Инвариантная мера и вероятность падения в задаче о качении неоднородного диска по плоскости

А.В.Борисов, И.С. Мамаев, И.А. Бизяев

Институт компьютерных исследований, Ижевск

1. Качение диска по плоскости без проскальзывания (классическая модель).

Уравнения движения.

Рассмотрим неголономную модель, описывающую качение (бесконечно) тонкого диска по горизонтальной плоскости при условии, что в точке контакта отсутствует проскальзывание.

Рис. 1. Диск на плоскости.

Для описания положения и ориентации диска зададим две системы координат (см. рис. 1):

неподвижная Oxyz — начало располагается в некоторой точке плоскости, а ось Oz перпендикулярна плоскости, подвижная $Cx_1x_2x_3$ — начало C совпадает с центром масс диска, а оси

направлены вдоль главных осей инерции тела.

Пусть α, β, γ — орты неподвижного пространства (то есть единичные векторы осей Ox, Oy, Oz), спроецированные на подвижные оси Cxyz, $\mathbf{R}_P = (x, y)$ — координаты точки контакта на плоскости. Если определить ортогональную матрицу

$$\mathbf{Q} = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix} \in SO(3),$$

то пара (\mathbf{R}_P, \mathbf{Q}) $\in \mathbb{R}^2 \times SO(3)$ однозначно определяет положение и ориентацию тела, т. е. конфигурационное пространство рассматриваемой системы представляет собой произведение $\mathcal{N} = \mathbb{R}^2 \times SO(3)$.

Пусть $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3), \boldsymbol{v} = (v_1, v_2, v_3) - угловая скорость и скорость центра масс тела, спроецированные на подвижные оси <math>Cx_1x_2x_3$. Здесь и далее (если не оговорено обратное) все векторы проецируются на подвижные оси. Условия отсутствия проскальзывания в точке контакта представляются в виде

$$v + \omega \times r = 0.$$
 (1)

Обозначим тензор инерции диска $I = diag(I_1, I_2, I_1 + I_2)$. Угловой момент диска M относительно точки контакта можно выразить через угловую скорость следующим образом:

$$M = \widetilde{\mathbf{I}}\boldsymbol{\omega}, \quad \widetilde{\mathbf{I}} = \mathbf{I} + m\boldsymbol{r}^2\mathbf{E} - m\boldsymbol{r}\otimes\boldsymbol{r}.$$
 (2)

где знак \otimes обозначает тензорное произведение, то есть в матричной форме $r \otimes r = \|r_i r_j\|$. В свою очередь r выразим через нормаль к плоскости в точке контакта γ

$$r = -\frac{\mathbf{B\gamma}}{\sqrt{(\mathbf{B\gamma}, \boldsymbol{\gamma})}} - a, \quad \mathbf{B} = \operatorname{diag}(b_1^2, b_2^2, \mathbf{0}),$$
 (3)

где $a = (a_1, a_2, a_3)$ — смещение центра масс диска относительно геометрического центра, а m, b_1, b_2 — его масса и главные полуоси.

Уравнения описывающие эволюцию M и γ можно представить в форме [12]

$$\dot{M} = M \times \omega + m\dot{r} \times (\omega \times r) + \gamma \times \frac{\partial U}{\partial \gamma},$$
 $\dot{\gamma} = \gamma \times \omega.$
(4)

здесь U - потенциал поля тяжести

$$U = -mg(\boldsymbol{r}, \boldsymbol{\gamma}),$$

где *g* — ускорение свободного падения.

Первые интегралы и инвариантная мера.

Система (4) сохраняет энергию и обладает геометрическим интегралом

$$E = \frac{1}{2}(\boldsymbol{\omega}, \boldsymbol{M}) + U, \quad \boldsymbol{\gamma}^2 = 1.$$

Таким образом, для интегрируемости системы (4) по теореме Эйлера-Якоби не хватает инвариантной меры и двух первых интегралов.

В случае, если диск является динамически симметричным (то есть $I_2 = I_1, b_2 = b_1, a_1 = 0, a_2 = 0$), система (4) обладает стандартной инвариантной мерой ($\rho = \text{const}$) и полем симметрий

$$\boldsymbol{u} = M_1 \frac{\partial}{\partial M_2} - M_2 \frac{\partial}{\partial M_1} + \gamma_1 \frac{\partial}{\partial \gamma_2} - \gamma_2 \frac{\partial}{\partial \gamma_1},$$

связанным с инвариантностью системы относительно вращения диска вокруг оси динамической симметрии.

Кроме того в этом случае существуют два линейных по моментам интеграла F_1 и F_2 , которые можно представить в виде

$$F_k = c_1^k(\gamma_3)(\gamma_1 M_1 + \gamma_2 M_2) + c_2^k(\gamma_3) M_3, \quad k = 1, 2,$$

где $c_1^{L}(\gamma_3), c_2^{k}(\gamma_3)$ выражаются через комбинации обобщенных гипергеометрических функций [15].

