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Abstract

In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane is studied. Using methods
of geometric control theory and differential geometry, we describe the reachable set, investigate the existence of
Lorentzian length maximizers, compute extremal trajectories, construct an optimal synthesis, and characterize
Lorentzian distance and spheres.

1 Introduction

Lorentzian geometry serves as the mathematical foundation of general relativity [1,9,10]. Unlike Riemannian ge-
ometry, here information can spread only along curves with velocity vectors lying within a certain pointed cone A
natural problem in this context is finding curves that maximize a length-like functional along admissible curves.
Thus, a key objective is to describe Lorentzian length maximizers for all pairs of points where the second point is
reachable from the first one via an admissible curve. To the best of our knowledge, this problem has been fully
investigated only in the simplest cases: for the left-invariant Lorentzian structure on R™ (Minkowski space RY) [1],
for the 2-dimensional de Sitter plane [11], and for left-invariant Lorentzian metrics on the two-dimensional solvable
non-Abelian Lie group [6].

This paper presents a description of Lorentzian length maximizers, distances, and spheres for the 2-dimensional
anti-de Sitter plane — a Lorentzian space of constant negative curvature [1]. These results are obtained using
methods of geometric control theory [2,3]. Interestingly, in these problems, Lorentzian length maximizers do not
exist for certain reachable pairs of points, and the Lorentzian distance may be infinite for some pairs of points. In
these problems, all extremal trajectories (satisfying the Pontryagin maximum principle) are optimal, meaning there
are no conjugate points or cut loci. The optimal trajectories, as well as the spheres and distances, are parametrized
by elementary functions.

The paper is structured as follows. Section 2 provides the necessary definitions and basic results of Lorentzian
geometry. Section 3 describes the construction of the 2-dimensional anti-de Sitter space. The main Section 4
formulates and investigates the problem of Lorentzian length maximizers in this space.

2 Definitions and Preliminary Results

We recall the basic concepts of Lorentzian geometry [1,6].
Let M be a smooth manifold. A Lorentzian structure on M is a non-degenerate quadratic form g of index 1.
For ¢ € M, a vector v € T, M is called:

timelike if g(v) < 0,

spacelike if g(v) > 0 or v = 0,

lightlike (or null) if g(v) = 0 and v # 0,

e causal (or nonspacelike) if g(v) < 0.

A Lipschitz curve v on M is called:

e timelike if its velocity vector is timelike almost everywhere,

e spacelike, lightlike, or causal if the corresponding condition holds for its velocity vector.
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Fix an arbitrary timelike vector field Xy on M. A causal vector v € T, M is called:
o future-directed if g(v, Xo(q)) < 0,
e past-directed if g(v, Xo(q)) > 0.

A future-directed timelike curve (t), t € [0,t1], is called arclength parametrized if g(§(t),¥(t)) = —1.
The Lorentzian length of a causal curve v € Lip([0,¢1], M) is defined as:

I(y) = /O oGV dt.

For two points go,q1 € M, denote by 4,4, the set of all future-directed causal curves connecting gg to g;. If
Qgoq # 0, the Lorentzian distance from gy to ¢ is:

d(q07 Q1) = sup l(7)7
’YEquql

otherwise, d(qo,q1) := 0.

A future-directed causal curve + is called a Lorentzian length maximizer if it realizes the maximal Lorentzian arc
length between v(0) = ¢go and v(t1) = ¢1.

The causal future of a point gy € M is the set:

Jt(q0) = {q1 € M | 3 a future-directed causal curve v connecting qo with g }.

For go € M and ¢; € J(qp), finding a Lorentzian length maximizer reduces to solving the following optimization
problem:
[(y) = max,  7(0) = g0, ~(t1) = q.

Vector fields X1, ..., X, € Vec(M), where n = dim M, form an orthonormal frame for the Lorentzian structure g
if for all ¢ € M:
gq(Xth):_lv gq(XiaXi):l (i:27~"an)7 gq(Xian):O (7'75.])

Fixing the time orientation by X;, the Lorentzian problem for a structure with orthonormal frame Xy,..., X,
can be formulated as an optimal control problem:

n
(j:ZuiX,-(q), q€E M, uEU—{(ul,...,un)eRnulz u%+-~+u%},
i=1

t1
q(0) = qo, q(t1) = a1, l(q(~)):/ \/u%*u%f~~fu%dt%max.
0

Remark 2.1. The Lorentzian length is invariant under strictly monotonic Lipschitz reparametrizations t(s), s € [0, s1].
Thus, if v(¢), t € [0,t1], is a Lorentzian length maximizer, any reparametrization v(¢(s)), s € [0, s1], is also a length
maximizer.

In this paper, we primarily use:

e arclength parametrization for timelike trajectories,

e parametrization with u;(¢) = 1 for future-directed lightlike trajectories. Alternatively, one may choose u;(t) =1
for all future-directed causal trajectories.
3 The Two-Dimensional Anti-de Sitter Space

Consider the space R = {z = (71,22, 23) | z; € R} endowed with the pseudo-Euclidean metric ds? = —dz? — dz3 +
dz3. Define the one-sheeted hyperboloid

H={z R} | —a? — 22 + 22 = -1},
and parametrize it as
1 = coshfcosp, xo=coshfsing, x3=sinhb, 0 eR, p € R/(27Z), (3.1)

with the induced Lorentzian metric g = ds?| g2 on H 2.



Definition 3.1. The two-dimensional anti-de Sitter space [1] is the simply connected covering manifold of the hyper-
boloid H?:
H? = {(¢,0) € R?},

equipped with the Lorentzian metric g induced by g.

Note that g locally coincides with g.
Vector fields X7, Xo € Vec(H?) form an orthonormal frame for § if

9( X2, Xo) = —g(X1, X1) =1,  §(X1,X2) =0.
Proposition 3.1. (1) The metric g, and hence g, has the following form:
g = —cosh? 0 dp? + do*.
(2) An orthonormal frame for these metrics can be chosen as

1 0 0
"~ cosh0 0y’ Xz_%.

Proof. Both expressions follow from direct computation. From the parametrization (3.1), we obtain
dry = sinh 6 cos ¢ df — cosh O sin ¢ dp, drs =sinhfsinpdf + coshfcospdy, drs = coshdb.
Substituting into the metric, we derive
g = —dr? —dai + da? = — cosh? 0 dp? + db?.
Next, we determine the eigenvectors and normalize them with respect to the metric. The eigenvalues of (3) are

A1 = —cosh? @ and Ay = 1, leading to the orthonormal frame (3.2). O

4 Lorentzian Problem on Anti-de Sitter Space

4.1 Problem Statement

The Lorentzian longest curves for the metric g are solutions to the following optimal control problem:

4 =u1X1(q) +u2X2(q), q=(p,0) € M = H,
u€eU={(uy,uz) € R* | uf —uj >0, ug >0},
q(0) = qo = (¢, 00),  q(t1) =q1 = (p,61), (4.3)

ty
l:/ \/u? —u3dt — max. (4.4)
0

4.2 Reachable Set from an Arbitrary Point ¢
Definition 4.1. The reachable sets of the system (4.1), (4.2) from a point gy € M are defined as follows:

AA
=R
[N

Ago = {q(t1) : gq(t), t €[0,t1], trajectory of the system (4.1), (4.2), s.t. t1 >0, ¢(0) = qo}
is the reachable set for arbitrary non-negative time (the causal future of the point ¢);
A

o = 14(t1)  q(t), t € [t1,0], trajectory of the system (4.1), (4.2), s.t. t; <0, ¢(0) = qo}

is the reachable set for arbitrary non-positive time (the causal past of the point ¢p);

Agg = {q(t) : q(s), s €[0,t1], trajectory of the system (4.1), (4.2), s.t. t € [0,%1], ¢(0) = qo}
is the reachable set for time not exceeding ¢t; > 0.
Theorem 4.1. Let g0 = (0o, o) € M. Then the set Ay, is equal to

Voo :=={(8,9) € M : ¢ > sign (6 — 6y) arctan (sinh 6) + o — sign (6 — 6p) arctan (sinh 6p) }.



