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Abstract

In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane is studied. Using methods
of geometric control theory and differential geometry, we describe the reachable set, investigate the existence of
Lorentzian length maximizers, compute extremal trajectories, construct an optimal synthesis, and characterize
Lorentzian distance and spheres.

1 Introduction

Lorentzian geometry serves as the mathematical foundation of general relativity [1, 9, 10]. Unlike Riemannian ge-
ometry, here information can spread only along curves with velocity vectors lying within a certain pointed cone A
natural problem in this context is finding curves that maximize a length-like functional along admissible curves.
Thus, a key objective is to describe Lorentzian length maximizers for all pairs of points where the second point is
reachable from the first one via an admissible curve. To the best of our knowledge, this problem has been fully
investigated only in the simplest cases: for the left-invariant Lorentzian structure on R𝑛 (Minkowski space R𝑛1 ) [1],
for the 2-dimensional de Sitter plane [11], and for left-invariant Lorentzian metrics on the two-dimensional solvable
non-Abelian Lie group [6].

This paper presents a description of Lorentzian length maximizers, distances, and spheres for the 2-dimensional
anti-de Sitter plane — a Lorentzian space of constant negative curvature [1]. These results are obtained using
methods of geometric control theory [2, 3]. Interestingly, in these problems, Lorentzian length maximizers do not
exist for certain reachable pairs of points, and the Lorentzian distance may be infinite for some pairs of points. In
these problems, all extremal trajectories (satisfying the Pontryagin maximum principle) are optimal, meaning there
are no conjugate points or cut loci. The optimal trajectories, as well as the spheres and distances, are parametrized
by elementary functions.

The paper is structured as follows. Section 2 provides the necessary definitions and basic results of Lorentzian
geometry. Section 3 describes the construction of the 2-dimensional anti-de Sitter space. The main Section 4
formulates and investigates the problem of Lorentzian length maximizers in this space.

2 Definitions and Preliminary Results

We recall the basic concepts of Lorentzian geometry [1, 6].
Let 𝑀 be a smooth manifold. A Lorentzian structure on 𝑀 is a non-degenerate quadratic form 𝑔 of index 1.
For 𝑞 ∈𝑀 , a vector 𝑣 ∈ 𝑇𝑞𝑀 is called:

• timelike if 𝑔(𝑣) < 0,

• spacelike if 𝑔(𝑣) > 0 or 𝑣 = 0,

• lightlike (or null) if 𝑔(𝑣) = 0 and 𝑣 ̸= 0,

• causal (or nonspacelike) if 𝑔(𝑣) ≤ 0.

A Lipschitz curve 𝛾 on 𝑀 is called:

• timelike if its velocity vector is timelike almost everywhere,

• spacelike, lightlike, or causal if the corresponding condition holds for its velocity vector.
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Fix an arbitrary timelike vector field 𝑋0 on 𝑀 . A causal vector 𝑣 ∈ 𝑇𝑞𝑀 is called:

• future-directed if 𝑔(𝑣,𝑋0(𝑞)) < 0,

• past-directed if 𝑔(𝑣,𝑋0(𝑞)) > 0.

A future-directed timelike curve 𝛾(𝑡), 𝑡 ∈ [0, 𝑡1], is called arclength parametrized if 𝑔(𝛾̇(𝑡), 𝛾̇(𝑡)) ≡ −1.
The Lorentzian length of a causal curve 𝛾 ∈ Lip([0, 𝑡1],𝑀) is defined as:

𝑙(𝛾) =

∫︁ 𝑡1

0

|𝑔(𝛾̇, 𝛾̇)|1/2 𝑑𝑡.

For two points 𝑞0, 𝑞1 ∈ 𝑀 , denote by Ω𝑞0𝑞1 the set of all future-directed causal curves connecting 𝑞0 to 𝑞1. If
Ω𝑞0𝑞1 ̸= ∅, the Lorentzian distance from 𝑞0 to 𝑞1 is:

𝑑(𝑞0, 𝑞1) = sup
𝛾∈Ω𝑞0𝑞1

𝑙(𝛾),

otherwise, 𝑑(𝑞0, 𝑞1) := 0.
A future-directed causal curve 𝛾 is called a Lorentzian length maximizer if it realizes the maximal Lorentzian arc

length between 𝛾(0) = 𝑞0 and 𝛾(𝑡1) = 𝑞1.
The causal future of a point 𝑞0 ∈𝑀 is the set:

𝐽+(𝑞0) = {𝑞1 ∈𝑀 | ∃ a future-directed causal curve 𝛾 connecting 𝑞0 with 𝑞1}.

For 𝑞0 ∈𝑀 and 𝑞1 ∈ 𝐽+(𝑞0), finding a Lorentzian length maximizer reduces to solving the following optimization
problem:

𝑙(𝛾) → max, 𝛾(0) = 𝑞0, 𝛾(𝑡1) = 𝑞1.

Vector fields 𝑋1, . . . , 𝑋𝑛 ∈ Vec(𝑀), where 𝑛 = dim𝑀 , form an orthonormal frame for the Lorentzian structure 𝑔
if for all 𝑞 ∈𝑀 :

𝑔𝑞(𝑋1, 𝑋1) = −1, 𝑔𝑞(𝑋𝑖, 𝑋𝑖) = 1 (𝑖 = 2, . . . , 𝑛), 𝑔𝑞(𝑋𝑖, 𝑋𝑗) = 0 (𝑖 ̸= 𝑗).

Fixing the time orientation by 𝑋1, the Lorentzian problem for a structure with orthonormal frame 𝑋1, . . . , 𝑋𝑛

can be formulated as an optimal control problem:

𝑞 =

𝑛∑︁
𝑖=1

𝑢𝑖𝑋𝑖(𝑞), 𝑞 ∈𝑀, 𝑢 ∈ 𝑈 =

{︂
(𝑢1, . . . , 𝑢𝑛) ∈ R𝑛 | 𝑢1 ≥

√︁
𝑢22 + · · ·+ 𝑢2𝑛

}︂
,

𝑞(0) = 𝑞0, 𝑞(𝑡1) = 𝑞1, 𝑙(𝑞(·)) =
∫︁ 𝑡1

0

√︁
𝑢21 − 𝑢22 − · · · − 𝑢2𝑛 𝑑𝑡→ max .

Remark 2.1. The Lorentzian length is invariant under strictly monotonic Lipschitz reparametrizations 𝑡(𝑠), 𝑠 ∈ [0, 𝑠1].
Thus, if 𝛾(𝑡), 𝑡 ∈ [0, 𝑡1], is a Lorentzian length maximizer, any reparametrization 𝛾(𝑡(𝑠)), 𝑠 ∈ [0, 𝑠1], is also a length
maximizer.

In this paper, we primarily use:

• arclength parametrization for timelike trajectories,

• parametrization with 𝑢1(𝑡) ≡ 1 for future-directed lightlike trajectories. Alternatively, one may choose 𝑢1(𝑡) ≡ 1
for all future-directed causal trajectories.

3 The Two-Dimensional Anti-de Sitter Space

Consider the space R3
2 = {𝑥 = (𝑥1, 𝑥2, 𝑥3) | 𝑥𝑖 ∈ R} endowed with the pseudo-Euclidean metric 𝑑𝑠2 = −𝑑𝑥21 − 𝑑𝑥22 +

𝑑𝑥23. Define the one-sheeted hyperboloid

𝐻2
1 = {𝑥 ∈ R3

2 | −𝑥21 − 𝑥22 + 𝑥23 = −1},

and parametrize it as

𝑥1 = cosh 𝜃 cos𝜙, 𝑥2 = cosh 𝜃 sin𝜙, 𝑥3 = sinh 𝜃, 𝜃 ∈ R, 𝜙 ∈ R/(2𝜋Z), (3.1)

with the induced Lorentzian metric 𝑔 = 𝑑𝑠2|𝐻2
1
on 𝐻2

1 .
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Definition 3.1. The two-dimensional anti-de Sitter space [1] is the simply connected covering manifold of the hyper-
boloid 𝐻2

1 : ̃︁𝐻2
1 = {(𝜙, 𝜃) ∈ R2},

equipped with the Lorentzian metric 𝑔 induced by 𝑔.

Note that 𝑔 locally coincides with 𝑔.

Vector fields 𝑋1, 𝑋2 ∈ Vec(̃︁𝐻2
1 ) form an orthonormal frame for 𝑔 if

𝑔(𝑋2, 𝑋2) = −𝑔(𝑋1, 𝑋1) = 1, 𝑔(𝑋1, 𝑋2) = 0.

Proposition 3.1. (1) The metric 𝑔, and hence 𝑔, has the following form:

𝑔 = − cosh2 𝜃 𝑑𝜙2 + 𝑑𝜃2.

(2) An orthonormal frame for these metrics can be chosen as

𝑋1 =
1

cosh 𝜃

𝜕

𝜕𝜙
, 𝑋2 =

𝜕

𝜕𝜃
. (3.2)

Proof. Both expressions follow from direct computation. From the parametrization (3.1), we obtain

𝑑𝑥1 = sinh 𝜃 cos𝜙𝑑𝜃 − cosh 𝜃 sin𝜙𝑑𝜙, 𝑑𝑥2 = sinh 𝜃 sin𝜙𝑑𝜃 + cosh 𝜃 cos𝜙𝑑𝜙, 𝑑𝑥3 = cosh 𝜃 𝑑𝜃.

Substituting into the metric, we derive

𝑔 = −𝑑𝑥21 − 𝑑𝑥22 + 𝑑𝑥23 = − cosh2 𝜃 𝑑𝜙2 + 𝑑𝜃2.

Next, we determine the eigenvectors and normalize them with respect to the metric. The eigenvalues of (3) are
𝜆1 = − cosh2 𝜃 and 𝜆2 = 1, leading to the orthonormal frame (3.2).

4 Lorentzian Problem on Anti-de Sitter Space

4.1 Problem Statement

The Lorentzian longest curves for the metric 𝑔 are solutions to the following optimal control problem:

𝑞 = 𝑢1𝑋1(𝑞) + 𝑢2𝑋2(𝑞), 𝑞 = (𝜙, 𝜃) ∈𝑀 = ̃︁𝐻2
1 , (4.1)

𝑢 ∈ 𝑈 = {(𝑢1, 𝑢2) ∈ R2 | 𝑢21 − 𝑢22 ≥ 0, 𝑢1 > 0}, (4.2)

𝑞(0) = 𝑞0 = (𝜙, 𝜃0), 𝑞(𝑡1) = 𝑞1 = (𝜙, 𝜃1), (4.3)

𝑙 =

∫︁ 𝑡1

0

√︁
𝑢21 − 𝑢22 𝑑𝑡→ max . (4.4)

4.2 Reachable Set from an Arbitrary Point 𝑞0

Definition 4.1. The reachable sets of the system (4.1), (4.2) from a point 𝑞0 ∈𝑀 are defined as follows:

𝒜𝑞0 = {𝑞(𝑡1) : 𝑞(𝑡), 𝑡 ∈ [0, 𝑡1], trajectory of the system (4.1), (4.2), s.t. 𝑡1 ≥ 0, 𝑞(0) = 𝑞0}

is the reachable set for arbitrary non-negative time (the causal future of the point 𝑞0);

𝒜−
𝑞0 = {𝑞(𝑡1) : 𝑞(𝑡), 𝑡 ∈ [𝑡1, 0], trajectory of the system (4.1), (4.2), s.t. 𝑡1 ≤ 0, 𝑞(0) = 𝑞0}

is the reachable set for arbitrary non-positive time (the causal past of the point 𝑞0);

𝒜𝑡1
𝑞0 = {𝑞(𝑡) : 𝑞(𝑠), 𝑠 ∈ [0, 𝑡1], trajectory of the system (4.1), (4.2), s.t. 𝑡 ∈ [0, 𝑡1], 𝑞(0) = 𝑞0}

is the reachable set for time not exceeding 𝑡1 ≥ 0.

