Lie groups and Lie algebras. Controllability of linear and nonlinear systems. Orbit theorem (Lecture 2)

Yuri Sachkov

Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia yusachkov@gmail.com

«Geometric control theory, sub-Riemannian geometry, and their applications»

Lecture course in Steklov Mathematical Institute, Moscow

27 September 2022

1. Searching for the Ox:

Alone in the wilderness, lost in the jungle, the boy is searching, searching! The swelling waters, the far-away mountains, and the unending path; Exhausted and in despair, he knows not where to go, He only hears the evening cicadas singing in the maple-woods. Pu-ming, "The Ten Oxherding Pictures"

Reminder: Plan of the previous lecture

- 1. Examples of optimal control problems
- 2. Statements of the main problems of this course:
 - 2.1 controllability problem,
 - 2.2 optimal control problem.
- 3. Smooth manifolds and vector fields.

Plan of this lecture

- 1. Lie groups, Lie algebras, and left-invariant optimal control problems
- 2. Controllability of linear systems
- 3. Local controllability of nonlinear systems
- 4. Statement of the Orbit theorem.

Lie groups

• A set G is called a *Lie group* if it is a smooth manifold endowed with a group structure such that the following mappings are smooth:

$$(g,h)\mapsto gh, \qquad G\times G\to G,$$
 $g\mapsto g^{-1}, \qquad G\to G.$

Let $Id \in G$ denote the identity element of the group G.

• Denote by $\mathbb{R}^{n\times n}$ the set of all real $n\times n$ matrices. The set

$$\mathsf{GL}(n,\mathbb{R}) = \{ g \in \mathbb{R}^{n \times n} \mid \det g \neq 0 \}$$

is obviously a Lie group w.r.t. the matrix product, it is called the *general linear group*.

• The main examples of Lie groups are *linear Lie groups*, i.e., closed subgroups of $GL(n, \mathbb{R})$.

Lie algebras

- A set $\mathfrak g$ is called a *Lie algebra* if it is a vector space endowed with a binary operation $[\cdot,\cdot]$ called *Lie bracket* that satisfies the following properties:
 - (1) bilinearity: $[ax + by, z] = a[x, z] + b[y, z], \quad x, y, z \in \mathfrak{g}, \quad a, b \in \mathbb{R},$
 - (2) skew symmetry: $[x, y] = -[y, x], \quad x, y \in \mathfrak{g},$
 - (3) Jacobi identity: $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, \quad x, y, z \in \mathfrak{g}.$
- For any element g of a Lie group G, the mapping $L_g: h \mapsto gh$, $G \to G$, is called the *left translation* by g. A vector field $X \in \text{Vec}(G)$ is called *left-invariant* if it is preserved by left translations: $(L_g)_*(X(h)) = X(gh)$, $g, h \in G$.
- Lie bracket of left-invariant vector fields is left-invariant. Thus left-invariant vector fields on a Lie group G form a Lie algebra g called the *Lie algebra of the Lie group G*.
- There is a linear isomorphism $\mathfrak{g}\cong T_{\operatorname{Id}}G$, which defines the structure of a Lie algebra on $T_{\operatorname{Id}}G$. Thus the tangent space $T_{\operatorname{Id}}G$ is also called the Lie algebra of the Lie group G.

Examples of Lie groups G and their Lie algebras $\mathfrak g$

- Denote the vector space $\mathbb{R}^{n\times n}=\{A=(a_{ij})\mid a_{ij}\in\mathbb{R},\ i,j=1,\ldots,n\}.$
- The general linear group: $GL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \det A \neq 0\}$, its Lie algebra $\mathfrak{gl}(n,\mathbb{R}) = \mathbb{R}^{n \times n}$ with Lie bracket [A,B] = AB BA.
- The special linear group: $SL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \det A = 1\},\$ $\mathfrak{sl}(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \operatorname{tr} A = 0\}.$
- The special orthogonal group: $SO(n) = \{A \in \mathbb{R}^{n \times n} \mid AA^{\mathsf{T}} = \mathsf{Id}, \; \mathsf{det} \, A = 1\}, \\ \mathfrak{so}(n) = \{A \in \mathbb{R}^{n \times n} \mid A + A^{\mathsf{T}} = 0\}.$
- The special Euclidean group:

$$\mathsf{SE}(n) = \left\{ \begin{pmatrix} Y & b \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{(n+1)\times(n+1)} \mid Y \in \mathsf{SO}(n), \ b \in \mathbb{R}^n \right\} \subset \mathsf{GL}(n+1),$$
$$\mathfrak{se}(n) = \left\{ \begin{pmatrix} A & b \\ 0 & 0 \end{pmatrix} \mid A \in \mathfrak{so}(n), \ b \in \mathbb{R}^n \right\}.$$

