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1. Searching for the Oz:
Alone in the wilderness, lost in the jungle, the boy is searching, searching!

The swelling waters, the far-away mountains, and the unending path;
Exhausted and in despair, he knows not where to go,

He only hears the evening cicadas singing in the maple-woods.
Pu-ming, “The Ten Ozherding Pictures”
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Reminder: Plan of the previous lecture

1. Examples of optimal control problems
2. Statements of the main problems of this course:

2.1 controllability problem,
2.2 optimal control problem.

3. Smooth manifolds and vector fields.
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Plan of this lecture

. Lie groups, Lie algebras, and left-invariant optimal control problems
. Controllability of linear systems

. Local controllability of nonlinear systems

. Statement of the Orbit theorem.
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Lie groups
® Aset G is called a Lie group if it is a smooth manifold endowed with a group
structure such that the following mappings are smooth:
(g, h) — gh, GxG— G,
g— gL G—G.

Let Id € G denote the identity element of the group G.
® Denote by R™" the set of al real n x n matrices. The set

GL(n,R) = {g € R™" | det g # 0}

is obviously a Lie group w.r.t. the matrix product, it is called the general linear
group.

® The main examples of Lie groups are linear Lie groups, i.e., closed subgroups of
GL(n,R).
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Lie algebras

A set g is called a Lie algebra if it is a vector space endowed with a binary
operation [-, -] called Lie bracket that satisfies the following properties:

(1) bilinearity: [ax + by, z] = a[x, z] + by, z]. x,y,z€g, a beR,
(2) skew symmetry: x,¥] = -1y, x]. X, Yy €g,
(3) Jacobiidentity:  [x, [y, 2] + [y [z xl] + [z, by =0, x, v, z€q.

For any element g of a Lie group G, the mapping Ly : h— gh, G—G,is
called the left translation by g. A vector field X € Vec(G) is called left-invariant if
it is preserved by left translations: (Lg).(X(h)) = X(gh), g, heG.

Lie bracket of left-invariant vector fields is left-invariant. Thus left-invariant vector
fields on a Lie group G form a Lie algebra g called the Lie algebra of the Lie
group G.

There is a linear isomorphism g = T4 G, which defines the structure of a Lie
algebra on T\4G. Thus the tangent space T\4G is also called the Lie algebra of the
Lie group G.
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Examples of Lie groups G and their Lie algebras g

Denote the vector space R™" = {A = (aj) | aj € R, i,j=1,...,n}.

The general linear group: GL(n,R) = {A € R™" | det A # 0},

its Lie algebra gl(n,R) = R™*" with Lie bracket [A, B] = AB — BA.

The special linear group: SL(n,R) = {A € R"™" | det A =1},

sl(n,R) ={A € R™" | trA=0}.

The special orthogonal group: SO(n) = {A € R™" | AAT = Id, detA = 1},
so(n) = {A € R™" | A+ AT =0}.

The special Euclidean group:

SE(n) = {( g ’1’ > e R*DX(n+1) | 'y € SO(n), b e R”} C GL(n+1),

ﬁe(n):{<é\ g) | A €so(n), beR”}.

7/25



Left-invariant vector fields and optimal control problems

For a Lie group G, the tangent space is T,G = (Lg)« T14G, ge€aG.
In the case of a linear Lie group G C GL(n,R), (Lg)«A=gA g€ G, Ac Ti4G.
Thus left-invariant vector fields on a linear Lie group G have the form

V(g) = gA, ge G, Aec TyG.
A control system on a Lie group G
g ="f(g,u), geqG, uvel,
is called left-invariant if its dynamics is preserved by left translations:
(Lp)«f(g,u) = f(hg, u), g, he G, uel.

An optimal control problem on G is called /left-invariant if both its dynamics and
the cost functional are preserved by left translations.

If an optimal control problem is left-invariant on a Lie group, we can set g(0) = Id.
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Controllability of linear systems:

Cauchy's formula
Linear control systems:

k
>'<:Ax—|-Zu;b,-:Ax+Bu, x€eR", u=(u,...,u) € Rk
i=1
Find solutions by the variation of constants method:

_ At At _ % K /gl
x(t) = e C(1), e Z;:o (At)</k!,
x = Ae’tC + M C = Ae™ C + Bu,

C(t)=e ™Bu(t), = C(t)= /t e Bu(s) ds + G,
0
x(t) = et (/t e "*Bu(s) ds + Co> , x(0) = Gy = xp,
0

t
x(t) = e’ (xo +/ e *Bu(s) ds> — Cauchy's formula for linear systems
0

9/25



Kalman controllability test

A control system in R" is called globally controllable from a point xo € R” for time
t1 > 0 (for time not greater than t1) if A, (t1) =R" (resp. A, (< t1) =R").

