Lie groups and Lie algebras.
 Controllability of linear and nonlinear systems. Orbit theorem (Lecture 2)

Yuri Sachkov

Program Systems Institute
Russian Academy of Sciences
Pereslavl-Zalessky, Russia yusachkov@gmail.com
«Geometric control theory, sub-Riemannian geometry, and their applications» Lecture course in Steklov Mathematical Institute, Moscow

27 September 2022

1. Searching for the $O x$:

Alone in the wilderness, lost in the jungle, the boy is searching, searching! The swelling waters, the far-away mountains, and the unending path; Exhausted and in despair, he knows not where to go, He only hears the evening cicadas singing in the maple-woods. Pu-ming, "The Ten Oxherding Pictures"

Reminder: Plan of the previous lecture

1. Examples of optimal control problems
2. Statements of the main problems of this course:
2.1 controllability problem,
2.2 optimal control problem.
3. Smooth manifolds and vector fields.

Plan of this lecture

1. Lie groups, Lie algebras, and left-invariant optimal control problems
2. Controllability of linear systems
3. Local controllability of nonlinear systems
4. Statement of the Orbit theorem.

Lie groups

- A set G is called a Lie group if it is a smooth manifold endowed with a group structure such that the following mappings are smooth:

$$
\begin{aligned}
& (g, h) \mapsto g h, \quad G \times G \rightarrow G \\
& g \mapsto g^{-1}, \quad G \rightarrow G
\end{aligned}
$$

Let $\mathrm{Id} \in G$ denote the identity element of the group G.

- Denote by $\mathbb{R}^{n \times n}$ the set of al real $n \times n$ matrices. The set

$$
\mathrm{GL}(n, \mathbb{R})=\left\{g \in \mathbb{R}^{n \times n} \mid \operatorname{det} g \neq 0\right\}
$$

is obviously a Lie group w.r.t. the matrix product, it is called the general linear group.

- The main examples of Lie groups are linear Lie groups, i.e., closed subgroups of $G L(n, \mathbb{R})$.

Lie algebras

- A set \mathfrak{g} is called a Lie algebra if it is a vector space endowed with a binary operation [., •] called Lie bracket that satisfies the following properties:
(1) bilinearity: $[a x+b y, z]=a[x, z]+b[y, z], \quad x, y, z \in \mathfrak{g}, \quad a, b \in \mathbb{R}$,
(2) skew symmetry: $[x, y]=-[y, x], \quad x, y \in \mathfrak{g}$,
(3) Jacobi identity: $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0, \quad x, y, z \in \mathfrak{g}$.
- For any element g of a Lie group G, the mapping $L_{g}: h \mapsto g h, \quad G \rightarrow G$, is called the left translation by g. A vector field $X \in \operatorname{Vec}(G)$ is called left-invariant if it is preserved by left translations: $\left(L_{g}\right)_{*}(X(h))=X(g h), \quad g, h \in G$.
- Lie bracket of left-invariant vector fields is left-invariant. Thus left-invariant vector fields on a Lie group G form a Lie algebra \mathfrak{g} called the Lie algebra of the Lie group G.
- There is a linear isomorphism $\mathfrak{g} \cong T_{l d} G$, which defines the structure of a Lie algebra on $T_{\text {Id }} G$. Thus the tangent space $T_{\text {ld }} G$ is also called the Lie algebra of the Lie group G.

Examples of Lie groups G and their Lie algebras \mathfrak{g}

- Denote the vector space $\mathbb{R}^{n \times n}=\left\{A=\left(a_{i j}\right) \mid a_{i j} \in \mathbb{R}, i, j=1, \ldots, n\right\}$.
- The general linear group: $\mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det} A \neq 0\right\}$, its Lie algebra $\mathfrak{g l}(n, \mathbb{R})=\mathbb{R}^{n \times n}$ with Lie bracket $[A, B]=A B-B A$.
- The special linear group: $\operatorname{SL}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det} A=1\right\}$, $\mathfrak{s l}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{tr} A=0\right\}$.
- The special orthogonal group: $\mathrm{SO}(n)=\left\{A \in \mathbb{R}^{n \times n} \mid A A^{\top}=\mathrm{Id}\right.$, $\left.\operatorname{det} A=1\right\}$, $\mathfrak{s o}(n)=\left\{A \in \mathbb{R}^{n \times n} \mid A+A^{\top}=0\right\}$.
- The special Euclidean group:

$$
\begin{aligned}
& \mathrm{SE}(n)=\left\{\left.\left(\begin{array}{cc}
Y & b \\
0 & 1
\end{array}\right) \in \mathbb{R}^{(n+1) \times(n+1)} \right\rvert\, Y \in \mathrm{SO}(n), b \in \mathbb{R}^{n}\right\} \subset \mathrm{GL}(n+1), \\
& \mathfrak{s e}(n)=\left\{\left.\left(\begin{array}{cc}
A & b \\
0 & 0
\end{array}\right) \right\rvert\, A \in \mathfrak{s o}(n), b \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

Left-invariant vector fields and optimal control problems

- For a Lie group G, the tangent space is $T_{g} G=\left(L_{g}\right)_{*} T_{l d} G, \quad g \in G$.
- In the case of a linear Lie group $G \subset G L(n, \mathbb{R}),\left(L_{g}\right)_{*} A=g A, g \in G, A \in T_{\text {ld }} G$.
- Thus left-invariant vector fields on a linear Lie group G have the form

$$
V(g)=g A, \quad g \in G, \quad A \in T_{\mathrm{ld}} G .
$$

- A control system on a Lie group G

$$
\dot{g}=f(g, u), \quad g \in G, \quad u \in U
$$

is called left-invariant if its dynamics is preserved by left translations:

$$
\left(L_{h}\right)_{*} f(g, u)=f(h g, u), \quad g, h \in G, \quad u \in U
$$

- An optimal control problem on G is called left-invariant if both its dynamics and the cost functional are preserved by left translations.
- If an optimal control problem is left-invariant on a Lie group, we can set $g(0)=$ Id.

Controllability of linear systems:
 Cauchy's formula

Linear control systems:

$$
\dot{x}=A x+\sum_{i=1}^{k} u_{i} b_{i}=A x+B u, \quad x \in \mathbb{R}^{n}, \quad u=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{k}
$$

Find solutions by the variation of constants method:

$$
\begin{aligned}
& x(t)=e^{A t} C(t), \quad e^{A t}=\sum_{i=0}^{\infty}(A t)^{k} / k! \\
& \dot{x}=A e^{A t} C+e^{A t} \dot{C}=A e^{A t} C+B u \\
& \dot{C}(t)=e^{-A t} B u(t), \quad \Rightarrow \quad C(t)=\int_{0}^{t} e^{-A s} B u(s) d s+C_{0} \\
& x(t)=e^{A t}\left(\int_{0}^{t} e^{-A s} B u(s) d s+C_{0}\right), \quad x(0)=C_{0}=x_{0} \\
& x(t)=e^{A t}\left(x_{0}+\int_{0}^{t} e^{-A s} B u(s) d s\right)-\text { Cauchy's formula for linear systems }
\end{aligned}
$$

Kalman controllability test

A control system in \mathbb{R}^{n} is called globally controllable from a point $x_{0} \in \mathbb{R}^{n}$ for time $t_{1}>0$ (for time not greater than t_{1}) if $\mathcal{A}_{x_{0}}\left(t_{1}\right)=\mathbb{R}^{n}\left(\right.$ resp. $\left.\mathcal{A}_{x_{0}}\left(\leq t_{1}\right)=\mathbb{R}^{n}\right)$.

Theorem (R. Kalman)
Let $t_{1}>0$ and $x_{0} \in \mathbb{R}^{n}$. A linear system $\dot{x}=A x+B u$ is globally controllable from x_{0} for time t_{1} iff $\operatorname{span}\left(B, A B, \ldots, A^{n-1} B\right)=\mathbb{R}^{n}$.