Proof. 1) We show that all points of the set V =V}, are reachable from the point go. Consider constant controls
uy = const, uy = const, such that u; > 0, —u; < us < uq, and find the corresponding trajectories of the system (4.1)

with the initial condition qo = (6o, ¢o):

0:u27
T
Y= Soshg*

The solution has the form:

Q(t) = 90,

P(t) = oaigst + o, for uz =0,

G(t) = Ugt + 00,

o(t) = o arctan (sinh (uzt + 609)) + o — > arctan sinh 6, for us # 0.

The trajectories for us = 0, as well as us = £1, uy € {1, 3, 5, 10, 20, 50}, are shown in Figs. 1, 2, 3.

Figure 1: Trajectories for go = (0,0) with us = 0, as well as ug = £1, uy € {1, 3, 5, 10, 20, 50}

¢

Figure 2: Trajectories for go = (0, —5) with us = 0, as well as us = £1, uy € {1, 3, 5, 10, 20, 50}
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For us = 0, we obtain the vertical ray 6 = 6y, ¢ > po. It divides V into two disjoint sets: Vi = V. N {0 >
90}, Vo=Vn {9 < 90}
Let ug = +1, then u; > 1 and ust = =+, Z—; =du; =u, u > 1 or u < —1. Therefore,

P—%o
arctan sinh f—arctan sinh 6 *

u =

0 = £t + 6, N +t =60 — 6,
© = warctan (sinh (£t 4 0y)) 4+ po — warctan sinh 6,

From this, it is clear that the mapping (¢, u) — (¢ + 0y, warctan (sinh (¢t + 6p)) + o — warctan sinh 6) establishes
a bijection between the sets V; and {(¢,u) : ¢ > 0, u > 1}, as well as between the sets V_ and {(¢,u) : t <0, u < —1}.
Hence, all points of the set V' are reachable from the point qq.

2) We show that points with ¢ < sign (6 — 6p) arctan (sinh 6) + g —sign (6 — ) arctan (sinh 6y) are not reachable
from the point (0, o) in non-negative time. Direct verification shows that any vector field u3 X7 + us X5 for any
admissible u at each point of the boundary V is tangent to the curve ¢ = sign (8 — ) arctan (sinh ) + ¢y —
sign (6 — ) arctan (sinh 6y) or directed into the interior of the region int(V).

It follows that the reachable set from the point 6 = 6y, ¢ = ¢ in non-negative time is V.

O

We immediately obtain

Corollary 4.1. The reachable set from the point go = (0o, v0) € M for arbitrary non-positive time is
Vo ={(0,9) € R*: ¢ < —sign (6 — ) arctan (sinh 6) + ©o + sign (6 — 6g) arctan (sinh 6y)}.

Proof. Indeed, by considering the obtained formulas (4.6) for constant controls at non-positive ¢ and carrying out
reasoning similar to that in Theorem 4.1 (constructing a bijection between the corresponding sets, as well as studying
the behavior of the vector field on the boundary of the set V, ), we obtain the stated result. O

The trajectories for us = 0, as well as us = £1, uy € {1, 3, 5, 10, 20, 50}, are shown in Figs. 4, 5, 6.
Figure 4: Trajectories for go = (0,0) with us = 0, as well as us = £1, u; € {1, 3, 5, 10, 20, 50}
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Figure 5: Trajectories for ¢o = (0, —5) with ug = 0, as well as us = +1, u; € {1, 3, 5, 10, 20, 50}
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Figure 6: Trajectories for go = (2, —5) with us = 0, as well as us = £1, uy € {1, 3, 5, 10, 20, 50}
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4.3 Existence of Optimal Trajectories

Consider a problem equivalent to problem (4.1)—(4.4):

4 =u1X1(q) + u2X2(q), q=(p,0) e M =HE, (4.7)
welU ={(ug,up) €R? | ud <1, uy =1}, (4.8
q(0) = qo = (0, 0o), q(t1) = q1 = (1, 01), (4.9)

ty
l:/ 1 — u2dt — max. 4.10
; \/ 5 (4.10)

The solutions of problem (4.1)—(4.4) are reparametrizations of the solutions of problem (4.7)—(4.10).

Definition 4.2. The maximum motion time of trajectories of system (4.7), (4.8) from point gy to point ¢ is

T(qo,q1) :=sup{t1 > 0: 3 a trajectory q(t) of system (4.7), (4.8), t € [0,¢1], such that ¢(0) = qo, ¢(t1) = g1}
Theorem 4.2. Let o = (6o, p0) € M and
By, == {(0, ) € M | m+po—sign (6 — 6y)(arctan (sinh 0)—co)—2co sign 6y > ¢ > @o+sign (0 — o) (arctan (sinh §)—co)},

where ¢o = arctan (sinh ).
Then, for any point g1 € By,, there exists an optimal trajectory in problem (4.1)—(4.4).



Figure 7: Boundary of the set By,

(a) For go = (0,0)
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Proof. We show that for any point g1 = (61, p1) € By,, the conditions of Theorem 2 from [4] are satisfied:
Theorem 4.3. For problem (4.7)—(4.10), suppose the following conditions hold:

(1) @1 € Agy;

(2) The set Ay, NA,, is compact;

(3) T(go, q1) < +o0.
Then, an optimal trajectory exists in problem (4.7)—(4.10).

(1) The first condition holds because By, C Vg, = Ag,-

(2) We show that Vg, N V,, is compact. From the explicit form of these regions and the monotonicity properties of
the functions defining their boundaries, it follows that the intersection Vg, NV, can be enclosed in a rectangle
{(0,0) :0- <0 <0;,p_ <¢ <}, implying boundedness.

We explicitly show that the right boundary of V, (respectively, the left boundary) intersects with the right
boundary of V, (respectively, the left boundary). This will imply the boundedness and closedness of the
intersection.



Let q1 = (91,@1) S qu, ie.,

o + sign (61 — 6p)(arctan (sinh 1) — arctan (sinh 6y)) < ¢
< 7+ o — sign (0 — 6p)(arctan (sinh 6;) — arctan (sinh 6y)) — 2 arctan (sinh |6g|). (4.11)

The equation for boundary intersections:

o + sign (6 — 0p)(arctan (sinh #) — arctan (sinh 6y)) = 1 — sign (0 — 61)(arctan (sinh §) — arctan (sinh 6,)) <
< (sign (0 — 6p) + sign (0 — 61)) arctan sinh 6 = sign (6 — ) arctan (sinh 6y) + sign (f — 61) arctan (sinh 61) + 1 — @o.

The intersection of the right boundaries is determined by 8 > 61, 6 > 6y, and the intersection of the left
boundaries by 6 < 61, 8 < 0y. The corresponding equations are:

0 > 01, 8 > 6y, 2arctan (sinh #) = arctan (sinh 6y) + arctan (sinh 61) + 1 — o,
0 <01, 0 <6y, 2arctan (sinh @) = arctan (sinh 6y) + arctan (sinh 61) + @9 — 1.

Consider the first equation and show that its right-hand side lies in (—, 7) (the second equation is analogous).
Then, due to the strict monotonicity of arctansinh (), the solution exists and is unique.

