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Abstract

Two flat sub-Lorentzian problems on the Martinet distribution are studied. For the first

one, the attainable set has a nontrivial intersection with the Martinet plane, but for the second
one it does not. Attainable sets, optimal trajectories, sub-Lorentzian distances and spheres
are described.

Keywords: Sub-Lorentzian geometry, geometric control theory, Martinet distribution, sub-Lorent-
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1 Introduction

Sub-Riemannian geometry studies manifolds M in which the distance between points ¢y, q; € M is
the infimum of the lengths of all curves tangent to a given distribution A C T'M and connecting g
to ¢1 [2,18]. In particular, each subspace A, C T, M of the distribution is equipped with a scalar
product g, and the length of a curve ¢(t), t € [0,¢;], with tangents in A, is defined as in Riemannian
geometry by the familiar integral expression [(q) = Otl V9(q(t),q(t))dt. If in each space A, C T,M
we define a non-degenerate quadratic form g, of index 1, then a sub-Lorentzian structure (A, g)
will be defined on the manifold M. Here the natural problem is to find the longest relative to g
curve connecting given points. Sub-Lorentzian geometry strives to build a theory similar to the rich
theory of sub-Riemannian geometry, and is at the beginning of its development. The foundations
of sub-Lorentzian geometry were laid in the works of M. Grochowski [7-12], see also [6,13-15].

Just as in sub-Riemannian geometry, the simplest sub-Lorentzian problem arises on the Heisen-
berg group; it has been fully studied [9,22]. The next most important model of sub-Riemannian
geometry after the Heisenberg group arises on the Martinet distribution [2,3,18,23].

The purpose of this work is to consider two flat sub-Lorentzian problems on the Martinet dis-
tribution: to describe the optimal synthesis, distance and spheres. In the first problem, the future
cone has a non-trivial intersection with the tangent space to the Martinet surface; in the second
case this intersection is trivial. Accordingly, in the first case the sub-Lorentzian geometry is much
more complicated, see Conclusion.

The structure of this work is as follows. In Section 2 we recall the basic facts of sub-Lorentzian
geometry required in the sequel.

The main Sections 3 and 4 are devoted respectively to the first and the second flat sub-Lo-
rentzian problems on the Martinet distribution; they have identical structure as follows. First
we find an invariant set (a candidate attainable set) via the geometric statement of Pontryagin
maximum principle. Then we describe explicitly abnormal and normal extremal trajectories; normal



trajectories are parametrized by the sub-Lorentzian exponential mapping. We prove diffeomorphic
properties of the exponential mapping via Hadamard’s global diffeomorphism theorem. On this basis
we show that the above-mentioned invariant set is indeed the attainable set, and prove a theorem
on existence of optimal trajectories. After that we study optimality of extremal trajectories and
construct an optimal synthesis, i.e., for any point ¢; reachable from a fixed initial point ¢, we find
an optimal trajectory connecting gy to ¢;. We complete our study by describing the main properties
of sub-Lorentzian distances and spheres. It turns out that for the first problem (where the future
cone intersects nontrivially the tangent space of the Martinet surface II) the optimal synthesis has
cut points and is two-valued on II.

Some additional features of the two problems are presented in the concluding Sec. 5.

Symbolic computations and generation of pictures were performed in Wolfram Mathematica.

2 Sub-Lorentzian geometry

A sub-Lorentzian structure on a smooth manifold M is a pair (A, g) consisting of a vector distribu-
tion A C TM and a Lorentzian metric g on A, i.e., a nondegenerate quadratic form g of negative
inertia index 1. Let us recall some basic definitions of sub-Lorentzian geometry. A vector v € T, M,
q € M, is called horizontal if v € A,. A horizontal vector v is called:

o timelike if g(v) < 0,

e spacelike if g(v) > 0 or v =0,
e lightlike if g(v) = 0 and v # 0,
e nonspacelike if g(v) < 0.

A Lipschitz curve in M is called timelike if it has timelike velocity vector a.e.; spacelike, lightlike
and nonspacelike curves are defined similarly.

A time orientation X is an arbitrary timelike vector field in M. A nonspacelike vector v € A,
is future directed if g(v, X(¢q)) < 0, and past directed if g(v, X(q)) > 0.