Инвариантная мера и вероятность падения.

В работе В.В. Козлова и А.А. Афонина [1] показано, что вероятность падения динамически симметричного диска равна нулю. При этом доказательство существенным образом опирается на существование инвариантной меры системы (4), которая в общем случае не найдена.

Теорема 1. Система (4) обладает инвариантной мерой $\rho(\gamma) dM d\gamma$ в двух случаях:

- Диск является динамически симметричным.
- Диск является уравновешенным (a = 0) и, кроме того, его полуоси и моменты инерции связаны между собой соотношением

$$b_1^2 I_1^2 - b_2^2 I_2^2 + m b_1^2 b_2^2 (I_1 - I_2) = 0.$$

В этом случае $ho(oldsymbol{\gamma}) = \left(\det \widetilde{\mathbf{I}}
ight)^{1\!\!/_4}$.

Во всех остальных случаях система (4) не обладает инвариантной мерой, с плотностью зависящей только от γ .

Доказательство.

Обозначим правые части системы (4) через $\widetilde{M}(\gamma,M)$ и $\widetilde{\gamma}(\gamma,M)$ и представим ее в виде:

$$\dot{oldsymbol{M}} = \widetilde{oldsymbol{M}}(oldsymbol{\gamma},oldsymbol{M}), \quad \dot{oldsymbol{\gamma}} = \widetilde{oldsymbol{\gamma}}(oldsymbol{\gamma},oldsymbol{M}).$$

Тогда уравнение Лиувилля для плотности инвариантной меры $ho d M d \omega$ примет форму

$$\frac{1}{\rho}\left(\left(\frac{\partial\rho}{\partial\boldsymbol{\gamma}},\widetilde{\boldsymbol{\gamma}}\right)+\left(\frac{\partial\rho}{\partial\boldsymbol{M}},\widetilde{\boldsymbol{M}}\right)\right)=-\sum_{i=1}^{3}\frac{\partial\widetilde{\boldsymbol{M}}_{i}}{\partial\boldsymbol{M}_{i}},$$

здесь уже учтено, что $\sum_{i} \frac{\partial \tilde{\gamma}_{i}}{\partial \gamma_{i}} = 0$. Из (4) следует, что в правой части последнего уравнения стоит линейная однородная по M функция. А значит, используя (2), ее можно представить в виде

$$\sum_{i=1}^{3} \frac{\partial \widetilde{\boldsymbol{M}}_{i}}{\partial \boldsymbol{M}_{i}} = (\boldsymbol{\chi}(\boldsymbol{\gamma}), \boldsymbol{\omega}),$$

где вектор $\chi(\gamma)$ имеет довольно громоздкий вид, поэтому он здесь явно не приведен. Хотя его не сложно вычислить при помощи любой системы аналитических вычислений, например, Maple или Mathematica. С учетом найденного соотношения, уравнение для инвариантной меры примет вид

$$\left(\frac{\partial \ln \rho}{\partial \gamma}, \widetilde{\gamma}\right) + \left(\frac{\partial \ln \rho}{\partial M}, \widetilde{M}\right) + (\boldsymbol{\chi}(\gamma), \boldsymbol{\omega}) = 0.$$
(5)

В случае, когда $ho=
ho(oldsymbol{\gamma})$ уравнение (5) сводится к виду

$$\left(rac{\partial}{\partialoldsymbol{\gamma}}\ln
ho(oldsymbol{\gamma}) imesoldsymbol{\gamma}+oldsymbol{\chi}(oldsymbol{\gamma}),oldsymbol{\omega}
ight)=0.$$

Так как предыдущее соотношение должно выполняться при произвольных ω , то справедливо тождество

$$oldsymbol{\gamma} imes rac{\partial}{\partial oldsymbol{\gamma}} \ln
ho(oldsymbol{\gamma}) = oldsymbol{\chi}(oldsymbol{\gamma}).$$

Применив оператор дивергенции по переменным γ к обеим частям этого уравнения, а также домножив его скалярно на γ , получим

$$\sum_{i=1}^3 rac{\partial oldsymbol{\chi}_i}{\partial oldsymbol{\gamma}_i} = 0, \quad (oldsymbol{\chi}(oldsymbol{\gamma}),oldsymbol{\gamma}) = 0.$$

Выполнив непосредственные вычисления можно показать, что указанные условия выполняются только в двух случаях описанных в теореме.

Приведенная теорема не затрагивает вопрос о наличии инвариантной меры с плотностью $\rho = \rho(M, \gamma)$, тем не менее, в отсутствии внешнего поля справедлива следующая теорема

Теорема 2. Если система (4) при U = 0 допускает инвариантную меру $\rho_1(M, \gamma) dM d\gamma$ с плотностью $\rho_1(M, \gamma)$, аналитической в окрестности инвариантного многообразия M = 0, то существует инвариантная мера вида $\rho_2(\gamma) dM d\gamma$.