Proof of the Kalman test

- The mapping $L^{1} \ni u(\cdot) \mapsto x\left(t_{1}\right) \in \mathbb{R}^{n}$ is affine, thus its image $\mathcal{A}_{x_{0}}\left(t_{1}\right)$ is an affine subspace of \mathbb{R}^{n}.
- Rewrite the definition of controllability taking into account Cauchy's formula:

$$
\begin{aligned}
\mathcal{A}_{x_{0}}\left(t_{1}\right)=\mathbb{R}^{n} & \Leftrightarrow \operatorname{Im} e^{A t_{1}}\left(x_{0}+\int_{0}^{t_{1}} e^{-A t} B u(t) d t\right)=\mathbb{R}^{n} \\
& \Leftrightarrow \operatorname{Im} \int_{0}^{t_{1}} e^{-A t} B u(t) d t=\mathbb{R}^{n} .
\end{aligned}
$$

- Necessity. Let $\mathcal{A}_{x_{0}}\left(t_{1}\right)=\mathbb{R}^{n}$, but $\operatorname{span}\left(B, A B, \ldots, A^{n-1} B\right) \neq \mathbb{R}^{n}$.
- Then $\exists 0 \neq p \in \mathbb{R}^{n *}$ s.t. $p A^{i} B=0, \quad i=0, \ldots, n-1$.
- By the Cayley-Hamilton theorem, $A^{n}=\sum_{i=0}^{n-1} \alpha_{i} A^{i}$ for some $\alpha_{i} \in \mathbb{R}$. Thus

$$
A^{m}=\sum_{i=0}^{n-1} \beta_{i}^{m} A^{i}, \quad \beta_{i}^{m} \in \mathbb{R}, \quad m=0,1,2, \ldots
$$

Proof of the Kalman test

- Consequently,

$$
\begin{aligned}
& p A^{m} B=\sum_{i=0}^{n-1} \beta_{i}^{m} p A^{i} B=0, \quad m=0,1,2, \ldots, \\
& p e^{-A t} B=p \sum_{m=0}^{\infty} \frac{(-A t)^{m}}{m!} B=0,
\end{aligned}
$$

and $\operatorname{Im} \int_{0}^{t_{1}} e^{-A t} B u(t) d t \neq \mathbb{R}^{n}$, a contradiction.

- Necessity proved.

Proof of the Kalman test

- Sufficiency. Let $\operatorname{span}\left(B, A B, \ldots, A^{n-1} B\right)=\mathbb{R}^{n}$, but $\operatorname{Im} \int_{0}^{t_{1}} e^{-A t} B u(t) d t \neq \mathbb{R}^{n}$.
- Then $\exists 0 \neq p \in \mathbb{R}^{n *}$ s.t.

$$
p \int_{0}^{t_{1}} e^{-A t} B u(t) d t=0 \quad \forall u \in L^{1}\left(\left[0, t_{1}\right], \mathbb{R}^{k}\right) .
$$

- Let e_{1}, \ldots, e_{k} be the standard frame in \mathbb{R}^{k}. For any $\tau \in\left[0, t_{1}\right]$ and any $i=1, \ldots, k$, define the following controls:

$$
u(t)= \begin{cases}e_{i}, & t \in[0, \tau] \\ 0, & t \in\left(\tau, t_{1}\right]\end{cases}
$$

- We have $\int_{0}^{t_{1}} e^{-A t} B u(t) d t=\int_{0}^{\tau} e^{-A t} b_{i} d t=\frac{\mathrm{Id}-e^{-A \tau}}{A} b_{i}$, thus $p \frac{\mathrm{Id}-e^{-A \tau}}{A} B=0$.
- We differentiate successively previous identity at $\tau=0$ and obtain $p B=p A B=\cdots=p A^{n-1} B=0$, a contradiction.

Final remarks on controllability of linear systems

- The control used in the proof of Kalman's controllability test is piecewise constant. Thus if Kalman's condition holds, then linear system is controllable for any time $t_{1}>0$ with piecewise-constant controls.
- For linear systems, controllability for the class of admissible controls $u(\cdot) \in L^{1}$ is equivalent to controllability for any class of admissible controls $u(\cdot) \in L$ where L is a linear subspace of L^{1} containing piecewise constant functions.
- The following conditions are equivalent for a linear system:
- the Kalman controllability condition
- $\forall t_{1}>0 \forall x_{0} \in \mathbb{R}^{n}$ the system is globally controllable from x_{0} for time t_{1}
- $\forall t_{1}>0 \forall x_{0} \in \mathbb{R}^{n}$ the system is globally controllable from x_{0} for time not greater than t_{1}
- $\exists t_{1}>0 \exists x_{0} \in \mathbb{R}^{n}$ such the linear system is globally controllable from x_{0} for time t_{1}
- $\exists t_{1}>0 \exists x_{0} \in \mathbb{R}^{n}$ such the linear system is globally controllable from x_{0} for time not greater than t_{1}.
- In these cases a linear system is called controllable.