Theorem 4.1. Let 𝑞0 = (𝜃0, 𝜙0) ∈𝑀 . Then the set 𝒜𝑞0 is equal to

𝑉𝑞0 := {(𝜃, 𝜙) ∈𝑀 : 𝜙 ≥ sign (𝜃 − 𝜃0) arctan (sinh 𝜃) + 𝜙0 − sign (𝜃 − 𝜃0) arctan (sinh 𝜃0)}.
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Proof. 1) We show that all points of the set 𝑉 = 𝑉𝑞0 are reachable from the point 𝑞0. Consider constant controls
𝑢1 = const, 𝑢2 = const, such that 𝑢1 > 0, −𝑢1 ≤ 𝑢2 ≤ 𝑢1, and find the corresponding trajectories of the system (4.1)
with the initial condition 𝑞0 = (𝜃0, 𝜙0): {︃

𝜃 = 𝑢2,

𝜙̇ = 𝑢1

cosh 𝜃 .
(4.5)

The solution has the form:{︃
𝜃(𝑡) ≡ 𝜃0,

𝜙(𝑡) = 𝑢1

cosh 𝜃0
𝑡+ 𝜙0, for 𝑢2 = 0,{︃

𝜃(𝑡) = 𝑢2𝑡+ 𝜃0,

𝜙(𝑡) = 𝑢1

𝑢2
arctan (sinh (𝑢2𝑡+ 𝜃0)) + 𝜙0 − 𝑢1

𝑢2
arctan sinh 𝜃0, for 𝑢2 ̸= 0.

(4.6)

The trajectories for 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}, are shown in Figs. 1, 2, 3.

Figure 1: Trajectories for 𝑞0 = (0, 0) with 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}

Figure 2: Trajectories for 𝑞0 = (0,−5) with 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}

Figure 3: Trajectories for 𝑞0 = (2,−5) with 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}
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For 𝑢2 = 0, we obtain the vertical ray 𝜃 = 𝜃0, 𝜙 ≥ 𝜙0. It divides 𝑉 into two disjoint sets: 𝑉+ = 𝑉 ∩ {𝜃 >
𝜃0}, 𝑉− = 𝑉 ∩ {𝜃 < 𝜃0}.

Let 𝑢2 = ±1, then 𝑢1 ≥ 1 and 𝑢2𝑡 = ±𝑡, 𝑢1

𝑢2
= ±𝑢1 = 𝑢, 𝑢 ≥ 1 or 𝑢 ≤ −1. Therefore,{︃

𝜃 = ±𝑡+ 𝜃0,

𝜙 = 𝑢 arctan (sinh (±𝑡+ 𝜃0)) + 𝜙0 − 𝑢 arctan sinh 𝜃0,
⇒

{︃
±𝑡 = 𝜃 − 𝜃0,

𝑢 = 𝜙−𝜙0

arctan sinh 𝜃−arctan sinh 𝜃0
.

From this, it is clear that the mapping (𝑡, 𝑢) ↦→ (𝑡+ 𝜃0, 𝑢 arctan (sinh (𝑡+ 𝜃0)) + 𝜙0 − 𝑢 arctan sinh 𝜃0) establishes
a bijection between the sets 𝑉+ and {(𝑡, 𝑢) : 𝑡 > 0, 𝑢 ≥ 1}, as well as between the sets 𝑉− and {(𝑡, 𝑢) : 𝑡 < 0, 𝑢 ≤ −1}.
Hence, all points of the set 𝑉 are reachable from the point 𝑞0.

2) We show that points with 𝜙 < sign (𝜃 − 𝜃0) arctan (sinh 𝜃)+𝜙0−sign (𝜃 − 𝜃0) arctan (sinh 𝜃0) are not reachable
from the point (𝜃0, 𝜙0) in non-negative time. Direct verification shows that any vector field 𝑢1𝑋1 + 𝑢2𝑋2 for any
admissible 𝑢 at each point of the boundary 𝑉 is tangent to the curve 𝜙 = sign (𝜃 − 𝜃0) arctan (sinh 𝜃) + 𝜙0 −
sign (𝜃 − 𝜃0) arctan (sinh 𝜃0) or directed into the interior of the region int(𝑉 ).

It follows that the reachable set from the point 𝜃 = 𝜃0, 𝜙 = 𝜙0 in non-negative time is 𝑉𝑞0 .

We immediately obtain

Corollary 4.1. The reachable set from the point 𝑞0 = (𝜃0, 𝜙0) ∈𝑀 for arbitrary non-positive time is

𝑉 −
𝑞0 := {(𝜃, 𝜙) ∈ R2 : 𝜙 ≤ − sign (𝜃 − 𝜃0) arctan (sinh 𝜃) + 𝜙0 + sign (𝜃 − 𝜃0) arctan (sinh 𝜃0)}.

Proof. Indeed, by considering the obtained formulas (4.6) for constant controls at non-positive 𝑡 and carrying out
reasoning similar to that in Theorem 4.1 (constructing a bijection between the corresponding sets, as well as studying
the behavior of the vector field on the boundary of the set 𝑉 −

𝑞0 ), we obtain the stated result.

The trajectories for 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}, are shown in Figs. 4, 5, 6.

Figure 4: Trajectories for 𝑞0 = (0, 0) with 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}

Figure 5: Trajectories for 𝑞0 = (0,−5) with 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}
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Figure 6: Trajectories for 𝑞0 = (2,−5) with 𝑢2 = 0, as well as 𝑢2 = ±1, 𝑢1 ∈ {1, 3, 5, 10, 20, 50}

4.3 Existence of Optimal Trajectories

Consider a problem equivalent to problem (4.1)–(4.4):

𝑞 = 𝑢1𝑋1(𝑞) + 𝑢2𝑋2(𝑞), 𝑞 = (𝜙, 𝜃) ∈𝑀 = ̃︁𝐻2
1 , (4.7)

𝑢 ∈ 𝑈
′
= {(𝑢1, 𝑢2) ∈ R2 | 𝑢22 ≤ 1, 𝑢1 = 1}, (4.8)

𝑞(0) = 𝑞0 = (𝜙0, 𝜃0), 𝑞(𝑡1) = 𝑞1 = (𝜙1, 𝜃1), (4.9)

𝑙 =

∫︁ 𝑡1

0

√︁
1− 𝑢22 𝑑𝑡→ max . (4.10)

The solutions of problem (4.1)–(4.4) are reparametrizations of the solutions of problem (4.7)–(4.10).

Definition 4.2. The maximum motion time of trajectories of system (4.7), (4.8) from point 𝑞0 to point 𝑞1 is

𝑇 (𝑞0, 𝑞1) := sup{𝑡1 > 0 : ∃ a trajectory 𝑞(𝑡) of system (4.7), (4.8), 𝑡 ∈ [0, 𝑡1], such that 𝑞(0) = 𝑞0, 𝑞(𝑡1) = 𝑞1}.

Theorem 4.2. Let 𝑞0 = (𝜃0, 𝜙0) ∈𝑀 and

ℬ𝑞0 := {(𝜃, 𝜙) ∈𝑀 | 𝜋+𝜙0−sign (𝜃 − 𝜃0)(arctan (sinh 𝜃)−𝑐0)−2𝑐0 sign 𝜃0 > 𝜙 ≥ 𝜙0+sign (𝜃 − 𝜃0)(arctan (sinh 𝜃)−𝑐0)},

where 𝑐0 = arctan (sinh 𝜃0).
Then, for any point 𝑞1 ∈ ℬ𝑞0 , there exists an optimal trajectory in problem (4.1)–(4.4).
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Figure 7: Boundary of the set ℬ𝑞0

(a) For 𝑞0 = (0, 0)

(b) For 𝑞0 = ( 3
2
, 1)

(c) For 𝑞0 = (−1, 0)

Proof. We show that for any point 𝑞1 = (𝜃1, 𝜙1) ∈ ℬ𝑞0 , the conditions of Theorem 2 from [4] are satisfied:

Theorem 4.3. For problem (4.7)–(4.10), suppose the following conditions hold:

(1) 𝑞1 ∈ 𝒜𝑞0 ;

(2) The set 𝒜𝑞0 ∩ 𝒜−
𝑞1 is compact;

(3) 𝑇 (𝑞0, 𝑞1) < +∞.

Then, an optimal trajectory exists in problem (4.7)–(4.10).

(1) The first condition holds because ℬ𝑞0 ⊂ 𝑉𝑞0 = 𝒜𝑞0 .

(2) We show that 𝑉𝑞0 ∩𝑉 −
𝑞1 is compact. From the explicit form of these regions and the monotonicity properties of

the functions defining their boundaries, it follows that the intersection 𝑉𝑞0 ∩ 𝑉 −
𝑞1 can be enclosed in a rectangle

{(𝜃, 𝜙) : 𝜃− ≤ 𝜃 ≤ 𝜃+, 𝜙− ≤ 𝜙 ≤ 𝜙+}, implying boundedness.

We explicitly show that the right boundary of 𝑉𝑞0 (respectively, the left boundary) intersects with the right
boundary of 𝑉 −

𝑞1 (respectively, the left boundary). This will imply the boundedness and closedness of the
intersection.
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Let 𝑞1 = (𝜃1, 𝜙1) ∈ ℬ𝑞0 , i.e.,

𝜙0 + sign (𝜃1 − 𝜃0)(arctan (sinh 𝜃1)− arctan (sinh 𝜃0)) ≤ 𝜙1

< 𝜋 + 𝜙0 − sign (𝜃1 − 𝜃0)(arctan (sinh 𝜃1)− arctan (sinh 𝜃0))− 2 arctan (sinh |𝜃0|). (4.11)

The equation for boundary intersections:

𝜙0 + sign (𝜃 − 𝜃0)(arctan (sinh 𝜃)− arctan (sinh 𝜃0)) = 𝜙1 − sign (𝜃 − 𝜃1)(arctan (sinh 𝜃)− arctan (sinh 𝜃1)) ⇔
⇔ (sign (𝜃 − 𝜃0) + sign (𝜃 − 𝜃1)) arctan sinh 𝜃 = sign (𝜃 − 𝜃0) arctan (sinh 𝜃0) + sign (𝜃 − 𝜃1) arctan (sinh 𝜃1) + 𝜙1 − 𝜙0.

The intersection of the right boundaries is determined by 𝜃 > 𝜃1, 𝜃 > 𝜃0, and the intersection of the left
boundaries by 𝜃 < 𝜃1, 𝜃 < 𝜃0. The corresponding equations are:

𝜃 > 𝜃1, 𝜃 > 𝜃0, 2 arctan (sinh 𝜃) = arctan (sinh 𝜃0) + arctan (sinh 𝜃1) + 𝜙1 − 𝜙0,

𝜃 < 𝜃1, 𝜃 < 𝜃0, 2 arctan (sinh 𝜃) = arctan (sinh 𝜃0) + arctan (sinh 𝜃1) + 𝜙0 − 𝜙1.

Consider the first equation and show that its right-hand side lies in (−𝜋, 𝜋) (the second equation is analogous).
Then, due to the strict monotonicity of arctan sinh (·), the solution exists and is unique.

For the proof, we use inequality (4.11). We compare:

arctan (sinh 𝜃0) + arctan (sinh 𝜃1) + 𝜙1 − 𝜙0

⋁︁
𝜋 and arctan (sinh 𝜃0) + arctan (sinh 𝜃1) + 𝜙1 − 𝜙0

⋁︁
−𝜋,

which is equivalent to:

𝜙1

⋁︁
𝜋+𝜙0−arctan (sinh 𝜃0)−arctan (sinh 𝜃1) and 𝜙1

⋁︁
−𝜋+𝜙0−arctan (sinh 𝜃0)−arctan (sinh 𝜃1). (4.12)

We analyse four cases for the first inequality in (4.12):

∙ 𝜃1 > 𝜃0, 𝜃0 ≥ 0: The right-hand side of (4.11) is 𝜋 + 𝜙0 − arctan (sinh 𝜃1)− arctan (sinh 𝜃0), so

𝜙1 − 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0) < 𝜋.

∙ 𝜃1 > 𝜃0, 𝜃0 < 0: The right-hand side of (4.11) is 𝜋+𝜙0 +arctan (sinh 𝜃1)+ 3 arctan (sinh 𝜃0). Comparing:

𝜋 + 𝜙0 − arctan (sinh 𝜃1) + 3 arctan (sinh 𝜃0)
⋁︁
𝜋 + 𝜙0 − arctan (sinh 𝜃0)− arctan (sinh 𝜃1),

which reduces to 4 arctan (sinh 𝜃0)
⋁︀
0. Since 𝜃0 < 0,

𝜙1 − 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0) < 𝜋.