Доказательство.

Если в выражении (5) сделать замену $\rho = e^{\sigma(\boldsymbol{M},\boldsymbol{\gamma})}$, то будет справедливо соотношение

$$\left(\frac{\partial\sigma}{\partial\gamma},\widetilde{\gamma}\right) + \left(\frac{\partial\sigma}{\partial M},\widetilde{M}\right) + (\boldsymbol{\chi}(\gamma),\boldsymbol{\omega}) = 0.$$
(6)

Далее согласно предположению теоремы, $\sigma(M,\gamma)$ разлагается в ряд

$$\sigma(\boldsymbol{M}, \boldsymbol{\gamma}) = \sigma_0(\boldsymbol{\gamma}) + \sum_i \sigma_i(\boldsymbol{\gamma}) M_i + \sum_{i,j} \sigma_{ij}(\boldsymbol{\gamma}) M_i M_j + O(|\boldsymbol{M}|^3)$$

Подставляя это разложение в соотношение (6) и учитывая, что \widetilde{M} при U=0 является однородной квадратичной функций по M, получим

$$\left(rac{\partial}{\partial oldsymbol{\gamma}} \sigma_0(oldsymbol{\gamma}) imes oldsymbol{\gamma} + oldsymbol{\chi}(oldsymbol{\gamma}), oldsymbol{\omega}
ight) + O(|oldsymbol{M}|^2) = 0.$$

Вследствие того, что функция ρ_1 задает плотность инвариантной меры, выражение в скобках обращается в нуль. Таким образом, положив $\rho_2(\gamma) = e^{\sigma_0(\gamma)}$, получим искомую инвариантную меру.

2. Качение диска по плоскости без проскальзывания и верчения.

Уравнения движения и первые интегралы

Рассмотрим другую модель качения диска, в которой кроме равенства нулю скорости точки контакта, предполагается, что проекция угловой скорости на нормаль также равна нулю:

$$(\boldsymbol{\omega},\boldsymbol{\gamma})=0. \tag{7}$$

В этом случае уравнения движения удобнее записать в переменных ω, γ :

$$\begin{split} \widetilde{\mathbf{I}}\dot{\boldsymbol{\omega}} &= \widetilde{\mathbf{I}}\boldsymbol{\omega} imes \boldsymbol{\omega} - m \boldsymbol{r} imes (\boldsymbol{\omega} imes \dot{\boldsymbol{r}}) + \boldsymbol{\gamma} imes rac{\partial U}{\partial \boldsymbol{\gamma}} + \lambda_0 \boldsymbol{\gamma}, \quad \dot{\boldsymbol{\gamma}} = \boldsymbol{\gamma} imes \boldsymbol{\omega} \\ \lambda_0 &= -rac{\left(\widetilde{\mathbf{I}}^{-1} \boldsymbol{\gamma}, \widetilde{\mathbf{I}} \boldsymbol{\omega} imes \boldsymbol{\omega} - m \boldsymbol{r} imes (\boldsymbol{\omega} imes \dot{\boldsymbol{r}}) + \boldsymbol{\gamma} imes rac{\partial U}{\partial \boldsymbol{\gamma}}
ight)}{(\boldsymbol{\gamma}, \widetilde{\mathbf{I}}^{-1} \boldsymbol{\gamma})}. \end{split}$$
(8)

здесь r и \tilde{I} по прежнему определяются соотношениями (2) и (3). Помимо интеграла-связи (7) система допускает еще интеграл энергии и геометрический интеграл:

$$E = \frac{1}{2}(\boldsymbol{\omega}, \tilde{\mathbf{I}}\boldsymbol{\omega}) + U(\boldsymbol{\gamma}), \quad \boldsymbol{\gamma}^2 = 1.$$
(9)

Следовательно, для интегрируемости системы (8) по теореме Эйлера-Якоби не хватает одного первого интеграла F_2 и инвариантной меры.

В работе [13] был доказан следующий аналог теоремы 1:

Теорема 3. Система (8) обладает инвариантной мерой $\rho(\gamma)d\omega d\gamma$ в двух случаях:

- Диск является динамически симметричным $I_2 = I_1$, $b_2 = b_1$, $a_1 = 0$, $a_2 = 0$, $U = U(\gamma_3)$.
- Диск является уравновешенным (a = 0) и, кроме того, его полуоси и моменты инерции связаны соотношением

$$b_1^2 I_1^2 - b_2^2 I_2^2 + m b_1^2 b_2^2 (I_1 - I_2) = 0.$$

В обоих случаях плотность инвариантной меры имеет вид $ho(\gamma) = (\det \tilde{I})^{3/_4} (\gamma, \tilde{I}^{-1} \gamma)^{1/_2}.$

Во всех остальных случаях система (8) не обладает инвариантной мерой, с плотностью зависящей только от γ .