Left-invariant vector fields and optimal control problems

- For a Lie group G, the tangent space is $T_gG = (L_g)_*T_{\operatorname{Id}}G$, $g \in G$.
- In the case of a linear Lie group $G \subset GL(n,\mathbb{R})$, $(L_g)_*A = gA$, $g \in G$, $A \in T_{\mathsf{Id}}G$.
- Thus *left-invariant* vector fields on a linear Lie group G have the form

$$V(g) = gA, \qquad g \in G, \quad A \in T_{\mathsf{Id}}G.$$

• A control system on a Lie group G

$$\dot{g} = f(g, u), \qquad g \in G, \quad u \in U,$$

is called *left-invariant* if its dynamics is preserved by left translations:

$$(L_h)_* f(g, u) = f(hg, u), \qquad g, h \in G, \quad u \in U.$$

- An optimal control problem on G is called *left-invariant* if both its dynamics and the cost functional are preserved by left translations.
- If an optimal control problem is left-invariant on a Lie group, we can set g(0) = Id.

Controllability of linear systems:

Cauchy's formula

Linear control systems:

$$\dot{x} = Ax + \sum_{i=1}^{K} u_i b_i = Ax + Bu, \qquad x \in \mathbb{R}^n, \quad u = (u_1, \dots, u_k) \in \mathbb{R}^k$$

Find solutions by the variation of constants method:

and solutions by the variation of constants method:
$$x(t) = e^{At}C(t), \qquad e^{At} = \sum_{i=0}^{\infty} (At)^k/k!,$$

$$\dot{x} = Ae^{At}C + e^{At}\dot{C} = Ae^{At}C + Bu,$$

$$\dot{C}(t) = e^{-At}Bu(t), \quad \Rightarrow \quad C(t) = \int_0^t e^{-As}Bu(s)\,ds + C_0,$$

$$x(t) = e^{At}\left(\int_0^t e^{-As}Bu(s)\,ds + C_0\right), \qquad x(0) = C_0 = x_0,$$

$$x(t) = e^{At}\left(x_0 + \int_0^t e^{-As}Bu(s)\,ds\right) - Cauchy's formula \text{ for linear systems}$$

Kalman controllability test

A control system in \mathbb{R}^n is called *globally controllable* from a point $x_0 \in \mathbb{R}^n$ for time $t_1 > 0$ (for time not greater than t_1) if $\mathcal{A}_{x_0}(t_1) = \mathbb{R}^n$ (resp. $\mathcal{A}_{x_0}(\leq t_1) = \mathbb{R}^n$).

Theorem (R. Kalman)

Let $t_1 > 0$ and $x_0 \in \mathbb{R}^n$. A linear system $\dot{x} = Ax + Bu$ is globally controllable from x_0 for time t_1 iff span $(B, AB, \dots, A^{n-1}B) = \mathbb{R}^n$.

Proof of the Kalman test

- The mapping $L^1 \ni u(\cdot) \mapsto x(t_1) \in \mathbb{R}^n$ is affine, thus its image $\mathcal{A}_{x_0}(t_1)$ is an affine subspace of \mathbb{R}^n .
- Rewrite the definition of controllability taking into account Cauchy's formula:

$$\mathcal{A}_{\mathsf{x}_0}(t_1) = \mathbb{R}^n \Leftrightarrow \mathsf{Im} \ e^{\mathsf{A}t_1} \left(\mathsf{x}_0 + \int_0^{t_1} e^{-\mathsf{A}t} \mathsf{B} \mathsf{u}(t) \, dt \right) = \mathbb{R}^n \ \Leftrightarrow \mathsf{Im} \int_0^{t_1} e^{-\mathsf{A}t} \mathsf{B} \mathsf{u}(t) \, dt = \mathbb{R}^n.$$

- Necessity. Let $\mathcal{A}_{\mathsf{x_0}}(t_1) = \mathbb{R}^n$, but $\mathsf{span}(B, AB, \dots, A^{n-1}B) \neq \mathbb{R}^n$.
- Then $\exists \ 0 \neq p \in \mathbb{R}^{n*}$ s.t. $pA^iB = 0, \quad i = 0, \dots, n-1$.
- By the Cayley–Hamilton theorem, $A^n = \sum_{i=0}^{n-1} \alpha_i A^i$ for some $\alpha_i \in \mathbb{R}$. Thus

$$A^m = \sum_{i=0}^{n-1} \beta_i^m A^i, \quad \beta_i^m \in \mathbb{R}, \quad m = 0, 1, 2, \dots$$