For the proof, we use inequality (4.11). We compare:
arctan (sinh 6p) + arctan (sinh 61) + ¢1 — ¢ \/ 7w and arctan (sinh6y) + arctan (sinh 61) + ¢1 — o \/ -,
which is equivalent to:
1 \/ m+@p—arctan (sinh fy)—arctan (sinh 6;) and ¢ \/ —m+po—arctan (sinh p) —arctan (sinh 61). (4.12)
We analyse four cases for the first inequality in (4.12):
e 01 > 0, 6p > 0: The right-hand side of (4.11) is m + ¢ — arctan (sinh 6;) — arctan (sinh 6), so
©1 — o + arctan (sinh 01) + arctan (sinh ) < 7.
e 61 > 6y, By < 0: The right-hand side of (4.11) is m + g + arctan (sinh 61 ) + 3 arctan (sinh 6y). Comparing:
7 + ¢ — arctan (sinh 61) + 3 arctan (sinh 6y) \/ T+ ¢ — arctan (sinh 6y) — arctan (sinh 6, ),
which reduces to 4 arctan (sinh 6y) \/ 0. Since 6y < 0,
©1 — o + arctan (sinh 6;) + arctan (sinh ) < .
e 61 < 6p, By > 0: The right-hand side of (4.11) is m + ¢ + arctan (sinh 6;) — 3 arctan (sinh 6y). Comparing:
7 4 o + arctan (sinh 6;) — 3 arctan (sinh 6) \/ T 4 o — arctan (sinh 6y) — arctan (sinh 6y),

which reduces to 2arctan (sinh 6;) \/ 2 arctan (sinh 6p). Since 6, < 6 and arctan (-), sinh () are strictly
monotonic,
1 — o + arctan (sinh 6;) + arctan (sinh ) < .

e 01 < By, 0p < 0: The right-hand side of (4.11) is ™ + ¢o + arctan (sinh 6;) + arctan (sinh 6p). Comparing:
7 4 o + arctan (sinh 61 ) + arctan (sinh 6) \/ T+ ¢ — arctan (sinh 6y) — arctan (sinh 6,),
which reduces to 2 arctansinh §; + 2 arctan (sinh 6p) \/ 0. Since 6; < 6y < 0,
©1 — @o + arctan (sinh 0;) + arctan (sinh 6p) < 7.
For the right inequality in (4.12), consider two cases:
e 01 > 0y: The left-hand side of (4.11) is pg+arctan (sinh 61 ) —arctan (sinh 6p). Since arctan (sinh6) > —x /2,
o + arctan (sinh 6;) — arctan (sinh 6y) > —7 + ¢ — arctan (sinh 6p) — arctan (sinh 6, ),

S0
—m < @1 — o + arctan (sinh ;) + arctan (sinh 6p) < 7.



e 01 < fy: The left-hand side of (4.11) is pg—arctan (sinh 61 )4arctan (sinh 6y). Since arctan (sinh 0) > —m/2,
o — arctan (sinh 61) + arctan (sinh 6y) > —m + ¢ — arctan (sinh 6y) — arctan (sinh 6, ),

S0
—m < @1 — o + arctan (sinh ;) + arctan (sinh 6p) < 7.

Thus, condition (2) of Theorem 4.3 is satisfied.

(3) We show that for any ¢; € By,, the following holds:

sup{t; > 0: 3 a trajectory q(t) of system (4.7),(4.8), t € [0,t1] : ¢(0) = qo, q(t1) = q1} < +o0.

Note that ¢ = 45 = ﬁ > 0, so ¢ increases.

By the geometric properties of the reachable set, there exists go = (02, p2) € V, with maximal |f5| such that
g1 € Vg,. The point ¢» can be explicitly computed since, by the maximality condition, it lies on the lower
boundary of V,,, and ¢; lies on the lower boundary of V,.

Since g1 € By,, inequality (4.11) holds. As ¢ lies on the lower boundary of V,,, we have:

w2 = o + sign (62 — Op) (arctan (sinh ) — arctan (sinh 6)). (4.13)

Since ¢ lies on the lower boundary of V;,, we have:

©1 = 2 + sign (0 — 63)(arctan (sinh #;) — arctan (sinh 6s)). (4.14)

Substituting (4.13) into (4.14) gives the equation for y:
©1 = o + sign (62 — bp)(arctan (sinh 65) — arctan (sinh 6y)) + sign (61 — 62)(arctan (sinh 61) — arctan (sinh 62)).
(4.15)

We show that a solution exists by considering the cases:

— 02 > 6y, 02 > 01 (right lower boundary of V,,, left lower boundary of V,),
— 63 < by, 02 < 01 (left lower boundary of Vg, right lower boundary of V,).

The right-hand sides of the resulting equations lie in (—m, 7), ensuring existence and uniqueness.

This allows us to bound the rate of change of ¢, proving finite time to reach ¢;:

1

Y1 — Yo
cosh 6 ’

26‘>0:>t1§70

0| < C = coshf < C =
All conditions of Theorem 4.3 are satisfied, so Theorem 4.2 is proven. O

4.4 Extremals of Pontryagin’s Maximum Principle

We apply Pontryagin’s maximum principle (PMP) [2, 3, 8] to the optimal control problem (4.1)—(4.4).
The Hamiltonian of the PMP, where v € {—1,0}, is of the form

hY(X) = hiuy + houg — vy/u? — u2, AeET*M,

M) = A Xa@) =~ () = (X)) = &,

here &; are the canonical coordinates in the cotangent bundle 7% M. The Hamiltonian system of the PMP is

: jinh 0
&1 = &1 o7

52:07
9:u2a
Ly
Y= Cosh@-



4.4.1 Abnormal trajectories

Consider the abnormal case v = 0.

Proposition 4.1. Abnormal trajectories are light-like trajectories, and up to reparametrization

(751 :iUQ :17

o(t) = £ arctan {sinh (£t + 0y) } + o F arctan {sinh 6y},

0(t) = £t + 0o.
Proof. Consider two cases u; = *us = 1. Then the Hamiltonian system looks like this:

51 _ 62 sinh 0

coshZ 6’
52 = 07
= +1,
b= =

cosh 6

From the second equation it immediately follows that £& = const = c¢o, and from the third equation we obtain
0(t) = £t + 6y. By dividing the first equation by the third and the fourth equation by the third, we can find &; and
o as functions of 8, so we get:

52 = Cg,
51 (t) = Fcosh (j:thrGo) + coscﬁeo + 51 (0)’
8(t) = +t + O,

(t) = +arctan (+t + 0g) + o F arctan sinh 6.

Abnormal trajectories form the boundary of the reachability set Ay,.

4.4.2 Normal trajectories

Now consider the normal case ¥ = —1. From the maximality condition

hiuy + haug + /u? — u3 — max
uelU
we obtain:

h2—h2 =1, hy <0,

u? —ui =1, u; >0,
and then, writing in hyperbolic coordinates h; = — cosh ), hy = sinh ¢ and taking into account that £&; = hy = const,
we obtain that the Hamiltonian system for normal extremals takes type:

I sinh @
Q'b - COShwcoshG’
0 = sinh v,

(4.16)
_ coshv
cosh @ *

Dividing the first equation by the second and integrating, we obtain the first integral:

cosh ¢ cosh 8 = const .
Proposition 4.2. Normal extremals with initial condition 0(0) =0, ¢(0) =
(1) forio=0, teR

0, ¥(0) =g have the following form:

Il
o

=)

S
—~ o~
~
~
I
~

(4.17)

10



(2) for o #0, t e (—7/2,7/2)

0(t) = arsinh (sinh ¢ sint),
_ : sinh g cos t
w t) = arsmh (\/COS2 t+co§h2 Yo sin2 t) ’ (418)

(t)
©(t) = arctan (cosh tg tant),

which continues for all t € (—oo, +00) by formulae

0(t) = arsinh (Sinh g sin t) ,

,(/)(t) = arsinh ( \/COS:ZTCZJ;)};OZZ sin? t) ’ (419)
o(t) = nm + po(t —nm), t € nm—7/2,nm+7/2),
where n € Z and
/2, t=—7/2,
©o(t) = ¢ arctan (cosh g tant), ¢ € (—7w/2,7/2),
/2, t=m/2.

Proof. Using the first integral cosh 1 cosh® = D, we first consider the case D =1 = cosh 1y, and obtain the solution
(4.17). In the case D > 1, at the energy level we express sinh as a function of 4, and then by integrating and
substituting the initial condition we obtain the solution (4.18) for ¢t € (—m/2,7/2).