Theorem (R. Kalman)

Let t; > 0 and xg € R". A linear system x = Ax + Bu is globally controllable from xp
for time t iff span(B, AB,...,A""1B) = R",
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Proof of the Kalman test

The mapping L' > u(-) = x(t1) € R" is affine, thus its image A, (t1) is an affine
subspace of R".
Rewrite the definition of controllability taking into account Cauchy’s formula:

t1
Ao(t)) =R" & Im et <x0 + / e tBu(t) dt) =R"
0
t1
@Im/ e “'Bu(t) dt = R".
0
Necessity. Let A, (t1) = R", but span(B, AB, ..., A""1B) # R".

Then 30#peR™st. pAAB=0, i=0,...,n—1.
By the Cayley—Hamilton theorem, A" = 272_01 a; A’ for some o € R. Thus

n—1
A" =N"BrAL BT ER, m=0,1.2,....
i=0
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Proof of the Kalman test

e Consequently,

n—1
pATB =" BMpA'B =0, m=0,1,2,...,
i=0
—Atp _ S (_At)m _
pe "B=p Z oy B =0,
m=0

and Im fotl e AtBu(t) dt # R", a contradiction.

® Necessity proved.
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Proof of the Kalman test
Sufficiency. Let span(B, AB, ..., A"1B) = R", but Im [, e~ **Bu(t) dt # R".
Then 30 # p € R™ s.t.

t1
p/ e MBu(t)dt =0  Vue [1([0, 1], R¥).
0

Let ey,..., ek be the standard frame in R¥. For any 7 € [0, t;] and any
i=1,...,k, define the following controls:
[ e, te]o,7],
u(t) = { 0, te(rt].

We have [* e~ AtBu(t)dt = [J e "tb; dt = 1 if\_AT b;, thus p' 72_” B=0.
We differentiate successively previous identity at 7 = 0 and obtain
pB = pAB = --- = pA""1B =0, a contradiction.



Final remarks on controllability of linear systems

® The control used in the proof of Kalman's controllability test is piecewise constant.
Thus if Kalman's condition holds, then linear system is controllable for any time
t; > 0 with piecewise-constant controls.

® For linear systems, controllability for the class of admissible controls u(-) € L! is
equivalent to controllability for any class of admissible controls u(-) € L where L is
a linear subspace of L' containing piecewise constant functions.
® The following conditions are equivalent for a linear system:
® the Kalman controllability condition
® Vi >0Vxy €R" the system is globally controllable from xq for time t;
® Vi >0Vxp € R" the system is globally controllable from xp for time not greater
than t;
® Jt; > 0 dxp € R" such the linear system is globally controllable from xq for time t;
® 3t > 0 Ix € R" such the linear system is globally controllable from xq for time
not greater than t;.

® |n these cases a linear system is called controllable.
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Local controllability of nonlinear systems
® Nonlinear system
x = f(x, u), xeR", wvweUCcCR™ (1)

® A point (xo, up) € R" x U is called an equilibrium point of system (1) if
f(xo,up) = 0. Let yp € int U.
® [inearisation of system (1) at the equilibrium point (xp, ug):

y=Ay+Bv, yeR" vecRT (2)
f f
Aot gl 9
6X (XO,UO) 8u (XO,UO)

Theorem (Linearisation principle for controllability)

If linearisation (2) is controllable at an equilibrium point (xo, ug), then for any t; > 0
nonlinear system (1) is locally controllable at the point xy for time t;:

Vitr >0 xo€intAg(tr).
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Proof of linearisation principle for controllability

Fix any t; > 0.
Let e1,..., e, be the standard frame in R". Since linearisation is controllable, then
Vi=1,...,n 3v; € L([0, 4], R™) . y,(0) =0, y,(t1)=cei. (3)

Construct the following family of controls:
u(z,t) = up +z1va(t) + -+ zpva(t), z=(z1,...,25) € R".

Since yg € int U, for sufficiently small |z| and any t € [0, t;], the control
u(z,t) € U, thus it is admissible for the nonlinear system.

Consider the corresponding family of trajectories of the nonlinear system:
X(Z7 t):Xu(z,-)(t)v X(Z7O) =x0, ZE€B,

where B is a small open ball in R” centred at the origin.
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Proof of linearisation principle for controllability

® Since
X(Z7 tl) S AXo(t].)u zeB,

then the mapping
F:z—x(z,t1), B—R"

satisfies the inclusion
F(B) C Ay (t1).