∙ 𝜃1 < 𝜃0, 𝜃0 ≥ 0: The right-hand side of (4.11) is 𝜋+𝜙0 +arctan (sinh 𝜃1)− 3 arctan (sinh 𝜃0). Comparing:

𝜋 + 𝜙0 + arctan (sinh 𝜃1)− 3 arctan (sinh 𝜃0)
⋁︁
𝜋 + 𝜙0 − arctan (sinh 𝜃0)− arctan (sinh 𝜃1),

which reduces to 2 arctan (sinh 𝜃1)
⋁︀
2 arctan (sinh 𝜃0). Since 𝜃1 < 𝜃0 and arctan (·), sinh (·) are strictly

monotonic,
𝜙1 − 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0) < 𝜋.

∙ 𝜃1 < 𝜃0, 𝜃0 < 0: The right-hand side of (4.11) is 𝜋 + 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0). Comparing:

𝜋 + 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0)
⋁︁
𝜋 + 𝜙0 − arctan (sinh 𝜃0)− arctan (sinh 𝜃1),

which reduces to 2 arctan sinh 𝜃1 + 2arctan (sinh 𝜃0)
⋁︀

0. Since 𝜃1 < 𝜃0 < 0,

𝜙1 − 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0) < 𝜋.

For the right inequality in (4.12), consider two cases:

∙ 𝜃1 ≥ 𝜃0: The left-hand side of (4.11) is 𝜙0+arctan (sinh 𝜃1)−arctan (sinh 𝜃0). Since arctan (sinh 𝜃) > −𝜋/2,

𝜙0 + arctan (sinh 𝜃1)− arctan (sinh 𝜃0) > −𝜋 + 𝜙0 − arctan (sinh 𝜃0)− arctan (sinh 𝜃1),

so
−𝜋 < 𝜙1 − 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0) < 𝜋.
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∙ 𝜃1 < 𝜃0: The left-hand side of (4.11) is 𝜙0−arctan (sinh 𝜃1)+arctan (sinh 𝜃0). Since arctan (sinh 𝜃) > −𝜋/2,

𝜙0 − arctan (sinh 𝜃1) + arctan (sinh 𝜃0) > −𝜋 + 𝜙0 − arctan (sinh 𝜃0)− arctan (sinh 𝜃1),

so
−𝜋 < 𝜙1 − 𝜙0 + arctan (sinh 𝜃1) + arctan (sinh 𝜃0) < 𝜋.

Thus, condition (2) of Theorem 4.3 is satisfied.

(3) We show that for any 𝑞1 ∈ ℬ𝑞0 , the following holds:

sup{𝑡1 > 0 : ∃ a trajectory 𝑞(𝑡) of system (4.7), (4.8), 𝑡 ∈ [0, 𝑡1] : 𝑞(0) = 𝑞0, 𝑞(𝑡1) = 𝑞1} < +∞.

Note that 𝜙̇ = 𝑢1

cosh 𝜃 = 1
cosh 𝜃 > 0, so 𝜙 increases.

By the geometric properties of the reachable set, there exists 𝑞2 = (𝜃2, 𝜙2) ∈ 𝑉𝑞0 with maximal |𝜃2| such that
𝑞1 ∈ 𝑉𝑞2 . The point 𝑞2 can be explicitly computed since, by the maximality condition, it lies on the lower
boundary of 𝑉𝑞0 , and 𝑞1 lies on the lower boundary of 𝑉𝑞2 .

Since 𝑞1 ∈ ℬ𝑞0 , inequality (4.11) holds. As 𝑞2 lies on the lower boundary of 𝑉𝑞0 , we have:

𝜙2 = 𝜙0 + sign (𝜃2 − 𝜃0)(arctan (sinh 𝜃2)− arctan (sinh 𝜃0)). (4.13)

Since 𝑞1 lies on the lower boundary of 𝑉𝑞2 , we have:

𝜙1 = 𝜙2 + sign (𝜃1 − 𝜃2)(arctan (sinh 𝜃1)− arctan (sinh 𝜃2)). (4.14)

Substituting (4.13) into (4.14) gives the equation for 𝜃2:

𝜙1 = 𝜙0 + sign (𝜃2 − 𝜃0)(arctan (sinh 𝜃2)− arctan (sinh 𝜃0)) + sign (𝜃1 − 𝜃2)(arctan (sinh 𝜃1)− arctan (sinh 𝜃2)).
(4.15)

We show that a solution exists by considering the cases:

– 𝜃2 > 𝜃0, 𝜃2 > 𝜃1 (right lower boundary of 𝑉𝑞0 , left lower boundary of 𝑉𝑞2),

– 𝜃2 < 𝜃0, 𝜃2 < 𝜃1 (left lower boundary of 𝑉𝑞0 , right lower boundary of 𝑉𝑞2).

The right-hand sides of the resulting equations lie in (−𝜋, 𝜋), ensuring existence and uniqueness.

This allows us to bound the rate of change of 𝜙, proving finite time to reach 𝑞1:

|𝜃| ≤ 𝐶 ⇒ cosh 𝜃 ≤ 𝐶 ⇒ 1

cosh 𝜃
≥ 𝐶 > 0 ⇒ 𝑡1 ≤ 𝜙1 − 𝜙0

𝐶
.

All conditions of Theorem 4.3 are satisfied, so Theorem 4.2 is proven.

4.4 Extremals of Pontryagin’s Maximum Principle

We apply Pontryagin’s maximum principle (PMP) [2,3, 8] to the optimal control problem (4.1)–(4.4).
The Hamiltonian of the PMP, where 𝜈 ∈ {−1, 0}, is of the form

ℎ𝜈𝑢(𝜆) = ℎ1𝑢1 + ℎ2𝑢2 − 𝜈
√︁
𝑢21 − 𝑢22, 𝜆 ∈ 𝑇 *𝑀,

ℎ1(𝜆) = ⟨𝜆,𝑋1(𝑞)⟩ =
𝜉2

cosh 𝜃
, ℎ2(𝜆) = ⟨𝜆,𝑋2(𝑞)⟩ = 𝜉1,

here 𝜉𝑖 are the canonical coordinates in the cotangent bundle 𝑇 *𝑀 . The Hamiltonian system of the PMP is⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜉1 = 𝜉2𝑢1

sinh 𝜃
cosh2 𝜃

,

𝜉2 = 0,

𝜃 = 𝑢2,

𝜙̇ = 𝑢1

cosh 𝜃 .
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4.4.1 Abnormal trajectories

Consider the abnormal case 𝜈 = 0.

Proposition 4.1. Abnormal trajectories are light-like trajectories, and up to reparametrization

𝑢1 = ±𝑢2 = 1,

𝜙(𝑡) = ± arctan {sinh (±𝑡+ 𝜃0)}+ 𝜙0 ∓ arctan {sinh 𝜃0}, 𝜃(𝑡) = ±𝑡+ 𝜃0.

Proof. Consider two cases 𝑢1 = ±𝑢2 = 1. Then the Hamiltonian system looks like this:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜉1 = 𝜉2

sinh 𝜃
cosh2 𝜃

,

𝜉2 = 0,

𝜃 = ±1,

𝜙̇ = 1
cosh 𝜃 .

From the second equation it immediately follows that 𝜉2 ≡ const = 𝑐2, and from the third equation we obtain
𝜃(𝑡) = ±𝑡+ 𝜃0. By dividing the first equation by the third and the fourth equation by the third, we can find 𝜉1 and
𝜙 as functions of 𝜃, so we get: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜉2 ≡ 𝑐2,

𝜉1(𝑡) = ∓ 𝑐2
cosh (±𝑡+𝜃0) ±

𝑐2
cosh 𝜃0

+ 𝜉1(0),

𝜃(𝑡) = ±𝑡+ 𝜃0,

𝜙(𝑡) = ± arctan (±𝑡+ 𝜃0) + 𝜙0 ∓ arctan sinh 𝜃0.

Abnormal trajectories form the boundary of the reachability set 𝒜𝑞0 .

4.4.2 Normal trajectories

Now consider the normal case 𝜈 = −1. From the maximality condition

ℎ1𝑢1 + ℎ2𝑢2 +
√︁
𝑢21 − 𝑢22 → max

𝑢∈𝑈

we obtain:

ℎ21 − ℎ22 = 1, ℎ1 < 0,

𝑢21 − 𝑢22 = 1, 𝑢1 > 0,

and then, writing in hyperbolic coordinates ℎ1 = − cosh𝜓, ℎ2 = sinh𝜓 and taking into account that 𝜉2 = ℎ2 = const,
we obtain that the Hamiltonian system for normal extremals takes type:⎧⎪⎨⎪⎩

𝜓̇ = − cosh𝜓 sinh 𝜃
cosh 𝜃 ,

𝜃 = sinh𝜓,

𝜙̇ = cosh𝜓
cosh 𝜃 .

(4.16)

Dividing the first equation by the second and integrating, we obtain the first integral:

cosh𝜓 cosh 𝜃 = const .

Proposition 4.2. Normal extremals with initial condition 𝜃(0) = 0, 𝜙(0) = 0, 𝜓(0) = 𝜓0 have the following form:

(1) for 𝜓0 = 0, 𝑡 ∈ R ⎧⎪⎨⎪⎩
𝜃(𝑡) ≡ 0,

𝜓(𝑡) ≡ 0,

𝜙(𝑡) = 𝑡,

(4.17)
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(2) for 𝜓0 ̸= 0, 𝑡 ∈ (−𝜋/2, 𝜋/2) ⎧⎪⎪⎨⎪⎪⎩
𝜃(𝑡) = arsinh (sinh𝜓0 sin 𝑡),

𝜓(𝑡) = arsinh
(︁

sinh𝜓0 cos 𝑡√
cos2 𝑡+cosh2 𝜓0 sin2 𝑡

)︁
,

𝜙(𝑡) = arctan (cosh𝜓0 tan 𝑡),

(4.18)

which continues for all 𝑡 ∈ (−∞,+∞) by formulae⎧⎪⎪⎨⎪⎪⎩
𝜃(𝑡) = arsinh

(︁
sinh𝜓0 sin 𝑡

)︁
,

𝜓(𝑡) = arsinh
(︁

sinh𝜓0 cos 𝑡√
cos2 𝑡+cosh2 𝜓0 sin2 𝑡

)︁
,

𝜙(𝑡) = 𝑛𝜋 + 𝜙0(𝑡− 𝑛𝜋), 𝑡 ∈ [𝑛𝜋 − 𝜋/2, 𝑛𝜋 + 𝜋/2),

(4.19)

where 𝑛 ∈ Z and

𝜙0(𝑡) =

⎧⎪⎨⎪⎩
−𝜋/2, 𝑡 = −𝜋/2,
arctan (cosh𝜓0 tan 𝑡), 𝑡 ∈ (−𝜋/2, 𝜋/2),
𝜋/2, 𝑡 = 𝜋/2.

Proof. Using the first integral cosh𝜓 cosh 𝜃 ≡ 𝐷, we first consider the case 𝐷 = 1 = cosh𝜓0, and obtain the solution
(4.17). In the case 𝐷 > 1, at the energy level we express sinh𝜓 as a function of 𝜃, and then by integrating and
substituting the initial condition we obtain the solution (4.18) for 𝑡 ∈ (−𝜋/2, 𝜋/2).

Consider the equation for the function 𝜙, 𝜙(0) = 0, 𝜃(0) = 0, obtained after finding 𝜃(𝑡):

𝜙̇ =
cosh𝜓

cosh 𝜃
=

𝐷

cosh2 𝜃
=

cosh 𝜃0 cosh𝜓0

1 + sinh2 𝜓0 sin
2 𝑡

=
cosh𝜓0

1 + sinh2 𝜓0 sin
2 𝑡
.

The right-hand side is a smooth bounded function for all 𝑡 ≥ 0, so the solution 𝜙(𝑡) is a smooth function for all 𝑡 ≥ 0:

𝜙(𝑡) =

∫︁ 𝑡

0

cosh𝜓0

1 + sinh2 𝜓0 sin
2 𝜏

𝑑𝜏.

We have evaluated this integral and obtained a formula that is true on the interval 𝑡 ∈ (−𝜋/2, 𝜋/2):

𝜙0(𝑡) = arctan
(︁
cosh𝜓0 tan 𝑡

)︁
.