Consider the equation for the function ¢, ©(0) =0, 6(0) = 0, obtained after finding 6(¢):

coshyy D coshfycoshypy cosh ¥
cosh®  cosh?6  1+sinh®¢ypsin®t 1+ sinh?epgsin’t’

The right-hand side is a smooth bounded function for all ¢ > 0, so the solution ¢(t) is a smooth function for all ¢ > 0:

¢ cosh g
o(t) = T B
o 14 sinh”¢gsin” 7

We have evaluated this integral and obtained a formula that is true on the interval t € (—7/2,7/2):

dr.

©o(t) = arctan ( cosh ¢ tan t) .

On the other hand, note that the derivative ¢(t) is a periodic function with period 7.
At points km, k € Z the function ¢(t) reaches its maximum value, and at point nw/2, n = 2l + 1,1 € Z — its
minimum value. Moreover, it is even on each interval [(k — 1)7, k7], k € Z, relative to the midpoint (2k — 1)7/2.
Due to the continuity of the solution, we glue it on each interval

lim  arctan (cosh 1o tan t) = +7/2.
t—+7/2F0

By continuity, lim t) = +m/2.
Y Y t—>:|:7r/2:|:0sp( ) /
Since the derivative with respect to the point 7/2 is even, we extend the solution to the segment [r/2, 7] using the

formula:
te0,7/2], p(n/2+t) =7/2+ m/2 — arctan (coshwo tan (/2 — t)),

where the first term is from the condition that ¢(t) = 7/2, and

/24t cosh 1
7r27arctan<cosh tan7r27t):7r2f 7r27t:/ 0
/ o tan (7/ ) /2 —wo(m/ ) s T4 s vosin® 7

Accordingly, ¢(7) = 7, and we get the general formula, where n € Z:
o(t) =nm + po(t —nn), t € [nm—7/2,nT + 7/2].

Return to the formulas (4.18) for the solution on the interval ¢ € (—7/2,7/2) and write the new function ¢(t), t €
[0, +00) through ¢(t) = arctan (cosh (1(0)) tan t), and get (4.19). O

11
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Figure 8: Extremal trajectory for ¢(0) =1

Figure 9: Extremal trajectories for ¥(0) € {0, £1.5, £2, £3, £8}

¢
8

4.5 Exponential Map and Its Properties

We define the exponential map

Exp : N— M, N:(T;OMﬂ{hlz—\/l—i—h%})

%o

Exp(vho,t) = q(t) = (0(¢), ¢(t)),

where

0(t) = arsinh (sinh g sin t) ,

arctan ( cosh 9 tan t) ,
/2,
7 + arctan (cosh g (tan (t — m))),

t e (0,7/2),
t=m/2,
te(m/2,m).

Theorem 4.4. The exponential map defines a homeomorphism of regions

A = {(’l,[}o, t) : ’l/JO € R, te (077'[')},

and a diffeomorphism of regions

A={(vo, t): ¢ €R, t € (0,7/2)},

12

x (0,7m)e = {(to,t) | o € R, t € (0,7)},

C' = {(0,p) € R? : arctansinh |f| < ¢ < 7 — arctansinh ||}

C = {(0,¢) € R? : arctansinh |0] < ¢ < 7/2},

(4.20)



as well as regions
A={(thy, t): 1o €R, t € (m/2,7)}, C={(0,9) € R?:7/2 < ¢ <7 — arctansinh |0]}.

Proof. We show explicitly that on the set C’ there exists an inverse mapping to the mapping defined by the formulas
(4.20), and we will see from the obtained formulas that it is continuous in both directions. First, we prove this for
sets A and C by considering the following mapping:

0(t) = arsinh ( sinh 1) sin t) )

(4.21)
©(t) = arctan (cosh o tant), te (0,7/2).

To do this, we take an intermediate step: let X = sinhf, Y = tan ¢y and first prove that the domains A and
B ={(X,Y) € R}Y > |X|} using the following formulas:

X = sinh g sint,
Y = coshgtant.

Expressing sinh ¢y from the first equation, substituting into the second and using the formulas for trigonometric and
hyperbolic functions, we obtain

Y2 - X2 1+Y2
t = arcsin Tryeo g = arsinh (X Y2+—X2> — smooth functions on the set B.

Therefore, the inverse mapping to the mapping given by the formulas (4.21) is expressed on the set C' by smooth

functions:
tan? ¢ — sinh” § 1 + tan?
t = arcsin an<p—512n7 1o = arsinh | sinh 6 % . (4.22)
1+ tan“ g tan? ¢ — sinh® @

We have thus proven that the domains A and C' are diffeomorphic due to the exponential mapping. Now we
will show the diffeomorphism of the domains A and C' due to this mapping. Expressing explicitly through inverse
mappings of elementary functions from the formulas (4.20), we obtain:

0(t) = arsinh (sinh ¢ sin t) N sinh 6 = sinh ¥ sint (4.23)
(t) = m + arctan (cosh ¢ tan (7 — t)) tan (m — ) = cosh ¢yg tan (7 — t) '
Since t € (7/2, m), then (7 —t) € (0,7/2) = cos(m —t) = —cost > 0, sin(m —t) = —sint > 0 = tan (7 — t) =

tant. For similar reasons, tan (m — ¢) = tan ¢, since ¢ € (w/2, 7). Therefore, the formulas (4.23) are equivalent to
the following:

sinh § = sinh ¢ sin t,
tan ¢ = cosh g tant.

These are exactly the formulas for the previous case t € (0,7/2), ¥y € R, but we must take into account that
t € (n/2,m) and ¢y € R, whence we obtain:

tan? ¢ — sinh” 0 1 + tan?
t = m — arcsin w , 1o = arsinh [ sinh % . (4.24)
1+ tan? ¢ tan? ¢ — sinh” 0

The continuity of the exponential mapping in the domain A’ follows from the continuous dependence of the
solution of the differential equation on the initial conditions.

It remains to show the continuity of the mapping inverse to the exponential mapping on the line ¢ = 7/2, § € R
(corresponding to t = w/2, 1o € R). To do this, we compare the left and right limits at ¢ — 7/2 for the mappings
4.22 and 4.24, respectively. For ¥y nothing needs to be checked, but for ¢ it is necessary:

tan? ¢ — sinh? tan? ¢ — sinh?
lim  arcsin sl 1121 Yo =arcsinl =7/2 =7 —arcsinl = lim T — arcsin il 4 1121 %o
p—sm/2-0 1+ tan“ ¢ o—>1/2+0 1+ tan“ e

O

Remark 4.1. In Theorem 4.4 we proved the homeomorphism of the domains A’ and C’ by virtue of the exponential
mapping. In the Proposition 4.3 the analyticity of the mapping to(6, ¢) will be shown.
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4.6 Optimal synthesis on the set B

Theorem 4.5. (1) If the point 1 = (01,01) belongs to the lower boundary of the set By = {(0,0) € M :
m — arctansinh [#] > ¢ > arctansinh|0|}, then the optimal trajectory connecting the origin and g1 exists, is
unique and is an abnormal extremal, and the Lorentzian distance from (0,0) to g1 is 0.

(2) If a point 1 = (01, 1) € int B(ggy, then the optimal trajectory connecting the origin and qi ewists, is unique,
and is a normal extremal with initial condition 14, , and the Lorentzian distance from (0,0) to q1 is ty, , where

1 2
by, = arsinh (sinh 91\/ +tan” o >, (4.25)

tan? 1 — sinh? 01

. tan2 ¢ —sinh? 6,
arcsin T iitanZe; ©®1 € (0,’/7'/2),

t‘h = 77/27 ¥1 = 7T/27 (426)

. tan? ¢ —sinh? 6,
T — arcsin \/%, p1 € (m/2,m).

The uniqueness of the optimal trajectory is meant up to reparametrization.