® |t remains to show that xg € int F(B). Define the matrix function

_ 0x(z,t)

W(t) = R L

® We show that det W(t;) = ?)—f ,—o 7 0. This would imply that
xo = F(0) € int F(B) C Ay (t1)-
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Proof of linearisation principle for controllability

Differentiating the identity % = f(x,u(z,t)) w.r.t. z, we get

oox|  _of|  ox| L of| o
ot 0z|,_, Ox (0,10 0z|,_, Ou (x0,0) 0z|,_,
since u(0,t) = up and x(0,t) = xp.
Thus we get a matrix ODE W/(t W(t) + B(wvi(t),..., va(t)) with the initial
condition W(0) = % - %420 0 =0.

This matrix ODE means that columns of the matrix W(t) are solutions to the
linearised system with the control v;(t). Since y,.(t1) = e;, we have
W(t1) = (e1,...,en), so det W(t;) =1 #0.

By the implicit function theorem, we have xp € int F(B), thus xp € int Ay (t1). O
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Example: Application of the linearisation principle for controllability

x=ufi(x)+ (1 —uw)h(x), x=(1,x)ecR? wuvel0,1] (4)
0 0 0
fi(x) = 2 H(X) = —— 4 x—.
1(x) ox,’ 2(x) o1 + X1 9%
e (X% u% = (0, %) is an equilibrium point and u® € int([0, 1]).
® The linearisation of system (4) at the equilibrium point (x°, u%) has the form
y=Ay+Bv, yeR)® veR, (5)
0 0 2
=(30) o=(5),
30 0
, .\ 2 0 .
¢ Check Kalman's condition: rank(B, AB) = rank ( 01 > = 2, thus linear

system (5) is controllable.

So nonlinear system (4) is locally controllable at the point x° for any time t; > 0.
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Orbit of a control system

® A control system on a smooth manifold M is an arbitrary set of vector fields
F C Vec(M).
® The attainable set of the system F from a point gg € M:

Aqoz{et/vf/vo...oetlﬂ(qo)’t,'ZO, fie F, NeN}L
® The orbit of the system F through the point qo:
Og = {eMW o 0eff(q) | t; €R, ficF, NN}

qo
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Basic properties of attainable sets and orbits

1. Agy C Og,, obvious
2. Og, has a “simpler” structure than Ag,

3. Ag, has a “reasonable” structure inside O, .

® A system F is called symmetric if F = —F.
4. F: _..F = Aqo = Oqo-
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Action of diffeomorphisms on tangent vectors and vector fields

® Let V € Vec(M), and let ®: M — N be a diffeomorphism, i.e., a smooth bijective
mapping with a smooth inverse.

® The vector field .,V € Vec(N) is defined as

d

T dt|,_, o et (q) = Pug(V(a)).

®.Vleo(q)

® Thus we have a mapping .. : Vec(M) — Vec(N), push-forward of vector fields
from the manifold M to the manifold N under the action of the diffeomorphism ®.
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Immersed submanifolds

® A subset W of a smooth manifold M is called a k-dimensional immersed
submanifold of M if there exists a k-dimensional manifold N and a smooth
mapping F: N — M such that:
® F is injective
® KerfF,q=0foranyge N
o W =F(N).
® Example: Figure of eight is a 1-dimensional immersed submanifold of the
2-dimensional plane.
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Example: Irrational winding of the torus
Torus T? = R?/(2n Z?) = {(x,y) € S' x S1}
Vector field V = pa—aX + q% € Vec(T?), p? + q* # 0.

The orbit Op of V through the origin 0 € T? may have two different types:

(1) p/ge QU {oc}. Then cl Oy = Oo.

(2) p/qeR\Q. Then cl Og = T?. In this case the orbit Op is called the irrational
winding of the torus.

In the both cases the orbit Qg is an immersed submanifold of the torus, but in the

second case it is not embedded.

So even for one vector field the orbit may be an immersed submanifold, but not an

embedded one

An immersed submanifold N = F(W) C M is called embedded if F : W — N is a

homeomorphism in the topology induced by the inclusion N C M). In case (2) the

topology of the orbit induced by the inclusion @y C R? is weaker than the

topology of the orbit induced by the immersion t — et (0), R — Op.
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The Orbit theorem

Theorem (Orbit theorem, Nagano—Sussmann)

Let F C Vec(M), and let qo € M.

(1) The orbit Og, is a connected immersed submanifold of M.
(2) Forany q € Og,

TqOqo = span(P..F)(q) = span{(P.V)(q) | PP, V € F},
’P:{et’\’f’\’o‘--oetlfl‘t,'ER, fi e F, NGN}.
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