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1. Searching for the Ox:

Alone in the wilderness, lost in the jungle, the boy is searching, searching!

The swelling waters, the far-away mountains, and the unending path;

Exhausted and in despair, he knows not where to go,

He only hears the evening cicadas singing in the maple-woods.

Pu-ming, �The Ten Oxherding Pictures�
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Reminder: Plan of the previous lecture

1. Examples of optimal control problems

2. Statements of the main problems of this course:

2.1 controllability problem,
2.2 optimal control problem.

3. Smooth manifolds and vector �elds.
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Plan of this lecture

1. Lie groups, Lie algebras, and left-invariant optimal control problems

2. Controllability of linear systems

3. Local controllability of nonlinear systems

4. Statement of the Orbit theorem.
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Lie groups

• A set G is called a Lie group if it is a smooth manifold endowed with a group

structure such that the following mappings are smooth:

(g , h) 7→ gh, G × G → G ,

g 7→ g−1, G → G .

Let Id ∈ G denote the identity element of the group G .

• Denote by Rn×n the set of al real n × n matrices. The set

GL(n,R) = {g ∈ Rn×n | det g ̸= 0}

is obviously a Lie group w.r.t. the matrix product, it is called the general linear

group.

• The main examples of Lie groups are linear Lie groups, i.e., closed subgroups of

GL(n,R).
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Lie algebras

• A set g is called a Lie algebra if it is a vector space endowed with a binary
operation [ · , · ] called Lie bracket that satis�es the following properties:

(1) bilinearity: [ax + by , z ] = a[x , z ] + b[y , z ], x , y , z ∈ g, a, b ∈ R,
(2) skew symmetry: [x , y ] = −[y , x ], x , y ∈ g,
(3) Jacobi identity: [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0, x , y , z ∈ g.

• For any element g of a Lie group G , the mapping Lg : h 7→ gh, G → G , is
called the left translation by g . A vector �eld X ∈ Vec(G ) is called left-invariant if

it is preserved by left translations: (Lg )∗(X (h)) = X (gh), g , h ∈ G .

• Lie bracket of left-invariant vector �elds is left-invariant. Thus left-invariant vector

�elds on a Lie group G form a Lie algebra g called the Lie algebra of the Lie

group G .

• There is a linear isomorphism g ∼= TIdG , which de�nes the structure of a Lie

algebra on TIdG . Thus the tangent space TIdG is also called the Lie algebra of the

Lie group G .
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Examples of Lie groups G and their Lie algebras g

• Denote the vector space Rn×n = {A = (aij) | aij ∈ R, i , j = 1, . . . , n}.
• The general linear group: GL(n,R) = {A ∈ Rn×n | detA ̸= 0},
its Lie algebra gl(n,R) = Rn×n with Lie bracket [A,B] = AB − BA.

• The special linear group: SL(n,R) = {A ∈ Rn×n | detA = 1},
sl(n,R) = {A ∈ Rn×n | trA = 0}.

• The special orthogonal group: SO(n) = {A ∈ Rn×n | AAT = Id, detA = 1},
so(n) = {A ∈ Rn×n | A+ AT = 0}.

• The special Euclidean group:

SE(n) =

{(
Y b
0 1

)
∈ R(n+1)×(n+1) | Y ∈ SO(n), b ∈ Rn

}
⊂ GL(n + 1),

se(n) =

{(
A b
0 0

)
| A ∈ so(n), b ∈ Rn

}
.
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Left-invariant vector �elds and optimal control problems
• For a Lie group G , the tangent space is TgG = (Lg )∗TIdG , g ∈ G .

• In the case of a linear Lie group G ⊂ GL(n,R), (Lg )∗A = gA, g ∈ G , A ∈ TIdG .

• Thus left-invariant vector �elds on a linear Lie group G have the form

V (g) = gA, g ∈ G , A ∈ TIdG .

• A control system on a Lie group G

ġ = f (g , u), g ∈ G , u ∈ U,

is called left-invariant if its dynamics is preserved by left translations:

(Lh)∗f (g , u) = f (hg , u), g , h ∈ G , u ∈ U.

• An optimal control problem on G is called left-invariant if both its dynamics and

the cost functional are preserved by left translations.