On the other hand, note that the derivative 𝜙̇(𝑡) is a periodic function with period 𝜋.
At points 𝑘𝜋, 𝑘 ∈ Z the function 𝜙̇(𝑡) reaches its maximum value, and at point 𝑛𝜋/2, 𝑛 = 2𝑙 + 1, 𝑙 ∈ Z — its
minimum value. Moreover, it is even on each interval [(𝑘 − 1)𝜋, 𝑘𝜋], 𝑘 ∈ Z, relative to the midpoint (2𝑘 − 1)𝜋/2.
Due to the continuity of the solution, we glue it on each interval

lim
𝑡→±𝜋/2∓0

arctan
(︁
cosh𝜓0 tan 𝑡

)︁
= ±𝜋/2.

By continuity, lim
𝑡→±𝜋/2±0

𝜙(𝑡) = ±𝜋/2.

Since the derivative with respect to the point 𝜋/2 is even, we extend the solution to the segment [𝜋/2, 𝜋] using the
formula:

𝑡 ∈ [0, 𝜋/2], 𝜙(𝜋/2 + 𝑡) = 𝜋/2 + 𝜋/2− arctan
(︁
cosh𝜓0 tan (𝜋/2− 𝑡)

)︁
,

where the first term is from the condition that 𝜙(𝑡) = 𝜋/2, and

𝜋/2− arctan
(︁
cosh𝜓0 tan (𝜋/2− 𝑡)

)︁
= 𝜋/2− 𝜙0(𝜋/2− 𝑡) =

∫︁ 𝜋/2+𝑡

𝜋/2

cosh𝜓0

1 + sinh2 𝜓0 sin
2 𝜏

𝑑𝜏.

Accordingly, 𝜙(𝜋) = 𝜋, and we get the general formula, where 𝑛 ∈ Z:

𝜙(𝑡) = 𝑛𝜋 + 𝜙0(𝑡− 𝑛𝜋), 𝑡 ∈ [𝑛𝜋 − 𝜋/2, 𝑛𝜋 + 𝜋/2].

Return to the formulas (4.18) for the solution on the interval 𝑡 ∈ (−𝜋/2, 𝜋/2) and write the new function 𝜙(𝑡), 𝑡 ∈
[0,+∞) through 𝜙0(𝑡) = arctan

(︁
cosh (𝜓(0)) tan 𝑡

)︁
, and get (4.19).
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Figure 8: Extremal trajectory for 𝜓(0) = 1

Figure 9: Extremal trajectories for 𝜓(0) ∈ {0, ±1.5, ±2, ±3, ±8}

4.5 Exponential Map and Its Properties

We define the exponential map

Exp : 𝑁 →𝑀, 𝑁 =

(︂
𝑇 *
𝑞0𝑀 ∩

{︂
ℎ1 = −

√︁
1 + ℎ22

}︂)︂
𝜓0

× (0, 𝜋)𝑡 = {(𝜓0, 𝑡) | 𝜓0 ∈ R, 𝑡 ∈ (0, 𝜋)},

Exp(𝜓0, 𝑡) = 𝑞(𝑡) = (𝜃(𝑡), 𝜙(𝑡)),

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜃(𝑡) = arsinh

(︁
sinh𝜓0 sin 𝑡

)︁
,

𝜙(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
arctan

(︁
cosh𝜓0 tan 𝑡

)︁
, 𝑡 ∈ (0, 𝜋/2),

𝜋/2, 𝑡 = 𝜋/2,

𝜋 + arctan (cosh𝜓0(tan (𝑡− 𝜋))), 𝑡 ∈ (𝜋/2, 𝜋).

(4.20)

Theorem 4.4. The exponential map defines a homeomorphism of regions

𝐴′ = {(𝜓0, 𝑡) : 𝜓0 ∈ R, 𝑡 ∈ (0, 𝜋)}, 𝐶 ′ = {(𝜃, 𝜙) ∈ R2 : arctan sinh |𝜃| < 𝜙 < 𝜋 − arctan sinh |𝜃|}

and a diffeomorphism of regions

𝐴 = {(𝜓0, 𝑡) : 𝜓0 ∈ R, 𝑡 ∈ (0, 𝜋/2)}, 𝐶 = {(𝜃, 𝜙) ∈ R2 : arctan sinh |𝜃| < 𝜙 < 𝜋/2},
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as well as regions

𝐴 = {(𝜓0, 𝑡) : 𝜓0 ∈ R, 𝑡 ∈ (𝜋/2, 𝜋)}, 𝐶 = {(𝜃, 𝜙) ∈ R2 : 𝜋/2 < 𝜙 < 𝜋 − arctan sinh |𝜃|}.

Proof. We show explicitly that on the set 𝐶 ′ there exists an inverse mapping to the mapping defined by the formulas
(4.20), and we will see from the obtained formulas that it is continuous in both directions. First, we prove this for
sets 𝐴 and 𝐶 by considering the following mapping:⎧⎨⎩𝜃(𝑡) = arsinh

(︁
sinh𝜓0 sin 𝑡

)︁
,

𝜙(𝑡) = arctan
(︁
cosh𝜓0 tan 𝑡

)︁
, 𝑡 ∈ (0, 𝜋/2).

(4.21)

To do this, we take an intermediate step: let 𝑋 = sinh 𝜃, 𝑌 = tan𝜙 and first prove that the domains 𝐴 and
𝐵 = {(𝑋,𝑌 ) ∈ R2|𝑌 > |𝑋|} using the following formulas:{︃

𝑋 = sinh𝜓0 sin 𝑡,

𝑌 = cosh𝜓0 tan 𝑡.

Expressing sinh𝜓0 from the first equation, substituting into the second and using the formulas for trigonometric and
hyperbolic functions, we obtain

𝑡 = arcsin

√︂
𝑌 2 −𝑋2

1 + 𝑌 2
, 𝜓0 = arsinh

(︃
𝑋

√︂
1 + 𝑌 2

𝑌 2 −𝑋2

)︃
− smooth functions on the set 𝐵.

Therefore, the inverse mapping to the mapping given by the formulas (4.21) is expressed on the set 𝐶 by smooth
functions:

𝑡 = arcsin

√︃
tan2 𝜙− sinh2 𝜃

1 + tan2 𝜙
, 𝜓0 = arsinh

(︃
sinh 𝜃

√︃
1 + tan2 𝜙

tan2 𝜙− sinh2 𝜃

)︃
. (4.22)

We have thus proven that the domains 𝐴 and 𝐶 are diffeomorphic due to the exponential mapping. Now we
will show the diffeomorphism of the domains 𝐴 and 𝐶 due to this mapping. Expressing explicitly through inverse
mappings of elementary functions from the formulas (4.20), we obtain:{︃

𝜃(𝑡) = arsinh (sinh𝜓0 sin 𝑡)

𝜙(𝑡) = 𝜋 + arctan (cosh𝜓0 tan (𝜋 − 𝑡))
⇔

{︃
sinh 𝜃 = sinh𝜓0 sin 𝑡

tan (𝜋 − 𝜙) = cosh𝜓0 tan (𝜋 − 𝑡)
(4.23)

Since 𝑡 ∈ (𝜋/2, 𝜋), then (𝜋 − 𝑡) ∈ (0, 𝜋/2) ⇒ cos (𝜋 − 𝑡) = − cos 𝑡 > 0, sin (𝜋 − 𝑡) = − sin 𝑡 > 0 ⇒ tan (𝜋 − 𝑡) =
tan 𝑡. For similar reasons, tan (𝜋 − 𝜙) = tan𝜙, since 𝜙 ∈ (𝜋/2, 𝜋). Therefore, the formulas (4.23) are equivalent to
the following: {︃

sinh 𝜃 = sinh𝜓0 sin 𝑡,

tan𝜙 = cosh𝜓0 tan 𝑡.

These are exactly the formulas for the previous case 𝑡 ∈ (0, 𝜋/2), 𝜓0 ∈ R, but we must take into account that
𝑡 ∈ (𝜋/2, 𝜋) and 𝜓0 ∈ R, whence we obtain:

𝑡 = 𝜋 − arcsin

⎛⎝√︃ tan2 𝜙− sinh2 𝜃

1 + tan2 𝜙

⎞⎠, 𝜓0 = arsinh

(︃
sinh 𝜃

√︃
1 + tan2 𝜙

tan2 𝜙− sinh2 𝜃

)︃
. (4.24)

The continuity of the exponential mapping in the domain 𝐴′ follows from the continuous dependence of the
solution of the differential equation on the initial conditions.

It remains to show the continuity of the mapping inverse to the exponential mapping on the line 𝜙 = 𝜋/2, 𝜃 ∈ R
(corresponding to 𝑡 = 𝜋/2, 𝜓0 ∈ R). To do this, we compare the left and right limits at 𝜙 → 𝜋/2 for the mappings
4.22 and 4.24, respectively. For 𝜓0 nothing needs to be checked, but for 𝑡 it is necessary:

lim
𝜙−→𝜋/2−0

arcsin

√︃
tan2 𝜙− sinh2 𝜓0

1 + tan2 𝜙
= arcsin 1 = 𝜋/2 = 𝜋− arcsin 1 = lim

𝜙−→𝜋/2+0

⎛⎝𝜋 − arcsin

√︃
tan2 𝜙− sinh2 𝜓0

1 + tan2 𝜙

⎞⎠ .

Remark 4.1. In Theorem 4.4 we proved the homeomorphism of the domains 𝐴′ and 𝐶 ′ by virtue of the exponential
mapping. In the Proposition 4.3 the analyticity of the mapping 𝑡0(𝜃, 𝜙) will be shown.
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4.6 Optimal synthesis on the set ℬ(0,0)

Theorem 4.5. (1) If the point 𝑞1 = (𝜃1, 𝜙1) belongs to the lower boundary of the set ℬ(0,0) = {(𝜃, 𝜙) ∈ 𝑀 :
𝜋 − arctan sinh |𝜃| > 𝜙 ≥ arctan sinh |𝜃|}, then the optimal trajectory connecting the origin and 𝑞1 exists, is
unique and is an abnormal extremal, and the Lorentzian distance from (0, 0) to 𝑞1 is 0.

(2) If a point 𝑞1 = (𝜃1, 𝜙1) ∈ intℬ(0,0), then the optimal trajectory connecting the origin and 𝑞1 exists, is unique,
and is a normal extremal with initial condition 𝜓𝑞1 , and the Lorentzian distance from (0, 0) to 𝑞1 is 𝑡𝑞1 , where

𝜓𝑞1 = arsinh

(︃
sinh 𝜃1

√︃
1 + tan2 𝜙1

tan2 𝜙1 − sinh2 𝜃1

)︃
, (4.25)

𝑡𝑞1 =

⎧⎪⎪⎨⎪⎪⎩
arcsin

√︁
tan2 𝜙1−sinh2 𝜃1

1+tan2 𝜙1
, 𝜙1 ∈ (0, 𝜋/2),

𝜋/2, 𝜙1 = 𝜋/2,

𝜋 − arcsin
√︁

tan2 𝜙1−sinh2 𝜃1
1+tan2 𝜙1

, 𝜙1 ∈ (𝜋/2, 𝜋).

(4.26)

The uniqueness of the optimal trajectory is meant up to reparametrization.

Proof. It follows from Theorem 4.2 that for any point 𝑞1 ∈ ℬ(0,0) there exists an optimal trajectory. The optimal
trajectory satisfies the Pontryagin maximum principle.

First, we prove point (2).

(2) From Theorem 4.4 we obtain that normal trajectories connect the origin (0, 0) with points 𝑞1 lying in the
interior of the set ℬ(0,0):

Exp(𝐴′) = 𝐶 ′ = intℬ(0,0).

From the same theorem we conclude that there exists a unique extremal trajectory, determined by the initial condition
𝜓𝑞1 . Since for any point 𝑞1 ∈ int(ℬ(0,0)) there exists an optimal trajectory, and also since the extremal trajectory
passing through 𝑞1 is unique, it follows that for each point 𝑞1 ∈ int(ℬ(0,0)) the optimal trajectory connecting it with
(0, 0) is the only normal extremal passing through 𝑞1. Optimal synthesis in the interior of the set is formulated as
follows.

We must first find 𝜓𝑞1 :

𝜓𝑞1 = arsinh

(︃
sinh 𝜃1

√︃
1 + tan2 𝜙1

tan2 𝜙1 − sinh2 𝜃1

)︃
.