Local controllability of nonlinear systems

- Nonlinear system

$$
\begin{equation*}
\dot{x}=f(x, u), \quad x \in \mathbb{R}^{n}, \quad u \in U \subset \mathbb{R}^{m} \tag{1}
\end{equation*}
$$

- A point $\left(x_{0}, u_{0}\right) \in \mathbb{R}^{n} \times U$ is called an equilibrium point of system (1) if $f\left(x_{0}, u_{0}\right)=0$. Let $u_{0} \in \operatorname{int} U$.
- Linearisation of system (1) at the equilibrium point $\left(x_{0}, u_{0}\right)$:

$$
\begin{array}{ll}
\dot{y}=A y+B v, & y \in \mathbb{R}^{n}, \quad v \in \mathbb{R}^{m}, \tag{2}\\
A=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, u_{0}\right)}, \quad B=\left.\frac{\partial f}{\partial u}\right|_{\left(x_{0}, u_{0}\right)} .
\end{array}
$$

Theorem (Linearisation principle for controllability)
If linearisation (2) is controllable at an equilibrium point (x_{0}, u_{0}), then for any $t_{1}>0$ nonlinear system (1) is locally controllable at the point x_{0} for time t_{1} :

$$
\forall t_{1}>0 \quad x_{0} \in \operatorname{int} \mathcal{A}_{x_{0}}\left(t_{1}\right) .
$$

Proof of linearisation principle for controllability

- Fix any $t_{1}>0$.
- Let e_{1}, \ldots, e_{n} be the standard frame in \mathbb{R}^{n}. Since linearisation is controllable, then

$$
\begin{equation*}
\forall i=1, \ldots, n \quad \exists v_{i} \in L^{\infty}\left(\left[0, t_{1}\right], \mathbb{R}^{m}\right): \quad y_{v_{i}}(0)=0, \quad y_{v_{i}}\left(t_{1}\right)=e_{i} \tag{3}
\end{equation*}
$$

- Construct the following family of controls:

$$
u(z, t)=u_{0}+z_{1} v_{1}(t)+\cdots+z_{n} v_{n}(t), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}
$$

- Since $u_{0} \in \operatorname{int} U$, for sufficiently small $|z|$ and any $t \in\left[0, t_{1}\right]$, the control $u(z, t) \in U$, thus it is admissible for the nonlinear system.
- Consider the corresponding family of trajectories of the nonlinear system:

$$
x(z, t)=x_{u(z, \cdot)}(t), \quad x(z, 0)=x_{0}, \quad z \in B
$$

where B is a small open ball in \mathbb{R}^{n} centred at the origin.

Proof of linearisation principle for controllability

- Since

$$
x\left(z, t_{1}\right) \in \mathcal{A}_{x_{0}}\left(t_{1}\right), \quad z \in B,
$$

then the mapping

$$
F: z \mapsto x\left(z, t_{1}\right), \quad B \rightarrow \mathbb{R}^{n}
$$

satisfies the inclusion

$$
F(B) \subset \mathcal{A}_{x_{0}}\left(t_{1}\right)
$$

- It remains to show that $x_{0} \in \operatorname{int} F(B)$. Define the matrix function

$$
W(t)=\left.\frac{\partial x(z, t)}{\partial z}\right|_{z=0}
$$

- We show that $\operatorname{det} W\left(t_{1}\right)=\left.\frac{\partial F}{\partial z}\right|_{z=0} \neq 0$. This would imply that

$$
x_{0}=F(0) \in \operatorname{int} F(B) \subset \mathcal{A}_{x_{0}}\left(t_{1}\right)
$$

Proof of linearisation principle for controllability

- Differentiating the identity $\frac{\partial x}{\partial t}=f(x, u(z, t))$ w.r.t. z, we get

$$
\left.\frac{\partial}{\partial t} \frac{\partial x}{\partial z}\right|_{z=0}=\left.\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, u_{0}\right)} \frac{\partial x}{\partial z}\right|_{z=0}+\left.\left.\frac{\partial f}{\partial u}\right|_{\left(x_{0}, u_{0}\right)} \frac{\partial u}{\partial z}\right|_{z=0}
$$

since $u(0, t) \equiv u_{0}$ and $x(0, t) \equiv x_{0}$.