A future directed timelike curve ¢(t), t € [0, 1], is called arclength parametrized if g(¢(t), 4(t)) =
—1. By a simple change of variables, any future directed timelike curve can be parametrized by
arclength.

The length of a nonspacelike curve v € Lip([0, t1], M) is

I(y) = / g3, 2.

For points ¢1,q2 € M denote by €,,,, the set of all future directed nonspacelike curves in M
that connect ¢; to ¢o. In the case Q4 # 0 denote the sub-Lorentzian distance from the point ¢
to the point ¢9 as

d(Qla QQ) = sup{l(v) | S Q111(12}' (2'1)

And if Qg4 = 0 then d(q1,¢2) := 0. A future directed nonspacelike curve = is called a sub-Lo-
rentzian length maximizer if it realizes the supremum in (2.1) between its endpoints v(0) = ¢,

v(t1) = g



The causal future of a point gy € M is the set J*(qo) of points ¢; € M for which there exists a
future directed nonspacelike curve + that connects ¢o and ¢ .

Let g0 € M, ¢1 € J*(q). The search for sub-Lorentzian length maximizers that connect ¢q
with ¢; reduces to the search for future directed nonspacelike curves v that solve the problem

[(v) = max, v(0) =q, (t1) = (2.2)

A set of vector fields X, ..., X} € Vec(M) is an orthonormal frame for a sub-Lorentzian struc-
ture (A, g) if for all g € M

A, = span(Xi(q), ..., Xx(q)),
gq(Xth) = —1, gq(Xqu) = 1, i:2,...,k,
gq(Xian) =0, 1 7é J-

Assume that a time orientation is defined by a timelike vector field X € Vec(M) for which
9(X,X1) <0 (e.g.,, X = X;). Then the sub-Lorentzian causal future problem for the sub-Lo-
rentzian structure with the orthonormal frame X, ..., X} is stated as the following optimal control
problem:

k
g=>Y wXiq), qeM,
=1

UEU:{(ul,...,Uk)E]Rk|u12 U%“‘"""ui},
q(0) = qo, q(t) = q,

t1
o) = [\t =g ==

0

Remark 1. The sub-Lorentzian length is preserved under monotone Lipschitz time reparametriza-
tions t(s), s € [0, s1]. Thus if q(t), t € [0,t1], is a sub-Lorentzian length maximizer, then so are any
of its reparametrizations q(t(s)), s € [0, s1].

In this paper we choose primarily the following parametrization of trajectories: the arclength
parametrization (u? — us — -+ —ui = 1) for timelike trajectories, and the parametrization with
u(t) = 1 for future directed lightlike trajectories.

3 The first problem

Let M =R}, ., X1 = 5=, Xo = a% + %2%. The distribution A = span(X;, X») is called the
Martinet distribution [2,3,18,23]. The plane II = {z = 0} is called the Martinet surface. The
distribution A has growth vector (2,3) outside of II, and growth vector (2,2,3) on II. The Lie
algebra generated by the vector fields X;, X5 is a Carnot algebra (Engel algebra), the nonzero Lie
brackets of these vector fields are: [X7, Xo] = X3, [X1,2X;5] = X3 := %.

In this section we study a sub-Lorentzian problem in which the interior of the future cone

intersects nontrivially with the tangent space to the Martinet plane II.



3.1 Problem statement

The first flat sub-Lorentzian problem on the Martinet distribution is stated as the following optimal
control problem [4,21]:

q = u1 Xy + uzXo, q€ M, (3.1)
u = (u1,u2) € Uy = {us > |uq},
q(0) = g0 = (0,0,0), q(t1) = q, (3.3)

t1
| = / \/u? — uidt — max, (3.4)
0

see Fig. 1.
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Figure 1: The set U,

3.2 Invariant set

In this subsection we compute an invariant set B; of system (3.1), (3.2). Later, in Th. 3, we prove
that B, is the attainable set A; of system (3.1), (3.2) from the point gy for arbitrary nonnegative
time (the causal future of the point ).