Next, we find the moment at which we reach point 𝑞1:

𝑡𝑞1 =

⎧⎪⎪⎨⎪⎪⎩
arcsin

√︁
tan2 𝜙1−sinh2 𝜃1

1+tan2 𝜙1
, 𝜙1 ∈ (0, 𝜋/2)

𝜋/2, 𝜙1 = 𝜋/2

𝜋 − arcsin
√︁

tan2 𝜙1−sinh2 𝜃1
1+tan2 𝜙1

, 𝜙1 ∈ (𝜋/2, 𝜋)

The optimal trajectory connecting points (0, 0) and 𝑞1 = (𝜃1, 𝜙1) ∈ 𝐶 ′ has the following form:

• If 𝑡𝑞1 < 𝜋/2, then {︃
𝜃(𝑡) = arsinh (sinh𝜓𝑞1 sin 𝑡),

𝜙(𝑡) = arctan (cosh𝜓𝑞1 tan 𝑡), 𝑡 ∈ (0, 𝑡𝑞1).
(4.27)

• If 𝑡𝑞1 = 𝜋/2, then ⎧⎪⎨⎪⎩
𝜃(𝑡) = arsinh (sinh𝜓𝑞1 sin 𝑡),

𝜙(𝑡) =

{︃
arctan (cosh𝜓𝑞1 tan 𝑡), 𝑡 ∈ (0, 𝜋/2),

𝜋/2, 𝑡 = 𝜋/2.

(4.28)

• If 𝜋/2 < 𝑡𝑞1 < 𝜋, then ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜃(𝑡) = arsinh (sinh𝜓𝑞1 sin 𝑡),

𝜙(𝑡) =

⎧⎪⎨⎪⎩
arctan (cosh𝜓𝑞1 tan 𝑡), 𝑡 ∈ (0, 𝜋/2),

𝜋/2, 𝑡 = 𝜋/2,

𝜋 − arctan (cosh𝜓𝑞1 tan (𝜋 − 𝑡)), 𝑡 ∈ (𝜋/2, 𝑡𝑞1).

(4.29)
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Point (2) is proved.

Now we prove point (1).
Since normal trajectories connect (0, 0) only with points in the interior of ℬ(0,0), the optimal trajectories coming to

the boundary of the set ℬ(0,0) are abnormal. Uniqueness follows from the fact that 𝜙 increases along the trajectories
of the control system. Indeed, our control system is defined by differential equations (4.5) and the set of admissible
controls (4.2).

That is, if we choose a point on the boundary with 𝜃1 > 0, we can move along the lower boundary to the right
and cannot return to the origin due to the monotonicity of the boundary itself along the 𝜙 coordinate.

From the Proposition 4.1 we obtain that abnormal trajectories connect the origin (0, 0) with each point 𝑞1 lying
on the lower boundary of the set ℬ(0,0). The optimal synthesis on the lower bound of the set is formulated as follows:

• If 𝜃1 > 0, then
𝜃(𝑡) = 𝑡, 𝜙(𝑡) = arcsin sinh 𝑡, 𝑢1 = 𝑢2, 𝑡 ∈ [0, 𝜃1],

• If 𝜃1 < 0, then
𝜃(𝑡) = −𝑡, 𝜙(𝑡) = − arcsin sinh (−𝑡), 𝑢1 = −𝑢2, 𝑡 ∈ [0, 𝜃1],

Note that the length of abnormal trajectories is 0, since 𝑢21 − 𝑢22 = 0 along them.

Figure 10: Optimal trajectories

(a) For 𝑞1 = (1, 2)

(b) For 𝑞1 = (−1, 1.2)

(c) For 𝑞1 = (0.3, 2.8)

4.7 Points above the upper boundary of ℬ(0,0)

Theorem 4.6. For points (𝜃1, 𝜙1) ∈𝑀 such that 𝜙1 > 𝜋 − arctan (sinh |𝜃1|), there is no optimal trajectory starting
at (𝜃0, 𝜙0) = (0, 0). The Lorentzian distance from this point to the point (𝜃1, 𝜙1) is +∞.
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Proof. As shown in the Theorems 4.2 and 4.5, the optimal trajectories are contained in the set ℬ(0,0).
We will show that the Lorentzian distance for points above the upper boundary ℬ(0,0) is +∞. We construct a

family of admissible (piecewise smooth with (𝑢1, 𝑢2) ∈ 𝑈) curves depending on the parameter 𝛼 > 0, connecting the
origin with the point 𝑞1 = (𝜃1, 𝜙1), such that 𝜙1 > 𝜋−arctan (sinh |𝜃|), and calculate the limit of the lengths of these
curves as 𝛼→ +∞. Each curve of the family consists of 3 parts:

1) We move along the curve 𝜙 = arctan sinh 𝜃, 𝜃 > 0 to the point (𝜃, 𝜙) = (𝛼, arctan (sinh𝛼)), 𝛼 > 𝜃1, if 𝜃1 > 0,
along the curve 𝜙 = − arctan sinh 𝜃, 𝜃 < 0 to the point (−𝛼,− arctan (sinh (−𝛼))), −𝛼 < 𝜃1, if 𝜃1 < 0;

2) Move vertically upward until we intersect the curve 𝜙 = 𝜙1 + 𝜋 − arctan sinh (𝜃 − 𝜃1) when 𝜃1 > 0, until we
intersect the curve 𝜙 = 𝜙1 + 𝜋 + arctan sinh (𝜃 − 𝜃1) when 𝜃1 < 0;

3) Move along the curve 𝜙 = 𝜙1 + 𝜋 − arctan sinh |𝜃 − 𝜃1| until we reach the point (𝜃1, 𝜙1).

Figure 11: Trajectory for 𝑞1 = (1, 4), 𝛼 = 2

Figure 12: Trajectory for 𝑞1 = (1, 4), 𝛼 = 4

Figure 13: Trajectory for 𝑞1 = (1, 4), 𝛼 = 6
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Figure 14: Trajectory for 𝑞1 = (−1, 4), 𝛼 = 2

Figure 15: Trajectory for 𝑞1 = (−1, 4), 𝛼 = 4

Figure 16: Trajectory for 𝑞1 = (−1, 4), 𝛼 = 6

These parts are defined by the following controls:

1) 𝑢1 = 1, 𝑢2 = 1 for 𝜃1 > 0, 𝑢1 = 1, 𝑢2 = −1 for 𝜃1 < 0, 𝑡 ∈ [0, 𝑡1];

2) 𝑢1 = 1, 𝑢2 = 0, 𝑡 ∈ [𝑡1, 𝑡2];

3) 𝑢1 = 1, 𝑢2 = −1 for 𝜃1 > 0, 𝑢1 = 1, 𝑢2 = 1 for 𝜃1 < 0, 𝑡 ∈ [𝑡2, 𝑡3].

We calculate the value of the length functional on such a curve:∫︁ 𝑡3

0

√︁
𝑢21 − 𝑢22 𝑑𝑡 =

(︂∫︁ 𝑡1

0

+

∫︁ 𝑡2

𝑡1

+

∫︁ 𝑡3

𝑡2

)︂√︁
𝑢21 − 𝑢22 𝑑𝑡 =

∫︁ 𝑡2

𝑡1

𝑑𝑡 = 𝑡2 − 𝑡1.

It remains to find 𝑡2 and 𝑡1.

• First, for 𝜃1 > 0:

1) With the initial condition 𝜃(0) = 0, 𝜙(0) = 0 we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) = (𝑡, arctan sinh 𝑡)

on the segment 𝑡 ∈ [0, 𝛼];
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2) With the initial condition 𝜃(𝛼) = 𝛼, 𝜙(𝛼) = arctan (sinh𝛼) we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) =

(︂
𝛼,

𝑡

cosh𝛼
− 𝛼

cosh𝛼
+ arctan (sinh𝛼)

)︂
on the segment 𝑡 ∈ [𝛼, 𝑡2];

3) With the initial condition 𝜃(𝑡3) = 𝜃1, 𝜙(𝑡3) = 𝜙1 we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) = (−𝑡+ 𝑡3 + 𝜃1,− arctan (sinh (−𝑡+ 𝑡3 + 𝜃1)) + 𝜙1 + arctan (sinh (𝜃1)))

on the segment 𝑡 ∈ [𝑡2, 𝑡3].

So, 𝑡1 = 𝛼 we have explicitly found.

It remains to find 𝑡2 from the intersection of the vertical line 2) with the curve 3). At point 𝑡2 vertical line
2) reaches the point with ordinate − arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1)). We compose the corresponding
equation and solve it:

𝑡2
cosh𝛼

− 𝛼

cosh𝛼
+ arctan (sinh𝛼) = − arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1)) ⇔

⇔ 𝑡2 =
[︁ 𝛼

cosh𝛼
− 2 arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1))

]︁
cosh𝛼.

And now we obtain the length of the curve:

𝑡2 − 𝑡1 =
[︁ 𝛼

cosh𝛼
− 2 arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1))

]︁
cosh𝛼− 𝛼 =

= [−2 arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1))] cosh𝛼 =: 𝐿(𝛼).

We calculate the limit

lim
𝛼→+∞

𝐿(𝛼) = lim
𝛼→+∞

([−2 arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1))] cosh𝛼) = +∞,

since 𝜙1 + arctan (sinh 𝜃1)− 𝜋 > 0.

• Now let 𝜃1 < 0:

1) With the initial condition 𝜃(0) = 0, 𝜙(0) = 0 we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) = (−𝑡,− arctan sinh (−𝑡))

on the segment 𝑡 ∈ [0, 𝛼];

2) With the initial condition 𝜃(𝛼) = −𝛼, 𝜙(𝛼) = − arctan (sinh (−𝛼)) we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) =

(︂
−𝛼, 𝑡

cosh (−𝛼)
+

𝛼

cosh (−𝛼)
− arctan (sinh (−𝛼))

)︂
on the segment 𝑡 ∈ [𝛼, 𝑡2];

3) With the initial condition 𝜃(𝑡3) = 𝜃1, 𝜙(𝑡3) = 𝜙1 we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) = (𝑡− 𝑡3 + 𝜃1, arctan (sinh (𝑡− 𝑡3 + 𝜃1)) + 𝜙1 − arctan (sinh (𝜃1)))

on the segment 𝑡 ∈ [𝑡2, 𝑡3].

So, 𝑡1 = 𝛼 we have explicitly found.

It remains to find 𝑡2 from the intersection of the vertical line 2) with the curve 3). At point 𝑡2 vertical line 2)
reaches the point with ordinate

𝑡2 =

[︂
− 𝛼

cosh (−𝛼)
+ 2 arctan (sinh (−𝛼)) + 𝜙1 − arctan (sinh (𝜃1))

]︂
cosh (−𝛼).

And now we obtain the length of the curve:

𝑡2 − 𝑡1 =
[︁
−2

𝛼

cosh𝛼
− 2 arctan (sinh𝛼) + 𝜙1 − arctan (sinh (𝜃1))

]︁
cosh𝛼 =: 𝐿(𝛼).

We calculate the limit:

lim
𝛼→+∞

𝐿(𝛼) = lim
𝛼→+∞

(︁[︁
−2

𝛼

cosh𝛼
− 2 arctan (sinh𝛼) + 𝜙1 − arctan (sinh (𝜃1))

]︁
cosh (𝛼)

)︁
= +∞,

since 𝜃1 < 0, 𝜙1 − arctan (sinh 𝜃1)− 𝜋 > 0.
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• Now we look at the case when 𝜃1 = 0, 𝜙1 > 𝜋. Consider the curves that go to the right of the origin (as in the
case 𝜃1 > 0).

1) With the initial condition 𝜃(0) = 0, 𝜙(0) = 0 we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) = (𝑡, arctan sinh 𝑡)

on the segment 𝑡 ∈ [0, 𝛼];
2) With the initial condition 𝜃(𝛼) = 𝛼, 𝜙(𝛼) = arctan (sinh𝛼) we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) = (𝛼,
𝑡

cosh𝛼
− 𝛼

cosh𝛼
+ arctan (sinh𝛼))

on the segment 𝑡 ∈ [𝛼, 𝑡2];
3) With the initial condition 𝜃(𝑡3) = 0, 𝜙(𝑡3) = 𝜙1 we obtain the solution

(𝜃(𝑡), 𝜙(𝑡)) = (−𝑡+ 𝑡3,− arctan (sinh (−𝑡+ 𝑡3)) + 𝜙1)

on the segment 𝑡 ∈ [𝑡2, 𝑡3].