• If an optimal control problem is left-invariant on a Lie group, we can set g(0) = Id.
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Controllability of linear systems:

Cauchy's formula
Linear control systems:

ẋ = Ax +
k∑

i=1

uibi = Ax + Bu, x ∈ Rn, u = (u1, . . . , uk) ∈ Rk

Find solutions by the variation of constants method:

x(t) = eAtC (t), eAt =
∑∞

i=0
(At)k/k!,

ẋ = AeAtC + eAt Ċ = AeAtC + Bu,

Ċ (t) = e−AtBu(t), ⇒ C (t) =

∫ t

0

e−AsBu(s) ds + C0,

x(t) = eAt
(∫ t

0

e−AsBu(s) ds + C0

)
, x(0) = C0 = x0,

x(t) = eAt
(
x0 +

∫ t

0

e−AsBu(s) ds

)
� Cauchy's formula for linear systems
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Kalman controllability test

A control system in Rn is called globally controllable from a point x0 ∈ Rn for time

t1 > 0 (for time not greater than t1) if Ax0(t1) = Rn ( resp. Ax0(≤ t1) = Rn).

Theorem (R. Kalman)

Let t1 > 0 and x0 ∈ Rn. A linear system ẋ = Ax + Bu is globally controllable from x0
for time t1 i� span(B,AB, . . . ,An−1B) = Rn.

10 / 25



Proof of the Kalman test
• The mapping L1 ∋ u(·) 7→ x(t1) ∈ Rn is a�ne, thus its image Ax0(t1) is an a�ne

subspace of Rn.
• Rewrite the de�nition of controllability taking into account Cauchy's formula:

Ax0(t1) = Rn ⇔ Im eAt1
(
x0 +

∫ t1

0

e−AtBu(t) dt

)
= Rn

⇔ Im

∫ t1

0

e−AtBu(t) dt = Rn.

• Necessity. Let Ax0(t1) = Rn, but span(B,AB, . . . ,An−1B) ̸= Rn.
• Then ∃ 0 ̸= p ∈ Rn∗ s.t. pAiB = 0, i = 0, . . . , n − 1.
• By the Cayley�Hamilton theorem, An =

∑n−1
i=0 αiA

i for some αi ∈ R. Thus

Am =
n−1∑
i=0

βm
i Ai , βm

i ∈ R, m = 0, 1, 2, . . . .
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Proof of the Kalman test

• Consequently,

pAmB =
n−1∑
i=0

βm
i pAiB = 0, m = 0, 1, 2, . . . ,

pe−AtB = p
∞∑

m=0

(−At)m

m!
B = 0,

and Im
∫ t1
0

e−AtBu(t) dt ̸= Rn, a contradiction.

• Necessity proved.
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Proof of the Kalman test

• Su�ciency. Let span(B,AB, . . . ,An−1B) = Rn, but Im
∫ t1
0

e−AtBu(t) dt ̸= Rn.

• Then ∃ 0 ̸= p ∈ Rn∗ s.t.

p

∫ t1

0

e−AtBu(t) dt = 0 ∀u ∈ L1([0, t1],Rk).

• Let e1, . . . , ek be the standard frame in Rk . For any τ ∈ [0, t1] and any

i = 1, . . . , k , de�ne the following controls:

u(t) =

{
ei , t ∈ [0, τ ],
0, t ∈ (τ, t1].

• We have
∫ t1
0

e−AtBu(t) dt =
∫ τ
0
e−Atbi dt =

Id−e−Aτ

A bi , thus p
Id−e−Aτ

A B = 0.

• We di�erentiate successively previous identity at τ = 0 and obtain

pB = pAB = · · · = pAn−1B = 0, a contradiction.
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Final remarks on controllability of linear systems

• The control used in the proof of Kalman's controllability test is piecewise constant.

Thus if Kalman's condition holds, then linear system is controllable for any time

t1 > 0 with piecewise-constant controls.

• For linear systems, controllability for the class of admissible controls u(·) ∈ L1 is

equivalent to controllability for any class of admissible controls u(·) ∈ L where L is

a linear subspace of L1 containing piecewise constant functions.