By the geometric statement of the Pontryagin maximum principle (PMP) for free time ( [4],
Th. 12.8), if a trajectory ¢(t) corresponding to a control u(t), ¢t € [0,t], satisfies the inclusion
q(t1) € OAy, then there exists a Lipschitz curve A, € Th ) M, A # 0, ¢ € [0, 1], such that

A = Eu(t)(/\t)y
hu(t)(At) = max hu()\t)a

ucUy

Pu@ (X)) =0

for almost all t € [0,¢1]. Here h,(X) = uihi(A\) + ugha(A), hi(A) = (A, Xi(7w(N))), ¢ = 1,2, and
m : T*M — M is the canonical projection of the cotangent bundle, 7(\) = ¢, A € T,y M. Moreover,
Eu()\) is the Hamiltonian vector field on the cotangent bundle 7*M with the Hamiltonian h,(\).

We have [X1, X;] = 2X3, X3 = 2, and if we denote hz(A) = (A, X3(m(\))), then the Hamiltonian
system (3.5) reads as

—~
W W

hi = —upzhy, ho=wizhs, hy=0, ¢=wuX;+uXo.



The maximality condition (3.6) implies that up to reparametrization there can be two cases:
a) u(t) = (£1,1),
b) u(t) = (0,1), =(t) = 0.

Take any 0 < t; <t and compute trajectories with one switching corresponding to the following
controls:

1) Let
u(t) _ {(1711) € [O’tl]v

(— ,i), t € [t1,ts].

Then z(t) =t, y(t) =t, 2(t) =t3/6 for t € [0,t1], z(t) = 2t; —t, y(t) =t, 2(t) = 3 /6 + (4t3(t — 1) —
2t (12—t + (13 —13)/3) for t € [ty, o], thus z(ty) = 2t1—to, y(ta) = to, 2(tz) = —t3+2t3y— 1112 +43 /6.
Thus the endpoint ¢(t3) satisfies the equality

= (=32° + 32y + 3zy* + v*) /24 (3.7)

2) Let

(1,1), te€lt,ta]

Then x(t) = —t, y(t) = t, 2(t) = t3/6 for t € [0,t1], z(t) =t — 2t;, y(t) = ¢
13)/3 — 2t1(t* — t3) + 4t3(t — t1))/2 for t € [t1,ts], thus z(ty) = to — 2ty, y(ts) = to, 2(t2) =
—t3 + 23ty — t1t3 + ¢3/6. Thus the endpoint ¢(t,) satisfies the equality

u(t) = {(—1,1), te[0,t],

3) Let

), tel0,t],

z = (32° + 32%y — 3xy® + ¢°) /24. (3.8)
(0,1
1,1), t€ [t ts].

”(t):{< |

Then z(t) = 0, y(t) = t, 2(t) = 0 for t € [0,t41], x(t) =t —t1, y(t) = t, 2(t) = (t — t1)?/6 for
t € [t1, 2], thus x(ta) =ty —t1, y(ta) = to, 2(ta) = (to —t1)3/6. Thus the endpoint ¢(t,) satisfies the
equality

z=1°/6. (3.9)

1 t t
U(t) _ (07 )7 S [07 1]7
(=1,1), tet,t].
Then z(t) = 0, y(t) = ¢, 2(t) = 0 for t € [0,t1], z(t) = t; — ¢, y(t) = t, 2(t) = (t — t1)3/6 for
t € [t1, 2], thus x(ta) = t; — ta, y(t2) = ta, 2(t2) = (t —t1)*/6. Thus the endpoint g(t;) satisfies the
equality

4) Finally, let

z=—1%/6. (3.10)



Consider the surfaces S1-S; given by Eqgs. (3.7)—(3.10) respectively,

Sy oz = (=32 + 32%y + 3zy® + v*) /24, x>0,
Sy oz = (32% + 3%y — 3xy® +y*) /24, x <0,
Ss 1 z=2"/6, x>0,
Sy o z:—x3/6, z <0.

Introduce the homogeneous coordinates on the set {y # 0} induced by the one-parameter group of
dilations 6, : (z,y,2) = (ax,ay,a?2), a > 0:

x _ 24z— 3xy — 1

== A1

Then the surfaces S1—S, are given as follows:

§1-¢7)

Stin=T—0o— = e1(8), £€10,1],
2 _
5 =D o9 =n0, gel-1,0,
3 3 2 1
s o n=5 X o), £€ 1),
3 2
secn=-5-E o0 =pu(-0) £e(-1,0
The surface UL, .S; bounds a domain
B - p3(&) <n < ¢a(§), 0<¢<,
L=
ea(§) < m < @a(), -1<¢<0,

see Figs. 2-5.