Proof of the Kalman test

• Consequently,

$$pA^{m}B = \sum_{i=0}^{n-1} \beta_{i}^{m} pA^{i}B = 0, \qquad m = 0, 1, 2, ...,$$
 $pe^{-At}B = p\sum_{m=0}^{\infty} \frac{(-At)^{m}}{m!}B = 0,$

and $\operatorname{Im} \int_0^{t_1} e^{-At} Bu(t) \, dt \neq \mathbb{R}^n$, a contradiction.

Necessity proved.

Proof of the Kalman test

- Sufficiency. Let span $(B,AB,\ldots,A^{n-1}B)=\mathbb{R}^n$, but $\mathrm{Im}\int_0^{t_1}e^{-At}Bu(t)\,dt
 eq \mathbb{R}^n$.
- Then $\exists \ 0 \neq p \in \mathbb{R}^{n*}$ s.t.

$$p\int_0^{t_1}e^{-At}Bu(t)\,dt=0\qquad orall u\in L^1([0,t_1],\mathbb{R}^k).$$

• Let e_1, \ldots, e_k be the standard frame in \mathbb{R}^k . For any $\tau \in [0, t_1]$ and any $i = 1, \ldots, k$, define the following controls:

$$u(t) = \left\{ egin{array}{ll} e_i, & t \in [0, au], \ 0, & t \in (au, t_1]. \end{array}
ight.$$

- We have $\int_0^{t_1} e^{-At} Bu(t) dt = \int_0^{\tau} e^{-At} b_i dt = \frac{\operatorname{Id} e^{-A\tau}}{A} b_i$, thus $p \frac{\operatorname{Id} e^{-A\tau}}{A} B = 0$.
- We differentiate successively previous identity at $\tau = 0$ and obtain $pB = pAB = \cdots = pA^{n-1}B = 0$, a contradiction.

Final remarks on controllability of linear systems

- The control used in the proof of Kalman's controllability test is piecewise constant. Thus if Kalman's condition holds, then linear system is controllable for any time $t_1 > 0$ with piecewise-constant controls.
- For linear systems, controllability for the class of admissible controls $u(\cdot) \in L^1$ is equivalent to controllability for any class of admissible controls $u(\cdot) \in L$ where L is a linear subspace of L^1 containing piecewise constant functions.
- The following conditions are equivalent for a linear system:
 - the Kalman controllability condition
 - $orall \, t_1 > 0 \; orall \, x_0 \in \mathbb{R}^n$ the system is globally controllable from x_0 for time t_1
 - $\forall \, t_1>0 \; \forall \, x_0\in \mathbb{R}^n$ the system is globally controllable from x_0 for time not greater than t_1
 - $\exists t_1 > 0 \ \exists x_0 \in \mathbb{R}^n$ such the linear system is globally controllable from x_0 for time t_1
 - $\exists t_1 > 0 \ \exists x_0 \in \mathbb{R}^n$ such the linear system is globally controllable from x_0 for time not greater than t_1 .
- In these cases a linear system is called *controllable*.

Local controllability of nonlinear systems

Nonlinear system

$$\dot{x} = f(x, u), \qquad x \in \mathbb{R}^n, \quad u \in U \subset \mathbb{R}^m.$$
 (1)

- A point $(x_0, u_0) \in \mathbb{R}^n \times U$ is called an *equilibrium point* of system (1) if $f(x_0, u_0) = 0$. Let $u_0 \in \text{int } U$.
- Linearisation of system (1) at the equilibrium point (x_0, u_0) :

$$\dot{y} = Ay + Bv, \qquad y \in \mathbb{R}^n, \quad v \in \mathbb{R}^m,$$

$$A = \frac{\partial f}{\partial x} \Big|_{(x_0, u_0)}, \quad B = \frac{\partial f}{\partial u} \Big|_{(x_0, u_0)}.$$
(2)

Theorem (Linearisation principle for controllability)