Proof. 1t follows from Theorem 4.2 that for any point g1 € Bg,g) there exists an optimal trajectory. The optimal
trajectory satisfies the Pontryagin maximum principle.
First, we prove point (2).

(2) From Theorem 4.4 we obtain that normal trajectories connect the origin (0,0) with points ¢; lying in the

interior of the set By o):
Exp(A’) = C" = int By o).

From the same theorem we conclude that there exists a unique extremal trajectory, determined by the initial condition
thq,. Since for any point ¢, € int(B(g,0)) there exists an optimal trajectory, and also since the extremal trajectory
passing through ¢; is unique, it follows that for each point ¢; € int(B(g,)) the optimal trajectory connecting it with
(0,0) is the only normal extremal passing through g;. Optimal synthesis in the interior of the set is formulated as

follows.
We must first find 9, :
1 + tan?
g, = arsinh | sinh 6, 5 + .<,012 .
tan® 1 — sinh” 6;
Next, we find the moment at which we reach point ¢;:
. n2 —sinh?
arcsin | / =GR OL ;i 28 1 € (0,7/2)

lgy = § 7/2, p1=1/2
. tan? Lpl—sinh2 01
T — arcsin \/%, ¢1 € (/2,7)

The optimal trajectory connecting points (0,0) and ¢ = (01, ¢1) € C’ has the following form:

o If t,, < m/2, then

6(t) = arsinh (sinh ¢, sint), (4.27)
©(t) = arctan (cosh g, tant), te (0,tq,). '
o If t,, =m/2, then
6(t) = arsinh (sinh ¢, sint),
() = arctan (cosh v, tant), t € (0,7/2), (4.28)
= /2, t=m/2.
o If /2 < t,, < m, then
0(t) = arsinh (sinh ¢, sint),
arctan (cosh ¢, tant), t € (0,7/2), (4.29)
p(t) = q7/2, t=m/2,

m — arctan (cosh g, tan (m —t)), t € (1/2,1q,).
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Point (2) is proved.

Now we prove point (1).

Since normal trajectories connect (0,0) only with points in the interior of By o), the optimal trajectories coming to
the boundary of the set B(g oy are abnormal. Uniqueness follows from the fact that ¢ increases along the trajectories
of the control system. Indeed, our control system is defined by differential equations (4.5) and the set of admissible
controls (4.2).

That is, if we choose a point on the boundary with 6; > 0, we can move along the lower boundary to the right
and cannot return to the origin due to the monotonicity of the boundary itself along the ¢ coordinate.

From the Proposition 4.1 we obtain that abnormal trajectories connect the origin (0,0) with each point ¢; lying
on the lower boundary of the set B(g,9). The optimal synthesis on the lower bound of the set is formulated as follows:

e If §; > 0, then
0(t) =t, ©(t) = arcsinsinht, up = wug, t € [0,01],

e If 6; <0, then
0(t) = —t, ©(t) = — arcsinsinh (—1), up = —ug, t € [0,6],

Note that the length of abnormal trajectories is 0, since u? — u3 = 0 along them.

Figure 10: Optimal trajectories

(a) For ¢1 = (1,2)

I I I 1 g
-3 -2 -1 0 1 2 3

4.7 Points above the upper boundary of B

Theorem 4.6. For points (01,¢1) € M such that 1 > m — arctan (sinh |61]), there is no optimal trajectory starting
at (0o, 0) = (0,0). The Lorentzian distance from this point to the point (01, ¢1) is +0o.
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Proof. As shown in the Theorems 4.2 and 4.5, the optimal trajectories are contained in the set B o).

We will show that the Lorentzian distance for points above the upper boundary B o) is +00. We construct a
family of admissible (piecewise smooth with (u1,us) € U) curves depending on the parameter « > 0, connecting the
origin with the point ¢; = (01, 1), such that ¢; > 7 — arctan (sinh |f|), and calculate the limit of the lengths of these
curves as @ — +00. Each curve of the family consists of 3 parts:

1) We move along the curve ¢ = arctansinh @, 6 > 0 to the point (6, ¢) = (o, arctan (sinh«)), a > 61, if 6; > 0,
along the curve ¢ = —arctansinh @, 6 < 0 to the point (—«, — arctan (sinh (—«))), —a < 6y, if 61 < 0;

2) Move vertically upward until we intersect the curve ¢ = 1 + 7 — arctansinh (§ — 61) when 6; > 0, until we
intersect the curve ¢ = 1 + m 4 arctansinh (0 — 0;) when 6; < 0;

3) Move along the curve ¢ = @1 + 7 — arctansinh |§ — 61| until we reach the point (01, ¢1).

Figure 11: Trajectory for ¢; = (1,4), a =2
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Figure 14: Trajectory for ¢; = (—1,4), a =2

Figure 15: Trajectory for ¢y = (—1,4), a =4

Figure 16: Trajectory for ¢g; = (—1,4), a =6

These parts are defined by the following controls:
1) uy =1, ug=1for 61 >0, u; =1, ug =—1for ; <0, t € [0,t];
2) up =1, ups =0, t € [t1,ta];
3) up =1, upg=—-1for 6y >0, u; =1, ug =1 for 6; <0, t € [ta,13)].
We calculate the value of the length functional on such a curve:

ts t1 to
/ 1/u§—u§dt=</ +/ / ) u? —uddt = dt =ty —ty.
0 0 t1 to

t1

It remains to find t2 and t;.

e First, for 6; > 0:
1) With the initial condition §(0) = 0, ¢(0) = 0 we obtain the solution

(0(t), p(t)) = (t,arctansinh t)

on the segment t € [0, a;
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2) With the initial condition 6(a) = @, ¢(a) = arctan (sinh o) we obtain the solution

(0(1), (1)) = (a

t
"cosha  cosha

+ arctan (sinh a))

on the segment t € [o, to];
3) With the initial condition 0(t3) = 01, p(t3) = ¢1 we obtain the solution

(0(t), p(t)) = (=t + t3 + 01, — arctan (sinh (—¢ + t3 + 61)) + 1 + arctan (sinh (61)))
on the segment ¢ € [to, t3).

So, t1 = a we have explicitly found.

It remains to find ¢y from the intersection of the vertical line 2) with the curve 3). At point ¢ vertical line
2) reaches the point with ordinate — arctan (sinh &) + ;1 + arctan (sinh (6;)). We compose the corresponding
equation and solve it:

to
cosha  cosha

+ arctan (sinh &) = — arctan (sinh ) + ¢ + arctan (sinh (61)) <

Sty =

cosha 2 arctan (sinh «) 4+ 1 + arctan (sinh (01))] cosh a.

And now we obtain the length of the curve:

— 2arctan (sinh &) 4+ ¢ + arctan (sinh (91))} cosha —a =

2=t = [coshoz
= [—2arctan (sinh &) + @1 + arctan (sinh (61 ))] cosh a =: L(«).

We calculate the limit

lim L(e) = lim ([-2arctan (sinha)+ 1 + arctan (sinh (6))] cosh o) = +o0,

a—rtoo a—+oo
since ¢ + arctan (sinh6y) — 7 > 0.
Now let 6; < 0:
1) With the initial condition #(0) = 0, »(0) = 0 we obtain the solution
(0(t), p(t)) = (—t, — arctan sinh (—t))

on the segment ¢ € [0, a;

2) With the initial condition 6(«) = —«, p(a) = — arctan (sinh (—a))) we obtain the solution

(67

0(t),0(t)) = (—047 cosht(—a) + cosh (—a) arctan (sinh(—a)))

on the segment t € [a, ta];
3) With the initial condition 6(t3) = 01, (t3) = @1 we obtain the solution

(0(t), p(t)) = (t — t3 + 01, arctan (sinh (¢ — t3 4+ 01)) + 1 — arctan (sinh (61)))
on the segment ¢ € [t, t3].

So, t; = a we have explicitly found.

It remains to find ¢y from the intersection of the vertical line 2) with the curve 3). At point ¢y vertical line 2)
reaches the point with ordinate

to = [_cosha(a) + 2 arctan (sinh (—a)) + ¢1 — arctan (sinh (91))} cosh (—a).