Figure 2: The boundary of B Figure 3: The boundary of B;

Recall that A; is the attainable set of system (3.1), (3.2) from the point ¢y for arbitrary non-
negative time (the causal future of the point ¢o).
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Figure 4: The boundary of B; Figure 5: The boundary of B; projected
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Proposition 1. The set By is an invariant domain of system (3.1), (3.2). Moreover, Ay C By.

Proof. Direct computation shows that on each of the surfaces S-S54 the vector field u; X7 + us Xo,
(u1,us) € Uy, is directed inside the domain B;. Since gy € By, then A; C B;. O

We show in Th. 3 that A; = B;.

3.3 Extremal trajectories

The family of Hamiltonians determined by the Pontryagin maximum principle (PMP) [4,19] are
given by the hZ(A) = uihi(\) + ugha(\) — vy/u3 — u?, where A € T*M, (u1,uz) € Uy and v €
{—1,0}. By PMP (Th. 12.10 [4]), if ¢(¢), t € [0,t;], is an optimal trajectory in problem (3.1)—(3.4),
then there exist a Lipschitz curve A, € T M, t € [0,t1], and a number v € {—1,0} such that

—

}‘t = hZ(t)()‘t)>
hZ(t)(At) = max hv()\t)a

vel;

(A, v) # (0,0)

for almost all ¢ € [0, t4].

3.3.1 Abnormal extremal trajectories

If v = 0, then the control satisfies, up to reparametrization, the conditions
a) u(t) = (£1,1),
b) u(t) = (0,1), z(t) = 0,

and has up to one switching. These trajectories were computed in Subsec. 3.2, they form the
boundary of the candidate attainable set Bj.

1.0



Remark 2. Abnormal trajectories starting from an arc on the plane Il change their causal type:
first they are timelike (when they belong to 11), then lightlike. The remaining extremal trajectories
preserve the causal type.

3.3.2 Normal extremals

If v = —1, then extremals satisfy the Hamiltonian system with the Hamiltonian H = (h3 — h3)/2,
hg < —|h1|1

hl = hghgl’, ilg = h1h3ZL‘7 ;lg = O, T = ]’Ll, y = —hQ, z = —h2I2/2. (312)

We can choose the arclength parametrization on normal extremal trajectories and thus assume that
H = —1/2. In the coordinates hy = sinh, hy = —cosh, hy = ¢; ¥,c € R, the Hamiltonian
system (3.12) reads as

=—cx, =0, (3.13)
2
Z = sinh ), 7 = cosh ), Z= % cosh . (3.14)

This system has an energy integral E = cx?/2 + cosh € [1, +00).

Remark 3. The normal Hamiltonian system (3.13), (3.14) has a discrete symmetry — reflection
(Y, c,z,y,2) — (=, ¢, —x,y, 2), (3.15)
and a one-parameter family of symmetries — dilations
(t,,c,2,y,2) = (at, ¥, c/a?, ar, ay, a’z), a > 0. (3.16)
Moreover, the parallel translations

(z,y,2) = (x,y + a,z+b), a,b e R, (3.17)

are symmetries of the problem since their generating vector fields (%, 9 commute with the vector

0z
fields X1, Xs of the orthonormal frame.
1) If ¢ = 0, then
Y = 1y, x = tsinh g, y = t cosh )y, z = % /6 cosh 1)y sinh? v). (3.18)

If ¢ # 0, then extremal trajectories in the Martinet flat case are obtained by a linear change
of variables from extremal trajectories of a left-invariant sub-Lorentzian problem on the Engel
group [5].

2) Let c =1 > 0.

2.1) If pg =0, then x =2 =0, y = t.



2.2) Let sgntpg = £1, E = coshepg > 1, k = (/£ € (0,1), k' = VI k2, m = K, & = 1 /I,
7 = elt. Then

2k
r=Z+—snr,
m
1
y=_(2B(1) - k"),
2 2 2 2
o = ~3— (]g, T+2k*snTtentdnT — (14 k& )E(T))v

where sn7, cn7, dn7 are Jacobi’s elliptic functions with modulus k, and E(r) = fOT dn? tdt is
Jacobi’s epsilon function [17,25]. See Figs. 6-9.

3) Let c = —1? < 0.

3.1) If g =0, thenx =2=0, y =t.