If linearisation (2) is controllable at an equilibrium point (x_0, u_0) , then for any $t_1 > 0$ nonlinear system (1) is locally controllable at the point x_0 for time t_1 :

$$\forall t_1 > 0 \quad x_0 \in \operatorname{int} \mathcal{A}_{x_0}(t_1).$$

Proof of linearisation principle for controllability

- Fix any $t_1 > 0$.
- Let e_1, \ldots, e_n be the standard frame in \mathbb{R}^n . Since linearisation is controllable, then

$$\forall i = 1, ..., n \quad \exists v_i \in L^{\infty}([0, t_1], \mathbb{R}^m) : \quad v_{v_i}(0) = 0, \quad v_{v_i}(t_1) = e_i.$$
 (3)

• Construct the following family of controls:

$$u(z,t) = u_0 + z_1 v_1(t) + \cdots + z_n v_n(t), \quad z = (z_1, \dots, z_n) \in \mathbb{R}^n.$$

- Since $u_0 \in \text{int } U$, for sufficiently small |z| and any $t \in [0, t_1]$, the control $u(z, t) \in U$, thus it is admissible for the nonlinear system.
- Consider the corresponding family of trajectories of the nonlinear system:

$$x(z,t) = x_{u(z,\cdot)}(t), \quad x(z,0) = x_0, \quad z \in B,$$

where B is a small open ball in \mathbb{R}^n centred at the origin.

Proof of linearisation principle for controllability

• Since

$$x(z, t_1) \in \mathcal{A}_{x_0}(t_1), \quad z \in B,$$

then the mapping

$$F: z \mapsto x(z, t_1), \quad B \to \mathbb{R}^n$$

satisfies the inclusion

$$F(B) \subset \mathcal{A}_{\mathsf{x}_0}(t_1).$$

• It remains to show that $x_0 \in \operatorname{int} F(B)$. Define the matrix function

$$W(t) = \left. \frac{\partial x(z,t)}{\partial z} \right|_{z=0}.$$

• We show that $\det W(t_1) = \left. \frac{\partial F}{\partial z} \right|_{z=0}
eq 0$. This would imply that

$$x_0 = F(0) \in \operatorname{int} F(B) \subset \mathcal{A}_{x_0}(t_1).$$

Proof of linearisation principle for controllability

• Differentiating the identity $\frac{\partial x}{\partial t} = f(x, u(z, t))$ w.r.t. z, we get

$$\left. \frac{\partial}{\partial t} \left. \frac{\partial x}{\partial z} \right|_{z=0} = \left. \frac{\partial f}{\partial x} \right|_{(x_0, u_0)} \left. \frac{\partial x}{\partial z} \right|_{z=0} + \left. \frac{\partial f}{\partial u} \right|_{(x_0, u_0)} \left. \frac{\partial u}{\partial z} \right|_{z=0}$$

since $u(0,t) \equiv u_0$ and $x(0,t) \equiv x_0$.

- Thus we get a matrix ODE $\dot{W}(t) = AW(t) + B(v_1(t), \dots, v_n(t))$ with the initial condition $W(0) = \frac{\partial x(z,0)}{\partial z}\Big|_{z=0} = \frac{\partial x_0}{\partial z}\Big|_{z=0} = 0$.
- This matrix ODE means that columns of the matrix W(t) are solutions to the linearised system with the control $v_i(t)$. Since $y_{v_i}(t_1) = e_i$, we have $W(t_1) = (e_1, \ldots, e_n)$, so det $W(t_1) = 1 \neq 0$.
- By the implicit function theorem, we have $x_0 \in \operatorname{int} F(B)$, thus $x_0 \in \operatorname{int} \mathcal{A}_{x_0}(t_1)$.

Example: Application of the linearisation principle for controllability

$$\dot{x} = uf_1(x) + (1 - u)f_2(x), \qquad x = (x_1, x_2) \in \mathbb{R}^2, \quad u \in [0, 1],$$

$$f_1(x) = \frac{\partial}{\partial x_1}, \qquad f_2(x) = -\frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2}.$$
(4)

- $(x^0, u^0) = (0, \frac{1}{2})$ is an equilibrium point and $u^0 \in \operatorname{int}([0, 1])$.
- The linearisation of system (4) at the equilibrium point (x^0, u^0) has the form

$$\dot{y} = Ay + Bv, \qquad y \in \mathbb{R}^2, \quad v \in \mathbb{R},
A = \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$
(5)

- Check Kalman's condition: $rank(B, AB) = rank\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = 2$, thus linear system (5) is controllable.
- So nonlinear system (4) is locally controllable at the point x^0 for any time $t_1 > 0$.