Thus, we have explicitly found 𝑡1 = 𝛼.

It remains to find 𝑡2 from the intersection of the vertical line 2) with the curve 3). At point 𝑡2 vertical line 2)
reaches the point with ordinate − arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1)).

𝑡2 =
[︁ 𝛼

cosh𝛼
− 2 arctan (sinh𝛼) + 𝜙1

]︁
cosh𝛼.

And now we obtain the length of the curve:

𝑡2 − 𝑡1 = [−2 arctan (sinh𝛼) + 𝜙1 + arctan (sinh (𝜃1))] cosh (𝛼) =: 𝐿(𝛼).

We calculate the limit:

lim
𝛼→+∞

𝐿(𝛼) = lim
𝛼→+∞

([−2 arctan (sinh𝛼) + 𝜙1] cosh (𝛼)) = +∞,

since 𝜙1 > 𝜋.

The theorem is proved.

4.8 Upper Boundary Points of ℬ(0,0)

Theorem 4.7. For points 𝑞 = (𝜃, 𝜙) ∈ 𝑀 , i.e., 𝜙 = 𝜋 − arctan (sinh |𝜃|), the Lorentzian distance from (0, 0) is
𝜋. For (0, 𝜋), there is a continuum of optimal trajectories from (0, 0). For other points on this curve, there are no
optimal trajectories.

Proof. For (𝜃, 𝜙) ∈ 𝑀 , i.e., 𝜙 = 𝜋 − arctan (sinh |𝜃|), (𝜃, 𝜙) ̸= (0, 𝜋), there are no extremal trajectories connecting
(0, 0), so there are no optimal ones.

Now we show that the Lorentz distance from the point (0, 0) is 𝜋. To do this, we use the following Lemma 4.4
from [1].

Lemma 4.1. Let 𝑀 be a Lorentzian manifold with distance 𝑑.
If 𝑑(𝑝, 𝑞) <∞, 𝑝𝑛 → 𝑝, and 𝑞𝑛 → 𝑞, then 𝑑(𝑝, 𝑞) ≤ lim inf 𝑑(𝑝𝑛, 𝑞𝑛).
If 𝑑(𝑝, 𝑞) = ∞, 𝑝𝑛 → 𝑝, and 𝑞𝑛 → 𝑞, then lim

𝑛→∞
𝑑(𝑝𝑛, 𝑞𝑛) = ∞.

Denote 𝑞0 := (0, 0). Consider a sequence of points 𝑞𝑛 → 𝑞 in 𝑀 . Assume that 𝑑(𝑞0, 𝑞) = +∞. Then by Lemma
4.1 lim

𝑛→∞
𝑑(𝑞0, 𝑞𝑛) = +∞. But the length of the optimal curve is expressed by the time 𝑡 of motion along it, and

according to our calculations, for all 𝑞𝑛 ∈ ℬ(0,0) there is an optimal trajectory, and we showed in Theorem 4.5 that
0 < 𝑡 < 𝜋. Hence, lim

𝑛→∞
𝑑(𝑞0, 𝑞𝑛) ≤ 𝜋. Consequently, 𝑑(𝑞0, 𝑞) ≤ 𝜋.

Now we take the sequence 𝑞𝑛 ∈ ℬ(0,0), 𝑞𝑛 → 𝑞 = (𝜃, 𝜋−arctan (sinh |𝜃|)): 𝑞𝑛 = (𝜃𝑛, 𝜙𝑛) = (𝜃, 𝜋−arctan (sinh |𝜃|)−
1
𝑛 ), 𝑛 ∈ N, 𝑛 ≥ 𝑛0, choosing the initial 𝑛0 such that 𝑞𝑛 ∈ ℬ(0,0), for example, from the condition that 𝜋 −
arctan (sinh |𝜃|) − 1

𝑛0
≥ 𝜋/2 ⇔ 𝑛0(𝜋/2 − arctan (sinh |𝜃|)) ≥ 1 ⇔ 𝑛0 ≥ 1

𝜋/2−arctan (sinh |𝜃|) . Now, according to the

formulas of the Theorem 4.5,

𝑑(𝑞0, 𝑞𝑛) = 𝜋 − arcsin

√︃
tan2 𝜙𝑛 − sinh2 𝜃𝑛

1 + tan2 𝜙𝑛
= 𝜋 − arcsin

⎯⎸⎸⎷ tan2 [arctan (sinh |𝜃|) + 1
𝑛 ]− sinh2 𝜃

1 + tan2 [arctan (sinh |𝜃|) + 1
𝑛 ]

→ 𝜋, 𝑛→ ∞.

19



Therefore, for any point 𝑞 ∈ {(𝜃, 𝜙) : 𝜃 ∈ R, 𝜙 = 𝜋 − arctan (sinh |𝜃|)} we have 𝑑(𝑞0, 𝑞) = 𝜋.
As for the optimal trajectories, all the extremal trajectories filling the interior of the set ℬ(0,0) continue to 𝑡 = 𝜋,

ending up at the point (0, 𝜋), as can be seen from the explicit formulas (4.29), and the issue of continuation was
discussed in the Proposition 4.2. Their lengths are exactly equal to 𝜋, as a result of which they are all optimal.

4.9 Properties of the distance function and Lorentzian spheres

4.9.1 Analyticity of the distance inside the set ℬ(0,0) and its asymptotics near the boundary of this
set

Proposition 4.3. (1) The distance from a point 𝑞0 = (0, 0) to any point 𝑞1 ∈ intℬ(0,0) is given by the real-analytic
function

𝑑(𝑞0, 𝑞1) = 𝑡𝑞1 = arccos (cos𝜙1 cosh 𝜃1). (4.30)

(2) Let the point 𝑞1 = (𝜃1, 𝜙1) satisfy the condition 𝜙1 = arctan sinh |𝜃1|, i.e., it belongs to the lower part of the
boundary 𝜕ℬ(0,0). We define the 1-form 𝑙 = − sinh 2𝜃1 cos

2 𝜙1𝑑𝜃 + sin 2𝜙1 cosh
2 𝜃1𝑑𝜙. If 𝑞 = (𝜃, 𝜙) ∈ intℬ(0,0)

and 𝑞 → 𝑞1 so that

(∆𝜃,∆𝜙)√︀
(∆𝜃)2 + (∆𝜙)2

→ 𝑣, ∆𝜃 = 𝜃 − 𝜃1, ∆𝜙 = 𝜙− 𝜙1,

𝑙(𝑣) ̸= 0,

then
𝑑(𝑞0, 𝑞) =

√︀
𝑙(∆𝜃,∆𝜙)(1 + 𝑜(1)).

Proof. (1) The distance 𝑑(𝑞0, 𝑞) in our parametrization is the time of movement along the optimal trajectory from
𝑞0 to 𝑞. We have obtained the formula (4.26) for it. We prove the formula (4.30) on this basis. For this, we consider
the composition sin (𝜋/2− 𝑡𝑞1).

On the interval 𝜙 ∈ (0, 𝜋/2):

sin

⎛⎝𝜋/2− arcsin

√︃
tan2 𝜙− sinh2 𝜃

1 + tan2 𝜙

⎞⎠ = cos

⎛⎝arcsin

√︃
tan2 𝜙− sinh2 𝜃

1 + tan2 𝜙

⎞⎠ =

√︃
1− tan2 𝜙− sinh2 𝜃

1 + tan2 𝜙
=

√︃
1 + sinh2 𝜃

1 + tan2 𝜙
=

= cos𝜙 cosh 𝜃.

On the interval 𝜙 ∈ (𝜋/2, 𝜋):

sin

⎛⎝𝜋/2−
⎛⎝𝜋 − arcsin

√︃
tan2 𝜙− sinh2 𝜃

1 + tan2 𝜙

⎞⎠⎞⎠ = − sin

⎛⎝𝜋/2− arcsin

√︃
tan2 𝜙− sinh2 𝜃

1 + tan2 𝜙

⎞⎠ = − cosh 𝜃| cos𝜙| = cos𝜙 cosh 𝜃.

Since 𝜋/2− 𝑡𝑞1 ∈ (−𝜋/2, 𝜋/2), we get:

sin (𝜋/2− 𝑡𝑞1) = cos𝜙 cosh 𝜃 ⇔ 𝜋/2−𝑡𝑞1 = arcsin (cos𝜙 cosh 𝜃) ⇔ 𝑡𝑞1 = 𝜋/2−arcsin (cos𝜙 cosh 𝜃) = arccos (cos𝜙 cosh 𝜃).

The formula (4.30) is proven. In particular, the distance is a real-analytic function in the domain int(ℬ(0,0)).

(2) We calculate the asymptotics of the Lorentzian distance near the lower boundary of the reachable set. Let
𝜌 = ((∆𝜃)2 + (∆𝜙)2)1/2 → 0. Then

𝑑(𝑞0, 𝑞) = arccos(cos𝜙 cosh 𝜃) = arcsin

√︁
1− cos2 𝜙 cosh2 𝜃 =

√︁
1− cos2 𝜙 cosh2 𝜃(1 + 𝑜(1)).

Next,

1− cos2 𝜙 cosh2 𝜃 = 1− (1− 2 cos𝜙1 sin𝜙1 cosh
2 𝜃1∆𝜙+ 2 cos2 𝜙1 cosh 𝜃1 sinh 𝜃1∆𝜃) = 𝑙(∆𝜃,∆𝜙) + 𝑜(𝜌) =

= 𝜌 (𝑙 (∆𝜃/𝜌,∆𝜙/𝜌) + 𝑜(1)) = 𝜌 (𝑙 (𝑣) + 𝑜(1)) = 𝜌𝑙 (𝑣) (1 + 𝑜(1)) = 𝑙 (∆𝜃,∆𝜙) (1 + 𝑜(1)) ,

and point (2) is proven.
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Figure 17: Graph of distance function

Figure 18: Graph of distance function
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Figure 19: Graph of distance function, top view

4.9.2 Lorentzian spheres

From point (1) of the Proposition 4.3 we obtain

Corollary 4.2. Lorentzian sphere of radius 𝑟 ∈ (0, 𝜋) is given by the equation

𝜙 = arccos
(︁ cos 𝑟

cosh 𝜃

)︁
.

Figure 20: Sphere of radius 1

Figure 21: Sphere of radius 2
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Figure 22: Sphere of radius 𝜋/2

4.10 Killing Fields

In this section, we calculate the infinitesimal symmetries of the Lorentzian structure and their flows, and on this
basis we obtain an expression for the Lorentzian distance 𝑑(𝑞0, 𝑞1) for arbitrary points 𝑞0, 𝑞1 ∈𝑀 .

4.11 Basis of the Lie algebra of Killing fields

Definition 4.3. [5, Chapter 9, Definition 22]
A vector field 𝑋 is called a Killing field of a metric 𝑔 if the Lie derivative of the metric along it is zero, i.e.,

𝐿𝑋𝑔 = 0.

Proposition 4.4. [1] A vector field 𝑋 ∈ Vec(𝑀) is a Killing field of metric 𝑔 if and only if it satisfies the equality

𝑋(𝑔(𝑉,𝑊 )) = 𝑔([𝑋,𝑉 ],𝑊 ) + 𝑔(𝑉, [𝑋,𝑊 ]), (4.31)

where 𝑉 , 𝑊 are arbitrary vector fields on 𝑀 .

Proposition 4.5. [1] The Killing vector fields form a Lie subalgebra in the Lie algebra of all vector fields on
a manifold, and for a connected Lorentzian manifold of constant curvature the dimension of this Lie algebra is
𝑛(𝑛+ 1)/2, where 𝑛 is the dimension of the manifold.

Theorem 4.8. (1) The Lie algebra of Killing fields of the anti-de Sitter space ̃︁𝐻2
1 with metric 𝑔 is three-dimensional

and its basis vector fields can be chosen as

𝑋̂1 = cosh 𝜃𝑋1 = 𝜕𝜙, 𝑋̂2 = sinh 𝜃 cos𝜙𝑋1 + sin𝜙𝑋2, 𝑋̂3 = − sinh 𝜃 sin𝜙𝑋1 + cos𝜙𝑋2.

(2) The following relations hold for their commutators:

[𝑋̂1, 𝑋̂2] = 𝑋̂3, [𝑋̂2, 𝑋̂3] = −𝑋̂1, [𝑋̂3, 𝑋̂1] = 𝑋̂2.