And now we obtain the length of the curve:

to —t1 = [72 — 2arctan (sinh o) + 1 — arctan (sinh (91))] cosha =: L(«).

cosh «
We calculate the limit:

lim L(a)= lim ([—2

a—+40o0 a——+0o0

cosha 2 arctan (sinh &) 4+ 1 — arctan (sinh (91))} cosh (a)) = 100,

since 01 < 0, 1 — arctan (sinh6;) — 7 > 0.
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e Now we look at the case when 6; = 0, ¢; > w. Consider the curves that go to the right of the origin (as in the
case 01 > 0).

1) With the initial condition 6(0) = 0, ¢(0) = 0 we obtain the solution
(0(t), p(t)) = (t,arctan sinh t)
on the segment t € [0, a);
2) With the initial condition 6(«) = «, ¢(«) = arctan (sinh a) we obtain the solution
4

O@), (1)) = (@, —— —

"cosha cosha

+ arctan (sinh «v))

on the segment ¢ € [, ta];
3) With the initial condition 6(t3) = 0, ¢(t3) = 1 we obtain the solution

(0(t), p(t)) = (=t + t3, — arctan (sinh (—t + t3)) + ¢1)

on the segment t € [ta, t3].
Thus, we have explicitly found ¢; = a.

It remains to find t5 from the intersection of the vertical line 2) with the curve 3). At point ¢y vertical line 2)
reaches the point with ordinate — arctan (sinh ) + ¢ + arctan (sinh (6;)).

to = [ ®  _ 2arctan (sinh @) + 1 | cosh av.
cosh &
And now we obtain the length of the curve:
to — t1 = [—2arctan (sinh ) + ¢1 + arctan (sinh (61))] cosh (o) =: L(«).
We calculate the limit:

lim L(a) = lim ([-2arctan (sinha)+ ¢1]cosh (o)) = 400,

a— 400 a—+o0

since @1 > 7.

The theorem is proved. O

4.8 Upper Boundary Points of B

Theorem 4.7. For points ¢ = (0,3) € M, i.e., $ = 7 — arctan (sinh |0|), the Lorentzian distance from (0,0) is
m. For (0,7), there is a continuum of optimal trajectories from (0,0). For other points on this curve, there are no
optimal trajectories.

Proof. For (§,¢) € M, i.e., = m — arctan (sinh |4]), (8,%) # (0,7), there are no extremal trajectories connecting
(0,0), so there are no optimal ones.

Now we show that the Lorentz distance from the point (0,0) is w. To do this, we use the following Lemma 4.4
from [1].

Lemma 4.1. Let M be a Lorentzian manifold with distance d.
If d(p,q) < 00, pn — p, and ¢, — g, then d(p,q) < liminf d(py, ¢n)-
If d(p,q) = 00, pp = p, and gn — g, then lim d(py, gn) = oo.

Denote gqo := (0,0). Consider a sequence of points ¢, — ¢ in M. Assume that d(qo,§) = +00. Then by Lemma
4.1 lim d(qo,qn) = +oo. But the length of the optimal curve is expressed by the time ¢ of motion along it, and
n—oo

according to our calculations, for all ¢, € Bg ) there is an optimal trajectory, and we showed in Theorem 4.5 that
0 <t <. Hence, lim d(qo,qn) < m. Consequently, d(qo,q) < 7.
n—oo

Now we take the sequence ¢, € Bo,0), ¢n — § = (0, m—arctan (sinh |0])): ¢n = (0n, ¢n) = (9, 7—arctan (sinh |9]) —
1

=), n € N, n > ng, choosing the initial ng such that ¢, € Bgq), for example, from the condition that 7 —
arctan (sinh |0]) — nio > w/2 & no(m/2 — arctan (sinh |0])) > 1 & ng > 7r/2—arctaln NI Now, according to the

formulas of the Theorem 4.5,

tan? [arctan (sinh |A]) + 1] — sinh? 0

tan? p,, — sinh? 0, -

5 = 7 — arcsin 5 — = I
1+ tan® @, 1 + tan? [arctan (sinh [0]) + ]

, n — o0.

d(qgo,qn) =T — arcsin\/
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Therefore, for any point § € {(0,¢) : 0 € R, ¢ = 7w — arctan (sinh |8])} we have d(qo, ) = 7.

As for the optimal trajectories, all the extremal trajectories filling the interior of the set B ) continue to t = 7,
ending up at the point (0,7), as can be seen from the explicit formulas (4.29), and the issue of continuation was
discussed in the Proposition 4.2. Their lengths are exactly equal to 7, as a result of which they are all optimal. [

4.9 Properties of the distance function and Lorentzian spheres

4.9.1 Analyticity of the distance inside the set B ) and its asymptotics near the boundary of this
set

Proposition 4.3. (1) The distance from a point qo = (0,0) to any point q1 € int B o) is given by the real-analytic
function
d(go, q1) = tq, = arccos (cos 1 cosh 6). (4.30)

(2) Let the point g1 = (61, ¢1) satisfy the condition @1 = arctansinh |6], i.e., it belongs to the lower part of the
boundary 8B o). We define the 1-form | = — sinh 20; cos® 1df + sin 24 cosh?01dp. If ¢ = (0, ¢) € int Bo,0)
and q — q1 so that

(A8, Ap)
(A0)? + (Ap)?
I(v) #0,

— v, A0=0—-0,, Ap=¢—1,

then

d(q0,9) = VI(AO, Ap)(1 + o(1)).

Proof. (1) The distance d(qo, ¢) in our parametrization is the time of movement along the optimal trajectory from
do to q. We have obtained the formula (4.26) for it. We prove the formula (4.30) on this basis. For this, we consider
the composition sin (7/2 —t4,).

On the interval ¢ € (0, 7/2):

) i tan? ¢ — sinh? 0 i tan? ¢ — sinh? 0 tan? ¢ — sinh? 1+ sinh? @
sin [ 7/2 — arcsin { | ————=—— | = cos [ arcsin|/| ————5—— | =/1 — 5 = 5— =
1+ tan“ e 1+ tan“ e 1+ tan“ e 1+ tan“ @

= cospcosh.

On the interval ¢ € (7/2,7):

tan? o — sinh” 0 tan? ¢ — sinh”® 0
sin [ 7/2 — | 7 — arcsin w = —sin | m/2 — arcsin % = — cosh 0| cos | = cos p cosh 6.
1+ tan“ ¢ 1+ tan“ @

Since 7/2 —t,, € (—7/2,7/2), we get:
sin (7/2 — t4,) = cospcosh @ < w/2—t,, = arcsin (cos p cosh ) < t,, = 7/2—arcsin (cos ¢ cosh 0) = arccos (cos p cosh ).

The formula (4.30) is proven. In particular, the distance is a real-analytic function in the domain int(Bg,0)).

(2) We calculate the asymptotics of the Lorentzian distance near the lower boundary of the reachable set. Let
p = ((A0)2 + (Ap)*)Y/2 — 0. Then

d(qo, q) = arccos(cos ¢ cosh §) = arcsin \/1 — cos? @ cosh? ) = \/1 — cos? pcosh? (1 + o(1)).
Next,

1 —cos®pcosh? @ =1 — (1 — 2cos gy sin @ cosh? 81 Ap + 2 cos® 1 cosh 6, sinh §; AG) = [(Af, Ap) + o(p) =
= o (1(A8/p, Ap/p) + 0(1)) = p (L (v) + o(1)) = pl (v) (1 + 0(1)) = L (A0, Ag) (1 + o(1))

and point (2) is proven. O
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Figure 17: Graph of distance function

Figure 18: Graph of distance function

21



Figure 19: Graph of distance function, top view

4.9.2 Lorentzian spheres

From point (1) of the Proposition 4.3 we obtain

Corollary 4.2. Lorentzian sphere of radius r € (0,m) is given by the equation

( cosT )
= arccos | ——— |.
4 cosh 6

Figure 20: Sphere of radius 1

¢
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Figure 21: Sphere of radius 2
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Figure 22: Sphere of radius /2

4.10 Killing Fields

In this section, we calculate the infinitesimal symmetries of the Lorentzian structure and their flows, and on this
basis we obtain an expression for the Lorentzian distance d(qo, q1) for arbitrary points qo,q1 € M.