3.2) Let sgntpg = £1, F = coshpg > 1, k = ,/HLE € (0,1), ¥ =v1—-k, m==Fkl,t=It/k.
Then

2k snt
r=4t——,
m enT
1
y=— ((2— K2)r 4 20T S0T —2E(T)) ,
m cn T
B 2 9 9 9 9 5, \dnTsnT
S~ (Qk T+ (k* = 2)E(r) + (k* + (k* — 2)sn" 1) ey
T € [0, K(k)),

where K (k) is the complete elliptic integral of the second kind [17,25].

y X

1.0
05 05 . . . /\

: y
05 2 \y 8 10 X
-1.0 -1.0

Figure 6: The curve (z(t),y(t)) for ¢ = Figure 7: The curve (z(t),y(t)) for ¢ =
1a ¢0 =0 1a ¢0 =1

3.4 Exponential mapping

Introduce the exponential mapping
Exp: N — M,  Exp(\t)=moef()),
N={(\t)eC xR, |te(0,+00) for ¢ >0; te (0,+kK/l) for ¢ < 0},
C=T, MN{H = ~1/2, hy <0}.

0

10
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Figure 8: The curve (z(t),y(t)) for ¢ = Figure 9: The curve (z(t),y(t)) for ¢ =
]-7 wO =2 ]-7 wO =4

Formulas of Subsec. 3.3.2 give an explicit parametrization of the exponential mapping.
In this subsection we describe diffeomorphic properties of the exponential mapping via the
classical Hadamard’s theorem on global diffeomorphism:

Theorem 1 ( [16]). Let F' : X — Y be a smooth mapping of smooth manifolds, dim X = dimY’.
Suppose that the following conditions hold:

1) X andY are connected,

(
(2) Y is simply connected,
(3) F is nondegenerate,

(4) F is proper (i.e., for any compact set K CY, the preimage F~'(K) C X is compact).
Then F' is a diffeomorphism.

Consider the following stratification in the image of the exponential mapping;:

int B; = US_,M;,

My : =0, —1/24 <n <0,
My s z>0, @56 <n <€), (3.19)
My : <0,  ¢5(8) <n <l

My : x>0, 03(§) <n < ps(€
M, : <0, ©a(§) < m < wa(§),
Ms x>0, n=gps§),

Mg @ <0, n = ¢5(§),

ps(€) = (€7 —1)/24,

Y

)
),
)
)

see Fig. 10.
Now define the following stratification of the subset

N ={(\t) €N |te(0,2K/(el)) for ¢ > 0; t € (0,+00) for c = 0; t € (0, kK/l) for ¢ < 0}

11



Figure 10: Stratification in the image of Exp

in the preimage of the exponential mapping:

N =U5 N,

Ny :¢>0, >0, 7€(02K),
Ny, : ¢>0, <0, 7€(02K),
Ny : ¢<0, >0, 7€(0,K),
Ny :ec<0, <0, 7€(0,K),

N5 : c¢c=0, Yo > 0,

Ng : c¢=0, Yo < 0.
Proposition 2. The inclusion Exp(ﬁl) C M holds. Moreover, the mapping Exp : Nl — M is a
real-analytic diffeomorphism.
Proof. a) Let us show that Exp(N;) C M;.

Let (A, t) € N;. We have to prove that (€2 —1)/24 < n < £(1 —£%)/8, i.e.,
(2% — )y <) 24z — 3%y — o <) 3z(y* — 2?).
1 2
Inequality 1) can be rewritten as
6z > 27y, (3.20)

let us prove this inequality. Differentiating the both sides of (3.20) by virtue of ODEs (3.14), we
get

x cosh ) > ysinh . (3.21)
Further, differentiating the both sides of (3.21) by virtue of ODEs (3.14), we get
xsinh ) > y cosh . (3.22)

Since cosh ¢y > sinh v > 0, we have y > x by the first two equalities in (3.14), and inequality (3.22)
is proved. Since the both sides of this inequality vanish at ¢ = 0, inequality (3.21) is proved as well
by integration. Similarly, inequality (3.20) is proved, thus inequality 1) follows.

