... is measurable iff al sets $f^{-1}(y_n)$ are measurable.
- Th.: A function f(x) is measurable iff it is a uniform limit of simple measurable functions.
- Let f be a simple measurable function taking values y₁, y₂, Let A ⊂ X be measurable. Then

$$\int_A f(x)d\mu := \sum_n y_n \mu(f^{-1}(y_n)).$$

A function f is called integrable on A if this series absolutely converges.

A measurable function f is called *integrable* on A ⊂ X if there exist a sequence of simple integrable on A functions {f_n} that converges uniformly to f. Then

$$\int_A f(x)d\mu := \lim_{n\to\infty} \int_A f_n(x)d\mu.$$

8/11

Lebesgue integral: Properties

1. $\int_{A} 1 d\mu = \mu(A)$. 2. Linearity: $\int_{\Lambda} (af(x) + bg(x)) d\mu = a \int_{\Lambda} f(x) d\mu + b \int_{\Lambda} g(x) d\mu$. 3. f(x) bounded on $A \Rightarrow f(x)$ integrable on A. 4. Monotonicity: $f(x) \leq g(x) \Rightarrow \int_A f(x) d\mu \leq \int_A g(x) d\mu$. 5. $\mu(A) = 0 \implies \int_A f(x) d\mu = 0.$ 6. f(x) = g(x) a.e. $\Rightarrow \int_A f(x) d\mu = \int_A g(x) d\mu$. 7. g(x) integrable on A and |f(x)| < g(x) a.e. $\Rightarrow f(x)$ integrable on A. 8. Functions f and |f| are integrable or non-integrable simultaneously. 9. σ -additivity: if $A = \bigsqcup_n A_n$ then $\int_A f(x) d\mu = \sum_n \int_A f(x) d\mu$. 10. Absolute continuity: f in integrable on $A \Rightarrow \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t.}$ $\left|\int_{E} f(x) d\mu\right| < \varepsilon$ for any measurable $E \subset A$, $\mu(E) < \varepsilon$. 11. $\mu(X) = \infty, X = \bigcup_n X_n, X_n \subset X_{n+1}, \mu(X_n) < \infty \Rightarrow$ $\int_{X} f(x) d\mu := \lim_{n \to \infty} \int_{X} f(x) d\mu.$

Spaces of integrable functions

- $f \, : \, X o \mathbb{R}$ measurable, $p \in [1, +\infty).$
 - 1. $L_p(X,\mu) = \{f \mid ||f||_p < \infty\}, ||f||_p = (\int_X |f(x)|^p d\mu)^{1/p}.$
 - 2. $L_{\infty}(X,\mu) = \{f \mid ||f||_{\infty} < \infty\}, ||f||_{\infty} = \sup_{x \in X} |f(x)|.$
 - 3. $1 \leq p_1 < p_2 \leq \infty \quad \Rightarrow \quad L_{p_1} \supseteq L_{p_2}.$
 - 4. $L_p,\ p\in [1,+\infty],$ are Banach spaces (complete normed spaces).
 - 5. L_2 is a Hilbert space (complete Euclidean infinite-dimensional space), $(f,g) = \int_X f(x)g(x)d\mu$.

Carathéodory ODEs: C. Carathéodory, 1873–1950²

- Carathéodory conditions: let for a domain $D \subset \mathbb{R}^{1+n}_{t,x}$
 - 1. f(t, x) is defined and continuous in x for almost all t
 - 2. f(t,x) is measurable in t for any x
 - 3. $|f(t,x)| \le m(t)$, where m(t) is Lebesgue integrable on any segment
- Carathéodory ODE: $\dot{x} = f(t, x)$, where $f : D \to \mathbb{R}^n$ satisfies conditions 1–3.
- Solution to Carathéodory ODE: $x : |a, b| \to \mathbb{R}^n$, $x(t) = x(t_0) + \int_{t_0}^t f(s, x(s)) ds$, $t_0 \in |a, b|$.
- Existence: Solutions exist on sufficiently small segments $[t_0, t_0 + \varepsilon], \varepsilon > 0$.
- Uniqueness: If $|f(t,x) f(t,y)| \le l(t)|x y|$, l(t) Lebesgue integrable, then a solution is unique.
- Extension: Any solution in compact D can be extended in both sides up to ∂D .

²A.F. Filippov, "Differential equations with discontinuous right-hand side"