• The following conditions are equivalent for a linear system:
• the Kalman controllability condition
• ∀ t1 > 0 ∀ x0 ∈ Rn the system is globally controllable from x0 for time t1
• ∀ t1 > 0 ∀ x0 ∈ Rn the system is globally controllable from x0 for time not greater

than t1
• ∃ t1 > 0 ∃ x0 ∈ Rn such the linear system is globally controllable from x0 for time t1
• ∃ t1 > 0 ∃ x0 ∈ Rn such the linear system is globally controllable from x0 for time

not greater than t1.

• In these cases a linear system is called controllable.
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Local controllability of nonlinear systems
• Nonlinear system

ẋ = f (x , u), x ∈ Rn, u ∈ U ⊂ Rm. (1)

• A point (x0, u0) ∈ Rn × U is called an equilibrium point of system (1) if

f (x0, u0) = 0. Let u0 ∈ int U.
• Linearisation of system (1) at the equilibrium point (x0, u0):

ẏ = Ay + Bv , y ∈ Rn, v ∈ Rm, (2)

A =
∂f

∂x

∣∣∣∣
(x0,u0)

, B =
∂f

∂u

∣∣∣∣
(x0,u0)

.

Theorem (Linearisation principle for controllability)

If linearisation (2) is controllable at an equilibrium point (x0, u0), then for any t1 > 0

nonlinear system (1) is locally controllable at the point x0 for time t1:

∀ t1 > 0 x0 ∈ intAx0(t1).

Thus nonlinear system (1) is STLC at x0.
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Proof of linearisation principle for controllability

• Fix any t1 > 0.

• Let e1, . . . , en be the standard frame in Rn. Since linearisation is controllable, then

∀i = 1, . . . , n ∃vi ∈ L∞([0, t1],Rm) : yvi (0) = 0, yvi (t1) = ei . (3)

• Construct the following family of controls:

u(z , t) = u0 + z1v1(t) + · · ·+ znvn(t), z = (z1, . . . , zn) ∈ Rn.

• Since u0 ∈ intU, for su�ciently small |z | and any t ∈ [0, t1], the control
u(z , t) ∈ U, thus it is admissible for the nonlinear system.

• Consider the corresponding family of trajectories of the nonlinear system:

x(z , t) = xu(z,·)(t), x(z , 0) = x0, z ∈ B,

where B is a small open ball in Rn centred at the origin.
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Proof of linearisation principle for controllability
• Since

x(z , t1) ∈ Ax0(t1), z ∈ B,

then the mapping

F : z 7→ x(z , t1), B → Rn

satis�es the inclusion

F (B) ⊂ Ax0(t1).

• It remains to show that x0 ∈ intF (B). De�ne the matrix function

W (t) =
∂x(z , t)

∂z

∣∣∣∣
z=0

.

• We show that detW (t1) =
∂F
∂z

∣∣
z=0

̸= 0. This would imply that

x0 = F (0) ∈ intF (B) ⊂ Ax0(t1).
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Proof of linearisation principle for controllability

• Di�erentiating the identity ∂x
∂t = f (x , u(z , t)) w.r.t. z , we get

∂

∂t

∂x

∂z

∣∣∣∣
z=0

=
∂f

∂x

∣∣∣∣
(x0,u0)

∂x

∂z

∣∣∣∣
z=0

+
∂f

∂u

∣∣∣∣
(x0,u0)

∂u

∂z

∣∣∣∣
z=0

since u(0, t) ≡ u0 and x(0, t) ≡ x0.

• Thus we get a matrix ODE Ẇ (t) = AW (t) + B(v1(t), . . . , vn(t)) with the initial

condition W (0) = ∂x(z,0)
∂z

∣∣∣
z=0

= ∂x0
∂z

∣∣∣
z=0

= 0.

• This matrix ODE means that columns of the matrix W (t) are solutions to the

linearised system with the control vi (t). Since yvi (t1) = ei , we have
W (t1) = (e1, . . . , en), so detW (t1) = 1 ̸= 0.

• By the implicit function theorem, we have x0 ∈ intF (B), thus x0 ∈ intAx0(t1).
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Example: Application of the linearisation principle for controllability

ẋ = uf1(x) + (1− u)f2(x), x = (x1, x2) ∈ R2, u ∈ [0, 1], (4)

f1(x) =
∂

∂x1
, f2(x) = − ∂

∂x1
+ x1

∂

∂x2
.