Кроме того, если диск является *динамически симметричным*, в системе (8) возникает (по аналогии с предыдущим разделом), поле симметрий

$$\boldsymbol{u} = \omega_1 \frac{\partial}{\partial \omega_2} - \omega_2 \frac{\partial}{\partial \omega_1} + \gamma_1 \frac{\partial}{\partial \gamma_2} - \gamma_2 \frac{\partial}{\partial \gamma_1}$$

Также, в этом случае появляется дополнительный интеграл

$$F_2 = \sqrt{I_1\gamma_3^2 + I_3(1-\gamma_3^2) + m(\boldsymbol{r},\boldsymbol{\gamma})^2}\omega_3.$$

Отображение Пуанкаре

Для численных исследований применен программный комплекс "Компьютерная динамика: Chaos", разработанный в Институте Компьютерных Исследований УдГУ и который позволяет строить карты режимов и показателей Ляпунова, исследовать бифуркации неподвижных точек, а также визуализировать движение тела.

Ограничим систему (8) на многообразие \mathcal{M}^4 :

$$\mathcal{M}^4 = \{(oldsymbol{\omega},oldsymbol{\gamma})| \,\,oldsymbol{\gamma}^2 = 1, \,\, (oldsymbol{\omega},oldsymbol{\gamma}) = 0\}.$$

Для этого перейдем к локальным координатам(углам θ , φ и импульсам p_{θ} , p_{φ}):

$$\gamma_{1} = \sin\theta\sin\varphi, \quad \gamma_{2} = \sin\theta\cos\varphi, \quad \gamma_{3} = \cos\theta, \\ \omega_{1} = \cos\varphi p_{\theta} - \cos\theta\sin\varphi p_{\varphi}, \quad \omega_{2} = -\cos\theta\cos\varphi p_{\varphi} - \sin\varphi p_{\theta}, \quad \omega_{3} = \sin\theta p_{\varphi}.$$
(10)

Для вывода уравнений движения в выбранных локальных координатах, во-первых, разрешим уравнение описывающее изменение угловой скорости (8) относительно ее первой производной, во-вторых, учтем соотношение (10) и представим полученные уравнения в символической форме,

$$\dot{\omega}_1=rac{W_1(oldsymbol{x})}{\sin heta}, \quad \dot{\omega}_2=rac{W_2(oldsymbol{x})}{\sin heta}, \quad \dot{\omega}_3=W_3(oldsymbol{x}), \quad oldsymbol{x}=(heta,arphi,p_{arphi},p_{arphi}),$$

где W_1, W_2 и W_3 – не имеющие особенностей при $\sin(\theta) = 0$ функции, зависящие от переменных ($\theta, \varphi, p_{\theta}, p_{\varphi}$).

В результате уравнения движения в локальных координатах примут вид:

$$\dot{\theta} = p_{\theta}, \quad \dot{\varphi} = \frac{p_{\varphi}}{\sin \theta},$$

$$\dot{p}_{\theta} = \frac{\cos \theta}{\sin \theta} p_{\varphi}^{2} + W_{1}(\boldsymbol{x}) \frac{\cos \varphi}{\sin \theta} - W_{2}(\boldsymbol{x}) \frac{\sin \varphi}{\sin \theta}, \quad \dot{p}_{\varphi} = \frac{W_{3}(\boldsymbol{x}) - \cos \theta p_{\theta} p_{\varphi}}{\sin \theta}.$$
 (11)

Отметим, что угол $\theta \in (0, \pi)$, причем крайним значениям $\theta = 0$ и $\theta = \pi$ соответствуют многообразия падения диска на плоскость. При этих значениях правые части (11) имеют особенности. Чтобы исключить эти особенности, выполним *регуляризацию*, введя новое время τ с помощью замены

$$d\tau = \frac{dt}{\sin\theta}$$

После регуляризации уравнения движения на $\mathcal{M}^4 = \{ \boldsymbol{x} = (\theta, \varphi, p_{\theta}, p_{\varphi}) \}$ представляются в форме

$$\theta' = \sin \theta p_{\theta}, \quad \varphi' = p_{\varphi},$$

$$p'_{\theta} = \cos \theta p_{\varphi}^{2} + W_{1}(\boldsymbol{x}) \cos \varphi - W_{2}(\boldsymbol{x}) \sin \varphi, \quad p'_{\varphi} = W_{3}(\boldsymbol{x}) - \cos \theta p_{\theta} p_{\varphi},$$

(12)

где штрих означает производную по τ .