(3) The Lie algebra of Killing fields is isomorphic to sl(2).

Proof. (1) First, note that our anti-de Sitter manifold ̃︁𝐻2
1 satisfies the conditions of Proposition 4.5 and has

dimension 2, so its Lie algebra of Killing fields has dimension 3.

To find Killing fields of the metric 𝑔, we use equation (4.31).

Using the statement 3.1, we write out the required fields in terms of the basis of eigenvectors of the metric
𝑔 = 𝑑𝜃2 − cosh2 𝜃𝑑𝜙2 (locally coinciding with 𝑔), 𝑋 = 𝑐1𝑋1 + 𝑐2𝑋2 = 𝑐1

1
cosh 𝜃

𝜕
𝜕𝜙 + 𝑐2

𝜕
𝜕𝜃 .

We compose 3 equations for the unknown functional coefficients. As the fields 𝑉 and 𝑊 we take 𝑋1 and 𝑋2

in various combinations. But first we need to calculate the corresponding commutators [𝑋,𝑋1] and [𝑋,𝑋2]:

[𝑋,𝑋1] = [𝑐1𝑋1 + 𝑐2𝑋2, 𝑋1] =

[︂
𝑐1

cosh 𝜃

𝜕

𝜕𝜙
+ 𝑐2

𝜕

𝜕𝜃
,

1

cosh 𝜃

𝜕

𝜕𝜙

]︂
=

=

(︂
𝑐2𝜕𝜃

(︂
1

cosh 𝜃

)︂
− 1

cosh 𝜃
𝜕𝜙

(︁ 𝑐1
cosh 𝜃

)︁)︂ 𝜕

𝜕𝜙
+

(︂
− 1

cosh 𝜃
𝜕𝜙(𝑐2)

)︂
𝜕

𝜕𝜃
=

= −𝑐2 sinh 𝜃
cosh2 𝜃

𝜕

𝜕𝜙
− 𝜕𝜙𝑐1

cosh2 𝜃

𝜕

𝜕𝜙
− 𝜕𝜙𝑐2

cosh 𝜃

𝜕

𝜕𝜃
= − 1

cosh 𝜃
(𝑐2 sinh 𝜃 + 𝜕𝜙𝑐1)𝑋1 −

𝜕𝜙𝑐2
cosh 𝜃

𝑋2.
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[𝑋,𝑋2] =

[︂
𝑐1

cosh 𝜃

𝜕

𝜕𝜙
+ 𝑐2

𝜕

𝜕𝜃
,
𝜕

𝜕𝜃

]︂
=

=

(︂
− 𝜕𝜃𝑐1
cosh 𝜃

+ 𝑐1
tanh 𝜃

cosh 𝜃

)︂
𝜕

𝜕𝜙
− 𝜕𝜃𝑐2

𝜕

𝜕𝜃
= (−𝜕𝜃𝑐1 + 𝑐1 tanh 𝜃)𝑋1 − 𝜕𝜃𝑐2𝑋2.

We form the first equation, taking 𝑋1 as 𝑉 and 𝑊 :

𝑋 (𝑔(𝑋1, 𝑋1)) = 𝑔 ([𝑋,𝑋1], 𝑋1) + 𝑔(𝑋1, [𝑋,𝑋1]) ⇔ 0 = 2𝑔 ([𝑋,𝑋1], 𝑋1) ⇔

⇔ 0 = 2𝑔

(︂
− 1

cosh 𝜃
(𝑐2 sinh 𝜃 + 𝜕𝜙𝑐1)𝑋1 −

𝜕𝜙𝑐2
cosh 𝜃

𝑋2, 𝑋1

)︂
⇔

⇔ 0 =
2

cosh 𝜃
(𝑐2 sinh 𝜃 + 𝜕𝜙𝑐1) .

For the second equation, we take the field 𝑋2 as 𝑉 and 𝑊 :

𝑋 (𝑔(𝑋2, 𝑋2)) = 𝑔 ([𝑋,𝑋2], 𝑋2) + 𝑔(𝑋2, [𝑋,𝑋2]) ⇔ 0 = 2𝑔 ([𝑋,𝑋2], 𝑋2) ⇔
⇔ 0 = 2 ((−𝜕𝜃𝑐1 + 𝑐1 tanh 𝜃)𝑋1 − 𝜕𝜃𝑐2𝑋2, 𝑋2) ⇔
⇔ 0 = −2𝜕𝜃𝑐2.

Finally, for the third equation we take 𝑉 = 𝑋1, 𝑊 = 𝑋2:

𝑋 (𝑔(𝑋1, 𝑋2)) = 𝑔 ([𝑋,𝑋1], 𝑋2) + 𝑔 (𝑋1, [𝑋,𝑋2]) ⇔

⇔ 0 = 𝑔

(︂
− 1

cosh 𝜃
(𝑐2 sinh 𝜃 + 𝜕𝜙𝑐1)𝑋1 −

𝜕𝜙𝑐2
cosh 𝜃

𝑋2, 𝑋2

)︂
+ 𝑔 (𝑋1, (−𝜕𝜃𝑐1 + 𝑐1 tanh 𝜃)𝑋1 − 𝜕𝜃𝑐2𝑋2) ⇔

⇔ 0 = − 𝜕𝜙𝑐2
cosh 𝜃

− (−𝜕𝜃𝑐1 + 𝑐1 tanh 𝜃) .

We obtain a system on functional coefficients 𝑐1, 𝑐2:⎧⎪⎨⎪⎩
𝑐2 sinh 𝜃 + 𝜕𝜙𝑐1 = 0,

𝜕𝜃𝑐2 = 0,

𝜕𝜙𝑐2 = cosh 𝜃𝜕𝜃𝑐1 − 𝑐1 sinh 𝜃.

(4.32)

From the second equation (4.32) it follows that 𝑐2(𝜙, 𝜃) = 𝑐2(𝜙). Next, we can integrate the first equation
(4.32):

𝜕𝜙𝑐1 = −𝑐2(𝜙) sinh 𝜃 ⇔ 𝑐1 = − sinh 𝜃

∫︁ 𝜙

0

𝑐2(𝑠) 𝑑𝑠+ 𝑓(𝜃) = − sinh 𝜃𝑢(𝜙) + 𝑓(𝜃).

We substitute into the third equation (4.32):

𝑢′′(𝜙) = cosh 𝜃[− cosh 𝜃𝑢(𝜙) + 𝑓 ′(𝜃)]− sinh 𝜃[− sinh 𝜃𝑢(𝜙) + 𝑓(𝜃)] ⇔
⇔ 𝑢′′(𝜙) = [− cosh2 𝜃 + sinh2 𝜃]𝑢(𝜙) + cosh 𝜃𝑓 ′(𝜃)− sinh 𝜃𝑓(𝜃) ⇔
⇔ 𝑢′′(𝜙) + 𝑢(𝜙) = cosh 𝜃𝑓 ′(𝜃)− sinh 𝜃𝑓(𝜃).

We see that the left side of the resulting equation depends only on 𝜙, and the right side depends only on 𝜃.
This means that the left and right sides are equal to a constant. We get two equations: for 𝑢(𝜙) and for 𝑓(𝜃):

𝑢′′(𝜙) + 𝑢(𝜙) = 𝐴 = cosh 𝜃𝑓 ′(𝜃)− sinh 𝜃𝑓(𝜃).

Both equations are linear ODEs. The solution to the first one is found almost instantly:

𝑢(𝜙) = 𝐵1 cos𝜙+𝐵2 sin𝜙+𝐴.

The second is solved by the method of variation of the constant:

𝑓(𝜃) = 𝐴 sinh 𝜃 +𝐵 cosh 𝜃.

So the coefficients look like this:

𝑐1(𝜙, 𝜃) = − sinh 𝜃(𝐵1 cos𝜙+𝐵2 sin𝜙+𝐴) +𝐴 sinh 𝜃 +𝐵 cosh 𝜃 = − sinh 𝜃(𝐵1 cos𝜙+𝐵2 sin𝜙) +𝐵 cosh 𝜃

𝑐2 = 𝑢′(𝜙) = −𝐵1 sin𝜙+𝐵2 cos𝜙
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And we get Killing fields:

𝑐1𝑋1 + 𝑐2𝑋2 = (− sinh 𝜃(𝐵1 cos𝜙+𝐵2 sin𝜙) +𝐵 cosh 𝜃)𝑋1 + (−𝐵1 sin𝜙+𝐵2 cos𝜙)𝑋2.

The basis can be chosen from 3 vector fields:

𝑋̂1 = cosh 𝜃𝑋1 = 𝜕𝜙, 𝑋̂2 = sinh 𝜃 cos𝜙𝑋1 + sin𝜙𝑋2, 𝑋̂3 = − sinh 𝜃 sin𝜙𝑋1 + cos𝜙𝑋2.

(2) We calculate the commutators of the basis vectors of the Killing field algebra 𝑋̂1, 𝑋̂2, 𝑋̂3 obtained in the
previous section:

[𝑋̂1, 𝑋̂2] =

[︂
𝜕𝜙,

sinh 𝜃 cos𝜙

cosh 𝜃
𝜕𝜙 + sin𝜙𝜕𝜃

]︂
= − sinh 𝜃 sin𝜙

cosh 𝜃
𝜕𝜙 + cos𝜙𝜕𝜃 = 𝑋̂3,

[𝑋̂1, 𝑋̂3] =

[︂
𝜕𝜙,−

sinh 𝜃 sin𝜙

cosh 𝜃
𝜕𝜙 + cos𝜙𝜕𝜃

]︂
=

sinh 𝜃 cos𝜙

cosh 𝜃
𝜕𝜙 − sin𝜙𝜕𝜃 = −𝑋̂2,

[𝑋̂2, 𝑋̂3] =

[︂
sinh 𝜃 cos𝜙

cosh 𝜃
𝜕𝜙 + sin𝜙𝜕𝜃,−

sinh 𝜃 sin𝜙

cosh 𝜃
𝜕𝜙 + cos𝜙𝜕𝜃

]︂
=

=

(︂
tanh 𝜃 cos𝜙 tanh 𝜃(− cos𝜙) + sin𝜙(− sin𝜙)

1

𝑐ℎ2𝜃
+ tanh 𝜃 sin𝜙 tanh 𝜃(− sin𝜙)− cos𝜙 cos𝜙

1

cosh2 𝜃

)︂
𝜕𝜙+

+ (tanh 𝜃 cos𝜙(− sin𝜙)− tanh 𝜃(− sin𝜙) cos𝜙) 𝜕𝜃 =

=

(︂
− tanh2 𝜃(cos2 𝜙+ sin2 𝜙)− 1

cosh2 𝜃
(sin2 𝜙+ cos2 𝜙)

)︂
𝜕𝜙 = − sinh2 𝜃 + 1

cosh2 𝜃
𝜕𝜙 = −𝜕𝜙 = −𝑋̂1.

We obtained the following relations:

[𝑋̂1, 𝑋̂2] = 𝑋̂3, [𝑋̂2, 𝑋̂3] = −𝑋̂1, [𝑋̂3, 𝑋̂1] = 𝑋̂2.

(3) The Lie algebra of Killing fields is isomorphic to sl(2), which follows from the expressions for commutators
obtained in the second section and the theorem on the classification of three-dimensional Lie algebras (see [7]).

4.11.1 Phase portraits of the Killing fields

Phase portraits of the fields were obtained using the StreamPlot function in Wolfram Mathematica.
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Figure 23: Killing field trajectories

(a) Trajectories of 𝑋̂1

(b) Trajectories of 𝑋̂2

(c) Trajectories of 𝑋̂3

4.11.2 Lorentz distance between two arbitrary points of ̃︁𝐻2
1

Suppose we want to calculate the distance between points 𝑞0, 𝑞1 ∈ ̃︁𝐻2
1 . Then we transfer point 𝑞0 to (0, 0) = 𝑞′0

along the trajectories of the Killing fields along a certain route, and then — point 𝑞1 to point 𝑞′1 parallel to this

route. Since we know the Lorentz distance from the point (0, 0) to any point of ̃︁𝐻2
1 (theorems 4.5, 4.6 and 4.7 of this

paper), and 𝑑(𝑞0, 𝑞1) = 𝑑(𝑞′0, 𝑞
′
1), since the value of the metric does not change when transferred along the Killing

fields, we can calculate the Lorentz distance between an arbitrary pair of points of the manifold.
Note that the field 𝑋̂1 = 𝜕𝜙 allows moving up and down. Also, for 𝜙 = 0, the field 𝑋̂3 has the first coordinate

equal to 0 and the second equal to 1, which allows moving left and right along this line. Therefore, our route will
look like this:
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1. 𝜃0 = 0.