• (x0, u0) = (0, 12) is an equilibrium point and u0 ∈ int([0, 1]).
• The linearisation of system (4) at the equilibrium point (x0, u0) has the form

ẏ = Ay + Bv , y ∈ R2, v ∈ R, (5)

A =

(
0 0
1
2 0

)
, B =

(
2

0

)
.

• Check Kalman's condition: rank(B,AB) = rank

(
2 0

0 1

)
= 2, thus linear

system (5) is controllable.
• So nonlinear system (4) is locally controllable at the point x0 for any time t1 > 0.
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Orbit of a control system
• A control system on a smooth manifold M is an arbitrary set of vector �elds

F ⊂ Vec(M).
• The attainable set of the system F from a point q0 ∈ M:

Aq0 = {etN fN ◦ · · · ◦ et1f1(q0) | ti ≥ 0, fi ∈ F , N ∈ N}.
• The orbit of the system F through the point q0:

Oq0 = {etN fN ◦ · · · ◦ et1f1(q0) | ti ∈ R, fi ∈ F , N ∈ N}.

q

0

f

1

f

2

A

q

0

q

0

f

1

f

2

O

q

0
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Basic properties of attainable sets and orbits

1. Aq0 ⊂ Oq0 , obvious

2. Oq0 has a �simpler� structure than Aq0

3. Aq0 has a �reasonable� structure inside Oq0 .

• A system F is called symmetric if F = −F .

4. F = −F ⇒ Aq0 = Oq0 .
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Action of di�eomorphisms on tangent vectors and vector �elds

• Let V ∈ Vec(M), and let Φ: M → N be a di�eomorphism, i.e., a smooth bijective

mapping with a smooth inverse.

• The vector �eld Φ∗V ∈ Vec(N) is de�ned as

Φ∗V |Φ(q) =
d

dt

∣∣∣∣
t=0

Φ ◦ etV (q) = Φ∗q(V (q)).

• Thus we have a mapping Φ∗ : Vec(M) → Vec(N), push-forward of vector �elds

from the manifold M to the manifold N under the action of the di�eomorphism Φ.
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Immersed submanifolds
• A subset W of a smooth manifold M is called a k-dimensional immersed

submanifold of M if there exists a k-dimensional manifold N and a smooth
mapping F : N → M such that:

• F is injective
• Ker F∗q = 0 for any q ∈ N
• W = F (N).

• Example: Figure of eight is a 1-dimensional immersed submanifold of the

2-dimensional plane.
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Example: Irrational winding of the torus

• Torus T2 = R2/(2π Z2) = {(x , y) ∈ S1 × S1}
• Vector �eld V = p ∂

∂x + q ∂
∂y ∈ Vec(T2), p2 + q2 ̸= 0.

• The orbit O0 of V through the origin 0 ∈ T2 may have two di�erent types:

(1) p/q ∈ Q ∪ {∞}. Then cl O0 = O0.
(2) p/q ∈ R\Q. Then cl O0 = T2. In this case the orbit O0 is called the irrational

winding of the torus.

• In the both cases the orbit O0 is an immersed submanifold of the torus, but in the

second case it is not embedded.

• So even for one vector �eld the orbit may be an immersed submanifold, but not an

embedded one

• An immersed submanifold N = F (W ) ⊂ M is called embedded if F : W → N is a

homeomorphism in the topology induced by the inclusion N ⊂ M). In case (2) the

topology of the orbit induced by the inclusion O0 ⊂ R2 is weaker than the

topology of the orbit induced by the immersion t 7→ etV (0), R → O0.
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The Orbit theorem

Theorem (Orbit theorem, Nagano�Sussmann)

Let F ⊂ Vec(M), and let q0 ∈ M.

(1) The orbit Oq0 is a connected immersed submanifold of M.

(2) For any q ∈ Oq0

TqOq0 = span(P∗F)(q) = span{(P∗V )(q) | P ∈ P, V ∈ F},
P = {etN fN ◦ · · · ◦ et1f1 | ti ∈ R, fi ∈ F , N ∈ N}.
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