На уровне интеграла энергии $E = E_0$, уравнения (12) задают трехмерный поток

$$(\dot{ heta}, \dot{p}_{ heta}, \dot{\phi}) = \mathcal{F}(heta, p_{ heta}, \phi).$$

Отметим, что по заданной тройке $\theta_0, p_{\theta_0}, \phi_0$ переменная p_{ϕ_0} определяется из интеграла энергии $E(\theta_0, p_{\theta_0}, \phi_0, p_{\phi_0}) = E_0$ через квадратное уравнение. Выбрав плоскость $\phi = const$ в качестве секущей трехмерного потока \mathcal{F} , получим двухмерное отображение Пуанкаре

$$(\bar{\theta}, \bar{p}_{\theta}) = \mathcal{P}(\theta, p_{\theta}).$$
 (13)

Характерное отображение Пуанкаре в случае $a \neq 0$ приведено на рис. 2.

Рис. 2. Фазовые портреты отображения Пуанкаре при в случае $I_1 \neq I_2, a_1 \neq 0, a_2 \neq 0$. На отображениях заметны сгущения точек (выделенные синим цветом) соответствующие простым аттракторам.

3. Вероятность падения диска, при отсутствии проскальзывания и верчения.

В дальнейшем мы будем предполагать, что диск неоднороден, и распределение масс удовлетворяет двум условиям:

1°. главные моменты инерции диска различны, т.е.

$$I = diag(I_1, I_2, I_3), \quad I_i \neq I_j, \quad i, j = 1, 2, 3;$$

 $2^\circ.$ центр масс совпадает с геометрическим центром диска, при этом r выражается через γ следующим образом

$$\boldsymbol{r} = \left(-\frac{b\gamma_1}{\sqrt{\gamma_1^2 + \gamma_2^2}}, -\frac{b\gamma_2}{\sqrt{\gamma_1^2 + \gamma_2^2}}, 0\right), \tag{14}$$

где *b* — радиус диска.

Условия падения диска на плоскость определяются теперь уравнениями

$$\gamma_1 = \gamma_2 = 0, \quad \gamma_3 = \pm 1.$$
 (15)

На сфере Пуассона $\gamma^2 = 1$ эти соотношения задают две изолированные точки, расположенные на оси проходящей через центр — полюса, а во всем фазовом пространстве \mathcal{M} , уравнениям (15) отвечают две двумерные плоскости. Различным знакам + и — в (15) соответствует падение на плоскость либо одной, либо другой стороной.

Важно иметь ввиду, что векторное поле рассматриваемой системы (описывающее эволюцию ω , γ) не определено в точках (15). Причина этого заключается в том, что отображение $\gamma \to r$, задаваемое формулой (14), в данном случае оказывается разрывным именно в полюсах (15). Грубо говоря, это отображение склеивает целый меридиан сферы Пуассона $\gamma = 1$ в одну точку — точку его пересечения с экватором см. рис. 3.

Рис. 3.

При этом оказывается, что значения предела различных функций в точках (15) — как компонент векторного поля системы (8), так и интеграла энергии (9) — зависят от направления. То есть с геометрической точки зрения особые точки (15) необходимо заменить окружностью, тем самым вместо сферы Пуассона $\gamma^2 = 1$ необходимо использовать многообразие с краем — цилиндр:

 $S^1 \times [-1, 1].$

ЗАМЕЧАНИЕ. Эту операцию замены особой точки окружностью называют также раздутием: можно сказать, что вокруг полюсов (15) мы вырезали бесконечно-малые диски, а их границы — окружности S^1 — «раздули» до конечных размеров (см. рис. 4).

Рис. 4.

С практической точки зрения в окрестности особых точек (15) необходимо ввести полярные координаты, например,

$$\gamma_1 = s \sin \varphi \quad \gamma_2 = s \cos \varphi$$

и перейти к пределу $s \to 0$, при этом зависимость от φ сохранится, и именно этот угол будет параметризовать точки границы.

Регуляризация

Вследствие симметрии диска, случаи отвечающие разным знакам в (15) идентичны, поэтому мы рассмотрим лишь $\gamma_3 = 1$. Для анализа динамики в окрестности падения параметризуем многообразие \mathcal{M} следующим образом

$$\begin{split} \gamma_1 &= s \sin \varphi, \quad \gamma_2 = s \cos \varphi, \quad \gamma_3 = \sqrt{1 - s^2}, \quad s \geq 0, \\ \omega_1 &= p_s \cos \varphi - p_\varphi \sin \varphi, \quad \omega_2 = -p_s \sin \varphi - p_\varphi \cos \varphi, \quad \omega_3 = \frac{s}{\sqrt{1 - s^2}} p_\varphi \end{split}$$

где $s, \varphi, p_s, p_{\varphi}$ — локальные координаты в рассматриваемой окрестности. При этом край фазового пространства — многообразие падений — задается уравнением

s = 0.