12



Now we prove similarly inequality 2): it is equivalent to
24z < 1° 4 3y + 3wy — 32°. (3.23)
Differentiating the both sides of (3.23) by virtue of ODEs (3.14), we get
3z% <y + 2y, (3.24)

which holds since y > . Returning back from (3.24) to (3.23) by integration, we prove inequality 2).
So the inclusion Exp(N;) C M; is proved.

b) We show that the mapping Exp : N, — M is nondegenerate, i.e., the Jacobian J = g((iéypi))
does not vanish on N;. Direct computation of this Jacobian gives
o(z,y,2) 9(1 — k*)k*mS
J=f- =f- J 0
f a<m7 T, k) f 32 1, f 7£ )
Jl :J0+0(1), k’—>0,
Jo = cos(37) + (87% — 1) cos T — 47 sinT.
Since ) )
J, 2(27 —sin2
() =2 s, e
sin T sin® 71
thus Jo(7) <0, 7 € (0, 7).
Moreover,
Jilor = 12(1 k*)g(k),
g(k) = E*(k) — 2E(k)K (k) + (1 — k*)K*(k). (3.25)

We have g(k) = g1(k)ga2(k), g1(k) = E(k) — (1 + k)K(k), g2(k) = E(k) — (1 — k)K (k). Since
g1(k) = % < 0, then g;(k) < 0 for k € (0,1). Similarly, since g5(k) = % > 0, then go(k) > 0 for
k€ (0,1). Thus g(k) < 0 and Jo| _,, < 0 for k € (0,1).

By homotopy invariance of the Maslov index (the number of conjugate points on an extremal) [1],

we have J(7) < 0 for 7 € (0,2K]. Thus the mapping Exp : N; — M; is nondegenerate.

c) We show that this mapping is proper. We have to prove that if N, > (m,k,7) — ONy,
then ¢ = Exp(m,k,7) — 0M;. This implication follows from the representation Nl ={m >
0, k€ (0,1), am7 € (0,7)}, the definition (3.19) of the domain M;, and the parametrization of
the exponential mapping given in Subsec. 3.3.2.

Since N7 and M; are connected and simply connected, this mapping is a diffeomorphism by
Th. 1. O

Proposition 3. The inclusion Exp(ﬁg) C Mj3 holds. Moreover, the mapping Exp : N3 — Ms is a
real-analytic diffeomorphism.

Proof. A similar argument to that used in the proof of Propos. 2 proves the claim. O
Proposition 4. The inclusions Exp(]vg) C M5 and EXp(KQ) C My hold. Moreover, the mappings
Exp : Ny — Ms and Exp : Ny — My are real-analytic diffeomorphisms.

13



Proof. Follows from Propositions 2 and 3 via reflection (3.15). O]

Proposition 5. The inclusions Exp(]%) C My and EXP(NG) C Mg hold. Moreover, the mappings
Exp : N5 — M5, Exp : Ng — Mg are real-analytic diffeomorphisms.

Proof. Follows from the parametrization (3.18) of the exponential mapping Exp| .. O]
Introduce the following subsets in the preimage of the exponential mapping:
N ={(\t)EN|c>0, sgnyyg = +1, t = 2K /(=) }.

Proposition 6. The inclusions EXp(Ng—L) C My hold. Moreover, the mappings Exp : NSE — M,
are real-analytic diffeomorphisms.

Proof. In view of the reflection (3.15), it suffices to consider only the set N;". And in view of the
dilations (3.16), it is enough to consider only the case ¢ = 1.
Ife=1,¢y>0,t=2K/(2l) = 2K /K, then

r =0,

— K (4E(k) — 2k*K (k)),
z= %k’f”((l + k) E(k) — KK (k)),

£=0,
1 (+R)ER) - (1 - F)K((k) )
T T T T6RE®R) — - ) K(R)F M
We have limg_,om (k) = —1/24, limg,y m(k) = 0 and 7y (k) = —2k(2E(§€1):]i)_gl§§))K(k))4, where the

function g(k) is given by (3.25). We showed in the proof of Propos. 2 that g(k) < 0, k € (0,1),
thus n; : (0,1) — (=1/24,0) is a strictly increasing diffeomorphism.
Thus Exp(N;) € My and Exp : Ny — M is a diffeomorphism. O

Denote

N, =N, UN;U Nz,
N_ = Ny UN, U Ng,
M, = M; U M3 U My = (int By) N {z > 0},
M_ = MyUMyU Mg = (int By) N {z < 0}.

Theorem 2. The inclusions Exp(Ny) C My hold. Moreover, the mappings Exp : Ny — M. are
real-analytic diffeomorphisms.