4.11 Basis of the Lie algebra of Killing fields

Definition 4.3. [5, Chapter 9, Definition 22]
A vector field X is called a Killing field of a metric g if the Lie derivative of the metric along it is zero, i.e.,
Lxg =0.

Proposition 4.4. [1] A vector field X € Vec(M) is a Killing field of metric g if and only if it satisfies the equality
X(g(V,W)) = g([X, V], W) + g(V, [ X, W]), (4.31)
where V., W are arbitrary vector fields on M.

Proposition 4.5. [1] The Killing vector fields form a Lie subalgebra in the Lie algebra of all vector fields on
a manifold, and for a connected Lorentzian manifold of constant curvature the dimension of this Lie algebra is
n(n +1)/2, where n is the dimension of the manifold.

Theorem 4.8. (1) The Lie algebra of Killing fields of the anti-de Sitter space IA{IQ with metric g is three-dimensional
and its basis vector fields can be chosen as

Xl =cosh X, =0 Xg = sinh 6 cos p X7 + sin p X5, Xg = —sinh #sin pX; + cos pXs.

©s
(2) The following relations hold for their commutators:

[XlaXQ] :X?); [X27X3] = _X17 [X?nXﬂ :XQ'
(3) The Lie algebra of Killing fields is isomorphic to s((2).

Proof. (1) First, note that our anti-de Sitter manifold 1:{:2 satisfies the conditions of Proposition 4.5 and has
dimension 2, so its Lie algebra of Killing fields has dimension 3.

To find Killing fields of the metric §, we use equation (4.31).

Using the statement 3.1, we write out the required fields in terms of the basis of eigenvectors of the metric

g = db? — cosh? 0de? (locally coinciding with §), X = ¢1 X1 + c2. Xy = clﬁ% + CQ%.

We compose 3 equations for the unknown functional coefficients. As the fields V and W we take X; and X,
in various combinations. But first we need to calculate the corresponding commutators [X, X;] and [X, Xs]:

0 0, 9 1 0]
cosh 8 O 299" cosh § dp|

- 1 1 C1 0 1 0 o
B (028(9 (cosh@) a Coshﬁa“o (cosh9)> Ay + (_coshﬂaip(cz)) 2
_ 0 sinh @ 0 0,1 0 Opco 0

1
cosh 6 00 cosh 6 (cpsinh 6 + Bp1) X

[X, X1] = [a1 X1 + 2 X2, X1] = [

8¢ Co
cosh 0

cosh26 dp  cosh?f dp

2.
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[ a @ o8 0]
X Xo] = Losheago +6289’&9} B
B ( Opc1 tanh9> 0

0
_ _ _— = — h X — X .
cosh 6 “ cosh@ ) Op Focs o0 (=0pcr + 1 tanh 0) Xy = Gper X,

We form the first equation, taking X; as V and W:

X (9(X1,X1)) = g ([X, X1], X1) + 9(X1, [X, X1]) & 0=29 ([X, X1], X1) &

1
:2 —
0 g( cosh 6

84, Co
cosh 6

(CQ sinh@—i—@wcl)Xl — XQ,Xl) <~

<0 cosinh 6 + Oy,c1) .

-2
~ cosh#
For the second equation, we take the field X5 as V and W:
X (9(X2,X3)) = g ([X, X3], X2) + g(Xa, [X, X3]) & 0=2¢ ([X, Xo], X3) &
< 0=2((—0pc1 + c1 tanh 0) X1 — JpcaXo, Xo) &
= 0= *28902.
Finally, for the third equation we take V = X, W = Xj:
X (9(X1,X2)) = g ([X, Xu], X2) + g (X1, [X, X2]) &

1 . O,
< 0= g (— Cosh9(62 sinh 6 + chl)Xl - Cozh29X27X2> + g (Xl, (—8961 +c1 tanh g)Xl - 6902X2) <~
@0-—89062 — (—0pc1 + c1 tanh 6)
~ coshé oo '

We obtain a system on functional coefficients c¢q, cs:

cosinh 6 + 0,c1 = 0,
dgca = 0, (4.32)
OpC2 = cosh00ycy — cq sinh 6.

From the second equation (4.32) it follows that ca(¢p,0) = ca(¢). Next, we can integrate the first equation
(4.32):

©
O0pc1 = —c2(p)sinhf & ¢; = — sinh@/ ca(s)ds + f(0) = —sinh Ou(p) + f(0).
0
We substitute into the third equation (4.32):

u” () = cosh 0[— cosh Ou(yp) + /()] — sinh §[— sinh Qu(p) + f(0)] <
& 1" (p) = [~ cosh? @ + sinh? Alu(y) + cosh 6 f'(8) — sinh 6 () <
& u”(¢) + u(p) = cosh §f'(0) — sinh 0 (6).

We see that the left side of the resulting equation depends only on ¢, and the right side depends only on 6.
This means that the left and right sides are equal to a constant. We get two equations: for u(yp) and for f(6):

u” (o) + u(p) = A =cosh0f (6) —sinh 6 f(6).
Both equations are linear ODEs. The solution to the first one is found almost instantly:
u(p) = By cosp + Bysing + A.
The second is solved by the method of variation of the constant:

f(0) = Asinh 6 + B cosh 6.

So the coefficients look like this:

c1(p,0) = —sinh (B; cos p + By sing + A) + Asinh 0 + B cosh = —sinh §(B; cos ¢ + By sin ) + B cosh
ca = u'(p) = —Bising + By cos g
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And we get Killing fields:

1 X1 + c2Xo = (—sinh §(B; cos ¢ + By sing) + Bcosh§) X + (—Bj sin ¢ + Bs cos ¢) Xs.

The basis can be chosen from 3 vector fields:

X; =coshfX; = Oy, X, = sinh 6 cos p X7 + sin pXs, Xg = —sinh #sin pX; + cos pXs.

(2) We calculate the commutators of the basis vectors of the Killing field algebra Xl, X27 Xg obtained in the
previous section:

55 [, sinhfcosp ) sinh 6 sin ¢ .

X, %) = |a,, 2RTCOSP, | = _Smhosme o o — X
X1, X] " coshf sy 9] cosh® % + cos 0y »

PO [ sinh 6 sin ¢ sinh 6 cos ¢ ) A

X1, X3 = |0y, ——0, Og| = ————0, — Oy = —X
[X5, Xs] | coshf % teosy 9] coshp ¢ Smwd Z

DN [sinh 6 cos ¢ ) sinh 6 sin

X, Xy] = |2EUCOSY _Smhvsme —
X2, X | coshé D + sin 20p, cosh 6 Dy + cos 9080]

1 1
= | tanh 6 cos ¢ tanh 6(— cos @) + sin (— sin ) ——— + tanh 0 sin ¢ tanh §(— sin ) — cos p cos p——=— | I+
ch?0 cosh” 6

+ (tanh 0 cos p(— sin @) — tanh §(— sin @) cos ) Iy =

inh? 6 + 1 .
= | — tanh? f(cos® ¢ + sin® ) — ————(sin? ¢ + cos? > Oy = —La = -0, =-X;.
< ( 7 2 cosh? 6 ( 7 ?) ) 9 cosh’ ¥ v !
We obtained the following relations:
[X17X2} :X?n [X27X3] = _X17 [X37X1] :XZ‘

(3) The Lie algebra of Killing fields is isomorphic to s[(2), which follows from the expressions for commutators
obtained in the second section and the theorem on the classification of three-dimensional Lie algebras (see [7]).
O

4.11.1 Phase portraits of the Killing fields

Phase portraits of the fields were obtained using the StreamPlot function in Wolfram Mathematica.
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Figure 23: Killing field trajectories
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4.11.2 Lorentz distance between two arbitrary points of I,{v%

Suppose we want to calculate the distance between points qo, g1 € H?. Then we transfer point go to (0,0) = ¢,
along the trajectories of the Killing fields along a certain route, and then — point g; to point ¢} parallel to this

route. Since we know the Lorentz distance from the point (0,0) to any point of H? (theorems 4.5, 4.6 and 4.7 of this
paper), and d(qo,q1) = d(g), ¢}), since the value of the metric does not change when transferred along the Killing
fields, we can calculate the Lorentz distance between an arbitrary pair of points of the manifold.