В новых переменных уравнения движения и интеграл энергии (9) представляются в виде

$$\rho^{-1}\dot{s} = s(1-s^{2})p_{s}, \quad \rho^{-1}\dot{\varphi} = p_{\varphi},$$

$$\rho^{-1}\dot{p}_{s} = \frac{I_{1}I_{2}p_{\varphi}^{2} + sP_{1}(s,\varphi,p_{s},p_{\varphi})}{\Phi_{0} + s^{2}P_{3}(s,\varphi,p_{s},p_{\varphi})},$$

$$\rho^{-1}\dot{p}_{\varphi} = \frac{-p_{\varphi}(p_{s}\Phi_{0} + p_{\varphi}ma^{2}(I_{1} - I_{2})\sin\varphi\cos\varphi) + sP_{2}(s,\varphi,p_{s},p_{\varphi})}{\Phi_{0} + s^{2}P_{3}(s,\varphi,p_{s},p_{\varphi})},$$

$$\rho = \frac{1}{s\sqrt{1-s^{2}}}, \quad \Phi_{0} = I_{1}I_{2} + ma^{2}(I_{1}\sin^{2}\varphi + I_{2}\cos^{2}\varphi),$$

$$E = E_{0} + sP_{4}(s,\varphi,p_{s},p_{\varphi})$$

$$E_{0} = \frac{1}{2}p_{s}^{2}(ma^{2} + I_{1}\cos^{2}\varphi + I_{2}\sin^{2}\varphi) + \frac{1}{2}p_{\varphi}^{2}(I_{1}\sin^{2}\varphi + I_{2}\cos^{2}\varphi) - -p_{s}p_{\varphi}(I_{1} - I_{2})\sin\varphi\cos\varphi.$$
(16)

где P_1 , P_2 , P_3 , P_4 — функции, полиномиальные по s, sin φ , cos φ , p_s , p_{φ} , которые мы здесь не приводим, поскольку они не играют существенной роли в дальнейшем исследовании.

Для нашей цели (анализа вероятности падений) достаточно ограничиться исследованием системы на фиксированном уровне энергии

$$\mathcal{M}_h = \{(s,\varphi, p_s, p_\varphi) | E(s,\varphi, p_s, p_\varphi) = h\}, \quad h > 0,$$

в окрестности многообразия падений.

Для регуляризации системы в уравнениях (16) сделаем замену времени

$$\rho(s)dt = d\tau,$$

при этом траектории останутся теми же, что и в исходной системе, а компоненты получившегося векторного поля оказываются ограничены в окрестности s = 0. Кроме того получившееся векторное поле и интеграл энергии допускает гладкое (точнее даже аналитическое) продолжение на значения s удовлетворяющее неравенству

$$s \leq 0.$$

Соответствующее расширенное фазовое пространство продолженной системы (где s принимает как положительные так и отрицательные значения) обозначим $\widetilde{\mathcal{M}} = \{(s, \varphi, p_s, p_\varphi)\}$, а расширенный уровень энергии соответственно $\widetilde{\mathcal{M}}_h = \{E = h\}.$

Динамика на подмногообразии падений

Как следует из первого уравнения в (16), подмногообразие $\mathcal{M}_0 = \{s=0\} \approx S^1 \times \mathbb{R}^2$ оказывается инвариантным подмногообразием системы, исследуем подробнее поведение траекторий на нем. Полагая в регуляризованной системе s=0 получим

$$\frac{d\varphi}{d\tau} = p_{\varphi}, \quad \frac{dp_s}{d\tau} = \frac{I_1 I_2 p_{\varphi}^2}{\Phi_0},$$

$$\frac{dp_{\varphi}}{d\tau} = -\frac{p_{\varphi} \left(p_s \Phi_0 + p_{\varphi} ma^2 (I_1 - I_2) \sin \varphi \cos \varphi \right)}{\Phi_0}.$$
(17)

Эти уравнения допускают очевидный первый интеграл — энергию E_0 . Пересечение \mathcal{M}_0 и $\widetilde{\mathcal{M}}_h$ представляет собой подмногообразие $\mathcal{M}_{0,h} = \{s=0, E_0=h\}$ диффеоморфное двумерному тору. Действительно, так как E_0 — положительно определена, то при каждом фиксированном $\varphi \mod 2\pi$ уравнение $E_0 = h$ задает эллипс, поэтому $\mathcal{M}_{0,h} \approx S^1 \times S^1$.

Как мы видим, система (17) имеет вырожденные положения равновесия определяемые равенством

$$p_{\varphi} = 0.$$

На торе $\mathcal{M}_{0,h}$ эти положения равновесия группируются в две кривые, диффеоморфные окружностям S^1 (параметризованные углом φ), других положений равновесия на $\mathcal{M}_{0,h}$ при h > 0 у системы нет. Для того, чтобы понять как устроены траектории системы (отличные от положения равновесия), поделим векторное поле (17) на общий множитель p_{φ} . Получившаяся система обладает инвариантной мерой

$$\mu = \Phi_0(\varphi) d\varphi dp_s dp_{\varphi_s}$$

и не имеет неподвижных точек. Следовательно, согласно обобщенной теореме Колмогорова о системе с интегральным инвариантом на торе в окрестности $\mathcal{M}_{0,h}$ существуют локальные координаты ψ_1 , ψ_2 , h такие, что ψ_1 , ψ_2 — угловые координаты на торах, и уравнения движения (17) представляются в виде :

$$\dot{h} = 0, \quad \dot{\psi}_i = \frac{p_{\varphi}(\psi_1, \psi_2, h)}{\Psi(\psi_1, \psi_2, h)} \lambda_i(h), \quad i = 1, 2.$$

Таким образом, на многообразии падения (в подходящих переменных) траектории системы представляют собой прямолинейные обмотки тора выходящие из одного семейства положений равновесия σ_u и заканчивающиеся на другом σ_s (см. рис. 5).