- Thus we get a matrix ODE $\dot{W}(t)=A W(t)+B\left(v_{1}(t), \ldots, v_{n}(t)\right)$ with the initial condition $W(0)=\left.\frac{\partial x(z, 0)}{\partial z}\right|_{z=0}=\left.\frac{\partial x_{0}}{\partial z}\right|_{z=0}=0$.
- This matrix ODE means that columns of the matrix $W(t)$ are solutions to the linearised system with the control $v_{i}(t)$. Since $y_{v_{i}}\left(t_{1}\right)=e_{i}$, we have $W\left(t_{1}\right)=\left(e_{1}, \ldots, e_{n}\right)$, so $\operatorname{det} W\left(t_{1}\right)=1 \neq 0$.
- By the implicit function theorem, we have $x_{0} \in \operatorname{int} F(B)$, thus $x_{0} \in \operatorname{int} \mathcal{A}_{x_{0}}\left(t_{1}\right)$.

Example: Application of the linearisation principle for controllability

$$
\begin{align*}
& \dot{x}=u f_{1}(x)+(1-u) f_{2}(x), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \quad u \in[0,1], \tag{4}\\
& f_{1}(x)=\frac{\partial}{\partial x_{1}}, \quad f_{2}(x)=-\frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}} .
\end{align*}
$$

- $\left(x^{0}, u^{0}\right)=\left(0, \frac{1}{2}\right)$ is an equilibrium point and $u^{0} \in \operatorname{int}([0,1])$.
- The linearisation of system (4) at the equilibrium point $\left(x^{0}, u^{0}\right)$ has the form

$$
\begin{array}{lc}
\dot{y}=A y+B v, \quad y \in \mathbb{R}^{2}, \quad v \in \mathbb{R}, \tag{5}\\
A=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{2} & 0
\end{array}\right), \quad B=\binom{2}{0} .
\end{array}
$$

- Check Kalman's condition: $\operatorname{rank}(B, A B)=\operatorname{rank}\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)=2$, thus linear system (5) is controllable.
- So nonlinear system (4) is locally controllable at the point x^{0} for any time $t_{1}>0$.

Orbit of a control system

- A control system on a smooth manifold M is an arbitrary set of vector fields $\mathcal{F} \subset \operatorname{Vec}(M)$.
- The attainable set of the system \mathcal{F} from a point $q_{0} \in M$:

$$
\mathcal{A}_{q_{0}}=\left\{e^{t_{N} f_{N}} \circ \cdots \circ e^{t_{1} f_{1}}\left(q_{0}\right) \mid t_{i} \geq 0, \quad f_{i} \in \mathcal{F}, \quad N \in \mathbb{N}\right\}
$$

- The orbit of the system \mathcal{F} through the point q_{0} :

$$
\mathcal{O}_{q_{0}}=\left\{e^{t_{N} f_{N}} \circ \cdots \circ e^{t_{1} f_{1}}\left(q_{0}\right) \mid t_{i} \in \mathbb{R}, \quad f_{i} \in \mathcal{F}, \quad N \in \mathbb{N}\right\}
$$

Basic properties of attainable sets and orbits

1. $\mathcal{A}_{q_{0}} \subset \mathcal{O}_{q_{0}}$, obvious
2. $\mathcal{O}_{q_{0}}$ has a "simpler" structure than $\mathcal{A}_{q_{0}}$
3. $\mathcal{A}_{q_{0}}$ has a "reasonable" structure inside $\mathcal{O}_{q_{0}}$.

- A system \mathcal{F} is called symmetric if $\mathcal{F}=-\mathcal{F}$.