Note that the field X; = 0, allows moving up and down. Also, for ¢ = 0, the field X5 has the first coordinate
equal to 0 and the second equal to 1, which allows moving left and right along this line. Therefore, our route will
look like this:
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1. 6o =0.
We move along the field X, (if o < 0) or —X (if o > 0) until the point (0,0).

2. $o = 0.
We move along the field X5 (if 9 < 0) or —X; (if 6y > 0) until the point (0, 0).

3. 05 <0, po<0.

We move along the field X, until the intersection with the line @ = 0. We move along the field X5 until the
point (0, 0).

4. 90<0, QD()ZO.

We move along the field — X, until the intersection with the line @ = 0. We move along the field X3 until the
point (0, 0).

5. 6y >0, wo < 0.

We move along the field X, until the intersection with the line @ = 0. We move along the field — X5 until the
point (0,0).

6. 0o >0, po > 0.

We move along the field —X; until the intersection with the line @ = 0. We move along the field — X5 until
the point (0,0).

4.11.3 Killing Field Trajectories
Proposition 4.6. The system of ODEs defined by the vector field X :
=0, ¢=1 (4.33)
has the following solutions with initial conditions 6(0) = 6y, ©(0) = @y:
0(t) = o, o(t) =t + 0.
Theorem 4.9. The system of ODFEs defined by the vector field X,:
0 = sin o, $ = cos p tanh § (4.34)
has a first integral C' = cosp cosh @ € R. Let s; = signcos ¢y, so = signsiny, s3 = signby, n = [(¢o + 7/2)/(27)].
Then the system (4.34) has the following solutions with initial conditions 8(0) = 6y, ¢(0) = o depending on the
value of C.
1) If C =0, then ¢(t) = vo, 0(t) = 0 + sat.
2) Let C? =1.

2.1) If sinpg = 0, then p(t) = o, 0(t) = 0.
2.2) If sinpg # 0, then

0(t) = arsinh(sinh 6y exp(s2s3t)),

in(tanh 0(¢ 2 ith s1 =1
() = S9.83 arcsin( a'n () + 2mn wz s1 =1 (4.35)
T — Sgsz arcsin(tanh 0(t)) + 2mn with 1 = —1.
3) If C% € (0,1), then
0(t) = arsinh(+/1 — C?sinh 1), T = 89t + arsinh(sinh 6y /+/1 — C?),
soarcsin y/1 — C2/ cosh? 0(t) 4+ 27mn for sy =1,
p(t) = ¢ (4.36)

T — Sg arcsin \/1 —C?/cosh®O(t) + 2nn when 51 = —1.
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4) If C? > 1, then

(4.37)

() = arcsinx + 2mn for sy =1,
4 m—arcsinx + 2mn with s7 = —1,

6(t) = sz arcosh(C/ cos p(t)),

where x = (|s| — C? +1)/(2v/5), s = (e"s4 +s_)/(1+€7), sx = C?*+1+2|C|, 7 = s183(s4 — 5_)t/(20) +

In((so = s-)/(s+ = s0)), s0 =12, 7= \/af + C? — 1 + 20, T = sin po.

Remark 4.2. Since the field X5 is obtained from the field X by shifting along ¢ by /2, it suffices to integrate only
Xo.
Denote by e!X : M — M the flow of the vector field X on the manifold M.

4.11.4 Distance in terms of Killing fields flows

Theorem 4.10. The Lorentzian distance between two arbitrary points qo,q1 € I,{Vlz is d(Go, q1), where §o = (0,0) =
e(=00X3) o (=90 X1) (¢0) and, correspondingly, G, = e(~00X3) o (=90 X1)(¢g)).

Proof. Since X, and X3 are Killing fields, shifting along the flows of these fields preserves the distance between
points in our Lorentzian metric d.

The field Xl = 0, has the trajectories ¢(t) =t + o, 0(t) = 6y as solutions, and the field Xg = —sinhfsin X7 +
cos p X has the trajectory ¢(t) = 0, 6(t) = t + C as one of its solutions. This allows us to construct a trajectory
consisting of the composition e*2%3 o e/1X1 taking any point go to the origin gy = (0,0).

It remains to show that ¢; and t3 have the stated form. Consider the following cases.

1. 9 = 0.

If o < 0, then we move along the field Xy
=0, p=1<0(t) =Cs, p(t) =t+C,.

Initial condition §(0) = 6y = 0 = Cy, ¢(0) = @g = C,. Therefore, ¢, is found from the condition ¢(t;) = 0, so
we obtain the equation: 0 = t; 4 o, which means t; = —pg. And ty = 0 = 6. We get: e(=%0)X1(gq) = (0,0).
If o > 0, then we move along the field —Xi:

=0, p=—10(t)=Cyh, p(t)=—t+C,.

Initial condition 6(0) = 6y = 0 = Cy, ¢(0) = @9 = C,. Therefore, t; is found from the condition ¢(¢;) = 0, so
we obtain the equation: 0 = —t; 4 g, which means t; = . And ty = 0 = 6. We get: e(=%0%X1)(¢) = (0,0).
2. Yo = 0.

If 6y < 0, then t; = 0 = g, and we move only along the field X3, namely along the solution 0(t) = ¢ + Cj,
©(t) = 0. Initial condition #(0) = 8y = Cy. Therefore, we find 5 from the condition §(t2) = 0, from which we

obtain the equation: 0 =t + 6y, so ty = —0y. We get: e(—t2)Xs (g0) = (0,0).

If 6y > 0, then ¢; = 0 = ¢y, and we move only along the field — X3, namely along the solution 0(t) = —t + Cy,
©(t) = 0. The initial condition §(0) = §y = Cy. Therefore, we find ¢2 from the condition 6(t2) = 0, from which

we get the equation: 0 = —ty + 0p, s0 t = 0p. We get: e(~22%X2)(¢q) = (0,0).
3. 6y <0, pg<O.
Combining the calculations of the first and second points, we obtain the time of movement along the field X1
t, = —¢o, and then the time of movement along the field X3: ¢t = —6y. We obtain: e(~00)Xs o ¢(=¥0) X1 (q0) =
(0,0).
4. 90<0, §00>0.
Combining the calculations of the first and second points, we obtain the time of motion along the field —Xi:
t1 = o, and then the time of motion along the field X3: to = —6y. We obtain: e(~%X3) o e(=¥0)X1 (q0) = (0,0).
5. 0y > 0, o < 0.

Combining the calculations of the first and second points, we obtain the time of motion along the field X1
t; = —p, and then the time of motion along the field —X3: t5 = 6. We get: e(~00)Xs o e(=90X1) (40} = (0, 0).
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6. 6y >0, @y > 0.

Combining the calculations of the first and second points, we get the time of movement along the field —Xi:
t1 = ¢p, and then the time of movement along the field —X3: ty = 0. We get: e(—f0Xs) o e(=#0X1) (¢) = (0,0).

O

5 Conclusion

The methods of geometric control theory have proven to be very fruitful for the study of the Lorentzian anti-de
Sitter plane. It would be interesting to apply them to more complex Lorentzian structures of variable curvature, for
example, to the Schwarzschild and Kerr spaces [1].
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