Рис. 5. Траектории на торе $\mathcal{M}_{0,h}$.

Замечание. Новые угловые переменные ψ_1 , ψ_2 на торах можно построить в форме рядов:

$$\begin{split} \psi_1 &= \varphi + \sum_m p_{\varphi}^m g_m(\varphi,h),\\ \sin \psi_2 &= p_{\varphi} + \sum_m p_{\varphi}^m f_m(\varphi,h). \end{split}$$

где функции g_m , f_m — периодические по φ .

Анализ падений

Прежде всего покажем, что на всяком уровне энергии $\widetilde{\mathcal{M}}_h$ падение диска в окрестности неособой точки (17) невозможно.

Предложение. Пусть $x_0 \in \mathcal{M}_{0,h}$ неособая точка системы (17), тогда в расширенном уровне энергии $\mathcal{M}_{0,h}$ существует окрестность U_{x_0} , такая, что все траектории системы (16), не лежащие на торе $\mathcal{M}_{0,h}$ покидают U_{x_0} , не достигая $\mathcal{M}_{0,h}$.

Доказательство. Как хорошо известно, в системе $\dot{x} = v(x)$ с аналитической правой частью траектория x(t) не может достичь компактного инвариантного многообразия за конечное время.С другой стороны, вследствие того, что $v(x_0) \neq 0$, можно выбрать окрестность U_{x_0} , в которой величина скорости |v(x)| отделена от нуля некоторой постоянной и следовательно траектория x(t) покинет U_{x_0} за конечное время.

Таким образом, все траектории падения системы лежат в окрестности неподвижных точек векторного поля (17). Поэтому рассмотрим подробнее поведение системы на $\widetilde{\mathcal{M}}_h$ в окрестности неподвижных точек, задаваемых соотношением

$$s = 0, \quad p_{\varphi} = 0. \tag{18}$$

Для этого выберем в качестве локальных координат переменные φ , s, p_{φ} , а p_s выразим из уравнения E = h:

$$p_s = \Lambda(\varphi) + R_0^{(1)}(\varphi, s, p_{\varphi}),$$
$$\Lambda^2(\varphi) = \frac{2h}{ma^2 + I_1 \cos^2 \varphi + I_2 \sin^2 \varphi};$$

где $R_0^{(1)}$ — периодическая по φ функция, разложение которой начинается с линейных по $s,~p_\varphi$ членов.

После подстановки в (16) получим (регуляризованные) уравнения движения на $\widetilde{\mathcal{M}}_h$ в виде

$$\frac{d\varphi}{d\tau} = p_{\varphi}, \quad \frac{ds}{d\tau} = \Lambda(\varphi)s + R_1^{(2)}(\varphi, s, p_{\varphi}), \quad \frac{dp_{\varphi}}{d\tau} = -\Lambda(\varphi)p_{\varphi} + R_2^{(2)}(\varphi, s, p_{\varphi}), \quad (19)$$

где разложение функций $R_1^{(2)}$, $R_2^{(2)}$ начинается с квадратичных по s, p_{arphi} членов.

Поскольку $\Lambda^2(\varphi) > \frac{2h}{ma^2 + \min\{I_1, I_2\}}$, инвариантное многообразие $N = \{s = p_{\varphi} = 0\}$ системы (19) является нормальным гиперболическим (см. [20]). Динамика на N тривиальна, в частности, имеет нулевые показатели Ляпунова. Поэтому [20] N имеет (бесконечно) гладкие асимптотические многообразия: покально устойчивые W^s и локально неустойчивые W^u . В качестве следствия получаем, что при $h \neq 0$ все траектории, соответствующие падению диска вперед или назад по времени, лежат на гладких многообразиях коразмерности один. Это верно как для системы (19), так и для исходной системы (8). Отсюда вытекает следующий результат.