Orbit of a control system

- A *control system* on a smooth manifold M is an arbitrary set of vector fields $\mathcal{F} \subset \text{Vec}(M)$.
- The attainable set of the system \mathcal{F} from a point $q_0 \in M$:

$$\mathcal{A}_{q_0} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1}(q_0) \mid t_i \geq 0, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.$$

• The *orbit* of the system \mathcal{F} through the point q_0 :

$$\mathcal{O}_{q_0} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1}(q_0) \mid t_i \in \mathbb{R}, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.$$

Basic properties of attainable sets and orbits

- 1. $\mathcal{A}_{q_0} \subset \mathcal{O}_{q_0}$, obvious
- 2. \mathcal{O}_{q_0} has a "simpler" structure than \mathcal{A}_{q_0}
- 3. \mathcal{A}_{q_0} has a "reasonable" structure inside \mathcal{O}_{q_0} .

- A system \mathcal{F} is called *symmetric* if $\mathcal{F} = -\mathcal{F}$.
- 4. $\mathcal{F} = -\mathcal{F} \quad \Rightarrow \quad \mathcal{A}_{q_0} = \mathcal{O}_{q_0}$

Action of diffeomorphisms on tangent vectors and vector fields

- Let $V \in \text{Vec}(M)$, and let $\Phi \colon M \to N$ be a *diffeomorphism*, i.e., a smooth bijective mapping with a smooth inverse.
- The vector field $\Phi_*V \in \text{Vec}(N)$ is defined as

$$\left. \Phi_* V
ight|_{\Phi(q)} = \left. rac{d}{dt}
ight|_{t=0} \quad \Phi \circ e^{tV}(q) = \Phi_{*q}(V(q)).$$

• Thus we have a mapping Φ_* : $Vec(M) \to Vec(N)$, push-forward of vector fields from the manifold M to the manifold N under the action of the diffeomorphism Φ .

Immersed submanifolds

- A subset W of a smooth manifold M is called a k-dimensional immersed submanifold of M if there exists a k-dimensional manifold N and a smooth mapping $F: N \to M$ such that:
 - *F* is injective
 - Ker $F_{*q} = 0$ for any $q \in N$
 - W = F(N).
- Example: Figure of eight is a 1-dimensional immersed submanifold of the 2-dimensional plane.

Example: Irrational winding of the torus

- Torus $\mathbb{T}^2 = \mathbb{R}^2/(2\pi \mathbb{Z}^2) = \{(x, y) \in S^1 \times S^1\}$
- Vector field $V = p \frac{\partial}{\partial x} + q \frac{\partial}{\partial y} \in \text{Vec}(\mathbb{T}^2), \ p^2 + q^2 \neq 0.$
- The orbit \mathcal{O}_0 of V through the origin $0 \in \mathbb{T}^2$ may have two different types:
 - (1) $p/q \in \mathbb{Q} \cup \{\infty\}$. Then cl $\mathcal{O}_0 = \mathcal{O}_0$.
 - (2) $p/q \in \mathbb{R} \setminus \mathbb{Q}$. Then cl $\mathcal{O}_0 = \mathbb{T}^2$. In this case the orbit \mathcal{O}_0 is called the *irrational* winding of the torus.
- In the both cases the orbit \mathcal{O}_0 is an immersed submanifold of the torus, but in the second case it is not embedded.
- So even for one vector field the orbit may be an immersed submanifold, but not an embedded one
- An immersed submanifold $N = F(W) \subset M$ is called *embedded* if $F: W \to N$ is a homeomorphism in the topology induced by the inclusion $N \subset M$). In case (2) the topology of the orbit induced by the inclusion $\mathcal{O}_0 \subset \mathbb{R}^2$ is weaker than the topology of the orbit induced by the immersion $t \mapsto e^{tV}(0)$, $\mathbb{R} \to \mathcal{O}_0$.

The Orbit theorem

Theorem (Orbit theorem, Nagano-Sussmann)

Let $\mathcal{F} \subset \text{Vec}(M)$, and let $q_0 \in M$.

- (1) The orbit \mathcal{O}_{q_0} is a connected immersed submanifold of M.
- (2) For any $q \in \mathcal{O}_{q_0}$

$$T_q \mathcal{O}_{q_0} = \operatorname{span}(\mathcal{P}_* \mathcal{F})(q) = \operatorname{span}\{(P_* V)(q) \mid P \in \mathcal{P}, \quad V \in \mathcal{F}\},\$$

 $\mathcal{P} = \{e^{t_N f_N} \circ \cdots \circ e^{t_1 f_1} \mid t_i \in \mathbb{R}, \quad f_i \in \mathcal{F}, \quad N \in \mathbb{N}\}.$