We move along the field 𝑋̂1 (if 𝜙0 < 0) or −𝑋̂1 (if 𝜙0 > 0) until the point (0, 0).

2. 𝜙0 = 0.

We move along the field 𝑋̂3 (if 𝜃0 < 0) or −𝑋̂3 (if 𝜃0 > 0) until the point (0, 0).

3. 𝜃0 < 0, 𝜙0 < 0.

We move along the field 𝑋̂1 until the intersection with the line 𝜙 = 0. We move along the field 𝑋̂3 until the
point (0, 0).

4. 𝜃0 < 0, 𝜙0 ≥ 0.

We move along the field −𝑋̂1 until the intersection with the line 𝜙 = 0. We move along the field 𝑋̂3 until the
point (0, 0).

5. 𝜃0 ≥ 0, 𝜙0 < 0.

We move along the field 𝑋̂1 until the intersection with the line 𝜙 = 0. We move along the field −𝑋̂3 until the
point (0, 0).

6. 𝜃0 ≥ 0, 𝜙0 ≥ 0.

We move along the field −𝑋̂1 until the intersection with the line 𝜙 = 0. We move along the field −𝑋̂3 until
the point (0, 0).

4.11.3 Killing Field Trajectories

Proposition 4.6. The system of ODEs defined by the vector field 𝑋̂1:

𝜃 = 0, 𝜙̇ = 1 (4.33)

has the following solutions with initial conditions 𝜃(0) = 𝜃0, 𝜙(0) = 𝜙0:

𝜃(𝑡) ≡ 𝜃0, 𝜙(𝑡) = 𝑡+ 𝜙0.

Theorem 4.9. The system of ODEs defined by the vector field 𝑋̂2:

𝜃 = sin𝜙, 𝜙̇ = cos𝜙 tanh 𝜃 (4.34)

has a first integral 𝐶 = cos𝜙 cosh 𝜃 ∈ R. Let 𝑠1 = sign cos𝜙0, 𝑠2 = sign sin𝜙0, 𝑠3 = sign 𝜃0, 𝑛 = [(𝜙0 + 𝜋/2)/(2𝜋)].
Then the system (4.34) has the following solutions with initial conditions 𝜃(0) = 𝜃0, 𝜙(0) = 𝜙0 depending on the
value of 𝐶.

1) If 𝐶 = 0, then 𝜙(𝑡) ≡ 𝜙0, 𝜃(𝑡) = 𝜃0 + 𝑠2𝑡.

2) Let 𝐶2 = 1.

2.1) If sin𝜙0 = 0, then 𝜙(𝑡) ≡ 𝜙0, 𝜃(𝑡) ≡ 𝜃0.

2.2) If sin𝜙0 ̸= 0, then

𝜃(𝑡) = arsinh(sinh 𝜃0 exp(𝑠2𝑠3𝑡)),

𝜙(𝑡) =

{︃
𝑠2𝑠3 arcsin(tanh 𝜃(𝑡)) + 2𝜋𝑛 with 𝑠1 = 1,

𝜋 − 𝑠2𝑠3 arcsin(tanh 𝜃(𝑡)) + 2𝜋𝑛 with 𝑠1 = −1.
(4.35)

3) If 𝐶2 ∈ (0, 1), then

𝜃(𝑡) = arsinh(
√︀
1− 𝐶2 sinh 𝜏), 𝜏 = 𝑠2𝑡+ arsinh(sinh 𝜃0/

√︀
1− 𝐶2),

𝜙(𝑡) =

⎧⎨⎩𝑠2 arcsin
√︁
1− 𝐶2/ cosh2 𝜃(𝑡) + 2𝜋𝑛 for 𝑠1 = 1,

𝜋 − 𝑠2 arcsin
√︁

1− 𝐶2/ cosh2 𝜃(𝑡) + 2𝜋𝑛 when 𝑠1 = −1.
(4.36)

27



4) If 𝐶2 > 1, then

𝜙(𝑡) =

{︃
arcsin𝑥+ 2𝜋𝑛 for 𝑠1 = 1,

𝜋 − arcsin𝑥+ 2𝜋𝑛 with 𝑠1 = −1,
(4.37)

𝜃(𝑡) = 𝑠3 arcosh(𝐶/ cos𝜙(𝑡)),

where 𝑥 = (|𝑠| − 𝐶2 + 1)/(2
√
𝑠), 𝑠 = (𝑒𝜏𝑠+ + 𝑠−)/(1 + 𝑒𝜏 ), 𝑠± = 𝐶2 + 1 ± 2|𝐶|, 𝜏 = 𝑠1𝑠3(𝑠+ − 𝑠−)𝑡/(2𝐶) +

ln((𝑠0 − 𝑠−)/(𝑠+ − 𝑠0)), 𝑠0 = 𝑟2, 𝑟 =
√︀
𝑥20 + 𝐶2 − 1 + 𝑥0, 𝑥0 = sin𝜙0.

Remark 4.2. Since the field 𝑋̂3 is obtained from the field 𝑋̂2 by shifting along 𝜙 by 𝜋/2, it suffices to integrate only
𝑋̂2.

Denote by 𝑒𝑡𝑋 : 𝑀 →𝑀 the flow of the vector field 𝑋 on the manifold 𝑀 .

4.11.4 Distance in terms of Killing fields flows

Theorem 4.10. The Lorentzian distance between two arbitrary points 𝑞0, 𝑞1 ∈ ̃︁𝐻2
1 is 𝑑(𝑞0, 𝑞1), where 𝑞0 = (0, 0) =

𝑒(−𝜃0𝑋̂3) ∘ 𝑒(−𝜙0𝑋̂1)(𝑞0) and, correspondingly, 𝑞1 = 𝑒(−𝜃0𝑋̂3) ∘ 𝑒(−𝜙0𝑋̂1)(𝑞1).

Proof. Since 𝑋̂1 and 𝑋̂3 are Killing fields, shifting along the flows of these fields preserves the distance between
points in our Lorentzian metric 𝑑.

The field 𝑋̂1 = 𝜕𝜙 has the trajectories 𝜙(𝑡) = 𝑡+𝜙0, 𝜃(𝑡) ≡ 𝜃0 as solutions, and the field 𝑋̂3 = − sinh 𝜃 sin𝜙𝑋1+
cos𝜙𝑋2 has the trajectory 𝜙(𝑡) ≡ 0, 𝜃(𝑡) = 𝑡 + 𝐶 as one of its solutions. This allows us to construct a trajectory

consisting of the composition 𝑒𝑡2𝑋̂3 ∘ 𝑒𝑡1𝑋̂1 , taking any point 𝑞0 to the origin 𝑞0 = (0, 0).
It remains to show that 𝑡1 and 𝑡2 have the stated form. Consider the following cases.

1. 𝜃0 = 0.

If 𝜙0 < 0, then we move along the field 𝑋̂1:

𝜃 = 0, 𝜙̇ = 1 ⇔ 𝜃(𝑡) ≡ 𝐶𝜃, 𝜙(𝑡) = 𝑡+ 𝐶𝜙.

Initial condition 𝜃(0) = 𝜃0 = 0 = 𝐶𝜃, 𝜙(0) = 𝜙0 = 𝐶𝜙. Therefore, 𝑡1 is found from the condition 𝜙(𝑡1) = 0, so

we obtain the equation: 0 = 𝑡1 + 𝜙0, which means 𝑡1 = −𝜙0. And 𝑡2 = 0 = 𝜃0. We get: 𝑒(−𝜙0)𝑋̂1(𝑞0) = (0, 0).

If 𝜙0 > 0, then we move along the field −𝑋̂1:

𝜃 = 0, 𝜙̇ = −1 ⇔ 𝜃(𝑡) ≡ 𝐶𝜃, 𝜙(𝑡) = −𝑡+ 𝐶𝜙.

Initial condition 𝜃(0) = 𝜃0 = 0 = 𝐶𝜃, 𝜙(0) = 𝜙0 = 𝐶𝜙. Therefore, 𝑡1 is found from the condition 𝜙(𝑡1) = 0, so

we obtain the equation: 0 = −𝑡1 + 𝜙0, which means 𝑡1 = 𝜙0. And 𝑡2 = 0 = 𝜃0. We get: 𝑒(−𝜙0𝑋̂1)(𝑞0) = (0, 0).

2. 𝜙0 = 0.

If 𝜃0 < 0, then 𝑡1 = 0 = 𝜙0, and we move only along the field 𝑋̂3, namely along the solution 𝜃(𝑡) = 𝑡 + 𝐶𝜃,
𝜙(𝑡) ≡ 0. Initial condition 𝜃(0) = 𝜃0 = 𝐶𝜃. Therefore, we find 𝑡2 from the condition 𝜃(𝑡2) = 0, from which we

obtain the equation: 0 = 𝑡2 + 𝜃0, so 𝑡2 = −𝜃0. We get: 𝑒(−𝑡2)𝑋̂3(𝑞0) = (0, 0).

If 𝜃0 > 0, then 𝑡1 = 0 = 𝜙0, and we move only along the field −𝑋̂3, namely along the solution 𝜃(𝑡) = −𝑡+𝐶𝜃,
𝜙(𝑡) ≡ 0. The initial condition 𝜃(0) = 𝜃0 = 𝐶𝜃. Therefore, we find 𝑡2 from the condition 𝜃(𝑡2) = 0, from which

we get the equation: 0 = −𝑡2 + 𝜃0, so 𝑡2 = 𝜃0. We get: 𝑒(−𝑡2𝑋̂3)(𝑞0) = (0, 0).

3. 𝜃0 < 0, 𝜙0 < 0.

Combining the calculations of the first and second points, we obtain the time of movement along the field 𝑋̂1:

𝑡1 = −𝜙0, and then the time of movement along the field 𝑋̂3: 𝑡2 = −𝜃0. We obtain: 𝑒(−𝜃0)𝑋̂3 ∘ 𝑒(−𝜙0)𝑋̂1(𝑞0) =
(0, 0).

4. 𝜃0 < 0, 𝜙0 > 0.

Combining the calculations of the first and second points, we obtain the time of motion along the field −𝑋̂1:

𝑡1 = 𝜙0, and then the time of motion along the field 𝑋̂3: 𝑡2 = −𝜃0. We obtain: 𝑒(−𝜃0𝑋̂3) ∘ 𝑒(−𝜙0)𝑋̂1(𝑞0) = (0, 0).

5. 𝜃0 > 0, 𝜙0 < 0.

Combining the calculations of the first and second points, we obtain the time of motion along the field 𝑋̂1:

𝑡1 = −𝜙0, and then the time of motion along the field −𝑋̂3: 𝑡2 = 𝜃0. We get: 𝑒(−𝜃0)𝑋̂3 ∘ 𝑒(−𝜙0𝑋̂1)(𝑞0) = (0, 0).
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6. 𝜃0 > 0, 𝜙0 > 0.

Combining the calculations of the first and second points, we get the time of movement along the field −𝑋̂1:

𝑡1 = 𝜙0, and then the time of movement along the field −𝑋̂3: 𝑡2 = 𝜃0. We get: 𝑒(−𝜃0𝑋̂3) ∘ 𝑒(−𝜙0𝑋̂1)(𝑞0) = (0, 0).

5 Conclusion

The methods of geometric control theory have proven to be very fruitful for the study of the Lorentzian anti-de
Sitter plane. It would be interesting to apply them to more complex Lorentzian structures of variable curvature, for
example, to the Schwarzschild and Kerr spaces [1].
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[9] Müller, O., Sànchez, M. An Invitation to Lorentzian Geometry. Jahresber. Dtsch. Math. Ver. 115, 153–183
(2014)

[10] Wald, R.M.: General Relativity, Univ. Chicago Press (1984)

[11] Petukhov V. S., Sachkov Y. L., The Lorentzian Problem on 2-Dimensional de Sitter Space, Rus. J. Nonlin. Dyn.,
2024, vol. 20, no. 4, pp. 619–633

29