4. $\mathcal{F}=-\mathcal{F} \quad \Rightarrow \quad \mathcal{A}_{q_{0}}=\mathcal{O}_{q_{0}}$.

Action of diffeomorphisms on tangent vectors and vector fields

- Let $V \in \operatorname{Vec}(M)$, and let $\Phi: M \rightarrow N$ be a diffeomorphism, i.e., a smooth bijective mapping with a smooth inverse.
- The vector field $\Phi_{*} V \in \operatorname{Vec}(N)$ is defined as

$$
\left.\Phi_{*} V\right|_{\Phi(q)}=\left.\frac{d}{d t}\right|_{t=0} \quad \Phi \circ e^{t V}(q)=\Phi_{* q}(V(q))
$$

- Thus we have a mapping $\Phi_{*}: \operatorname{Vec}(M) \rightarrow \operatorname{Vec}(N)$, push-forward of vector fields from the manifold M to the manifold N under the action of the diffeomorphism Φ.

Immersed submanifolds

- A subset W of a smooth manifold M is called a k-dimensional immersed submanifold of M if there exists a k-dimensional manifold N and a smooth mapping $F: N \rightarrow M$ such that:
- F is injective
- $\operatorname{Ker} F_{* q}=0$ for any $q \in N$
- $W=F(N)$.
- Example: Figure of eight is a 1-dimensional immersed submanifold of the 2-dimensional plane.

Example: Irrational winding of the torus

- Torus $\mathbb{T}^{2}=\mathbb{R}^{2} /\left(2 \pi \mathbb{Z}^{2}\right)=\left\{(x, y) \in S^{1} \times S^{1}\right\}$
- Vector field $V=p \frac{\partial}{\partial x}+q \frac{\partial}{\partial y} \in \operatorname{Vec}\left(\mathbb{T}^{2}\right), p^{2}+q^{2} \neq 0$.
- The orbit \mathcal{O}_{0} of V through the origin $0 \in \mathbb{T}^{2}$ may have two different types:
(1) $p / q \in \mathbb{Q} \cup\{\infty\}$. Then $\mathrm{cl} \mathcal{O}_{0}=\mathcal{O}_{0}$.
(2) $p / q \in \mathbb{R} \backslash \mathbb{Q}$. Then $\mathrm{cl} \mathcal{O}_{0}=\mathbb{T}^{2}$. In this case the orbit \mathcal{O}_{0} is called the irrational winding of the torus.
- In the both cases the orbit \mathcal{O}_{0} is an immersed submanifold of the torus, but in the second case it is not embedded.
- So even for one vector field the orbit may be an immersed submanifold, but not an embedded one
- An immersed submanifold $N=F(W) \subset M$ is called embedded if $F: W \rightarrow N$ is a homeomorphism in the topology induced by the inclusion $N \subset M$). In case (2) the topology of the orbit induced by the inclusion $\mathcal{O}_{0} \subset \mathbb{R}^{2}$ is weaker than the topology of the orbit induced by the immersion $t \mapsto e^{t V}(0), \quad \mathbb{R} \rightarrow \mathcal{O}_{0}$.

The Orbit theorem

Theorem (Orbit theorem, Nagano-Sussmann)
Let $\mathcal{F} \subset \operatorname{Vec}(M)$, and let $q_{0} \in M$.
(1) The orbit $\mathcal{O}_{q_{0}}$ is a connected immersed submanifold of M.
(2) For any $q \in \mathcal{O}_{q_{0}}$

$$
\begin{aligned}
& T_{q} \mathcal{O}_{q_{0}}=\operatorname{span}\left(\mathcal{P}_{*} \mathcal{F}\right)(q)=\operatorname{span}\left\{\left(P_{*} V\right)(q) \mid P \in \mathcal{P}, \quad V \in \mathcal{F}\right\}, \\
& \mathcal{P}=\left\{e^{t_{N} f_{N}} \circ \cdots \circ e^{t_{1} f_{1}} \mid t_{i} \in \mathbb{R}, \quad f_{i} \in \mathcal{F}, \quad N \in \mathbb{N}\right\} .
\end{aligned}
$$