Утверждение. Пусть μ — борелевская мера в фазовом пространстве \mathcal{M} системы (8) абсолютно непрерывная относительно меры $d\nu = d\omega d\gamma$ и пусть $\Phi \subset P$ — множество начальных условий, соответствующих падению диска на плоскость вперед или назад по времени. Для μ справедливо

 $\mu(\Phi)=0.$

Литература

- [1] Афонин А. А., Козлов В. В. Задача о падении диска, движущегося по горизонтальной плоскости // МТТ, № 1, 1997. с. 7-13
- [2] Борисов А. В., Мамаев И. С. О несуществовании инвариантной меры при качении неоднородного эллипсоида по плоскости // Математические заметки, 2005, Том 77, No 6, с. 930-932.
- [3] Борисов А. В., Мамаев И. С., Цыганов А. В. Неголономная динамика и пуассонова геометрия // Успехи математических наук. – 2014. – Т. 69. – №. 3. – С. 87-144.
- [4] Козлов В.В. О движении диска по наклонной плоскости // Известия Академии наук. Механика твердого тела, 1996, № 5, с. 29-35
- [5] Федоров Ю.Н. О качении диска по абсолютно шероховатой плоскости // МТТ, № 4, 1987. с. 67-75
- [6] Appell P. Sur l'intégration des équations du mouvement d'un corps pesant de révolution roulant par une arête circulaire sur un plan horizontal; cas particulier du cerceau. Rendiconti del circolo matematico di Palermo, 1900, t. 14, p. 1–6.
- Batista M. Integrability of the motion of a rolling disk of finite thickness on a rough plane // Intern. J. Non-Linear Mech. 41 (2006) 850-859
- Batista M. The nearly horizontally rolling of a thick disk on a rough plane // Regular and Chaotic Dynamics, 2008, vol. 13, no. 4, pp. 344-354.
- Bolsinov A. V., Kilin A. A., Kazakov A. O. Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra? // Journal of Geometry and Physics, 2015, vol. 87, pp. 61-75.
- [10] Borisov A. V., Kazakov A. O., Sataev I. R. The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top // Regular and Chaotic Dynamics, vol. 2014. – T. 19. – №. 6. – C. 718-733.
- [11] Borisov A. V., Mamaev I. S. Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems // Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.)
- [12] Borisov, A. V. and Mamaev, I. S., The Rolling of Rigid Body on a Plane and Sphere. Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 1, pp. 177–200.
- [13] Borisov A. V., Mamaev I. S., Bizyaev I. A. The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere // Regul. Chaotic Dyn., 2013, vol. 18, no.3, pp.277-328.
- [14] Borisov A. V., Mamaev I. S., Karavaev Y. L. On the loss of contact of the Euler disk // Nonlinear Dynamics, 2015, vol. 79, no. 4, pp 2287-2294.
- [15] Borisov A. V., Mamaev I. S., Kilin A. A. Dynamics of rolling disk // Regular and Chaotic Dynamics, 2003, vol. 8, no. 2, pp. 201-212.
- [16] Cushman R. H., Duistermaat J. J. Nearly flat falling motions of the rolling disk // Regular and Chaotic dynamics, 2006, vol. 11, no. 1, pp. 31-60.
- [17] Garcia-Naranjo L. C., Marrero J. C. Non-existence of an invariant measure for a homogeneous ellipsoid rolling on the plane // Regular and Chaotic Dynamics, 2013, vol. 18, no. 4, pp. 372-379.

- [18] Gellop E. G. On the rise of a spinning top. Proc. Cambr. Phylos. Soc., 1904, v. 19, pt. 3, p. 356-373.
- [19] Hadamard J. Sur les mouvements de roulement, Mremoires de la Sociretre des sciences physiques et naturelles de Bordeaux, 4e sér., 1895, pp. 397–417.
- [20] Hirsch M. W., Pugh C. C., Shub M. Invariant manifolds // Bulletin of the American Mathematical Society, 1970.
- [21] Kazakov A. O. Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane // Regular and Chaotic Dynamics, 2013, vol. 18, no. 5, pp. 508-520.
- [22] Koiller J. and Ehlers K. Rubber rolling over a sphere, Regular and Chaotic Dynamics, vol.12, no.2, p. 127-152, 2007.
- [23] Korteweg D. Ueber eine ziemlich verbrietete unrichtige Behandlungswiese eines Problemes der rolleden Bewegung und insbesondere über kleine rollende Schwingungen um eine Gleichgewichtslage. Nieuw Archietvoor Wiskunde, 1899, Bd. 4, S. 130–155.
- [24] Kozlov V.V. Several problems on dynamical systems and mechanics // Nonlinearity, 2008, vol. 21, no. 9, pp 149-155
- [25] O'reilly O. M. The dynamies of rolling disks and sliding disks // Nonlinear Dynamics, 1996, vol. 10, no. 3, pp. 287-305.
- [26] Vierkandt A. Übber gleitende und rollende Bewegung. Dritter Abschnitt: Das Rollen und Gleiten einer ebenen Fläche, insbesondere einer homogenen Kreisscheibe, auf der Horizontalebene unter dem Einfluss der Schwere // Monatshefte for Mathematik und Physik, 1892, vol. 3, no. 1, pp. 117–134.