Proof. By virtue of the reflection (3.15), it suffices to consider only the domain N,.
The inclusion Exp(V;) C M, follows from Propositions 2, 3, 5.
The mappings Exp| 5, and Exp]| , are nondegenerate by Propositions 2 and 3 respectively. Since

N; C Cl(ﬁl) and Exp|g, is nondegenerate, then it follows by homotopy invariance of the Maslov
index that the mapping Exp : N, — M, is also nondegenerate at the set N5. Summing up, Exp| Ny
is nondegenerate.
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Reasoning in a way similar to argument used in Proposition 2, it follows that the mapping
Exp : Ny — M, is proper.
Then Theorem 1 implies that this mapping is a diffeomorphism. O

Proposition 7. The mapping Exp : N — M is a local diffeomorphism at points of N§ .

Proof. By virtue of the reflection (3.15), we can consider only the case N .
Observing that Ny~ C cl(N;) and Exp : N; — M is nondegenerate, the homotopy invariance of

the Maslov index then implies that the mapping Exp : N — M is a local diffeomorphism at points
of Ny . O

3.5 Attainable sets and existence of optimal trajectories

Theorem 3. We have A; = B;.

Proof. By virtue of Propos. 1, it remains to prove the inclusion A; D B;. But Theorem 2 and
Propos. 6 imply that Exp(N, UN_UN; ) D M, UM_U My = int B;. Thus A; D int B;.
Further, each point of 0B; is reachable from ¢g by an abnormal trajectory, thus A; D 0B;.
Summing up, A; D Bi, and the equality A; = B; follows. ]

Recall that J7(q) is the causal future of a point ¢ € M, i.e., the attainable set from ¢ for
arbitrary nonnegative time. Similarly, J~(g) is the causal past of ¢, i.e., the set of points attainable
from ¢ for arbitrary nonpositive time. Notice that A; = J(qo).

Corollary 1. Let ¢ = (0,y0,20) € M. Then

T (q) = {903(50) <o < ¢1(&), 0<¢& <1, Y 2 Yo,
©4(&0) < Mo < v2(&o), -1<6 <0, Y = Yo,
€ = z o = 24(2 — 20) — 32*(y — yo) — (¥ — ¥o)*
Y=y 24(y — yo)? ’
J(q) = {903(51) <m < pi(&), 0<& <1, Y < Yo,
04(&) <m < wa(&), -1<6 <0, Y < Yo,

&1 = —&o, T = To.

Proof. The expression for J*(q) follows from the expression for J(qy) = A; via the translation
(3.17). And the expression for J~(g) follows by time inversion. O

Theorem 4. Let points qo,q1 € M satisfy the inclusion ¢ € J*(qo). Then there exists an optimal
trajectory in problem (3.1)—(3.4).

Proof. By Theorem 2 and Remark 2 [24], the following conditions are sufficient for existence of an
optimal trajectory connecting qo and ¢;:

(1) ¢ € " (q),

(2) There exists a compact K C M such that J*(g) N J, C K,
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(3) T(qo,q1) < +o0,

where T'(qo, ¢1) is the supremum of time required to reach ¢; from g, for a trajectory of system (3.1)
reparametrized so that u; = 1.

Condition (1) holds by assumption of this theorem.

Condition (3) holds since if u = 1 then § = 1, thus T(qo, q1) = y1 — Yo < +00.

Now we prove condition (2). It is easy to see from Cor. 1 that

UqEHJ+(Q> = UqEHJ_<q) =M.

Thus there exist pg, p; € I such that py € J*(q0), ¢1 € J (p1). Thus J"(q) C J"(po), J (q1) C
J(p1), so Jt(q0) NI (q1) C JT(po) N J (p1). Tt is easy to see from Cor. 1 that the set K :=
Jt(po) N J~(p1) is compact. So condition (2) above holds, and the theorem is proved. O

3.6 Optimality of extremal trajectories

Proposition 8. Let A = (¢g,¢) € C, ¢ > 0, ¥y # 0, and let t; > 2K/(eel). Then the extremal
trajectory q(t) = Exp(\,t), t € [0,t1], is not optimal.

Proof. By virtue of the reflection (3.15), we can assume that 1y > 0. By contradiction, suppose
that ¢(t), t € [0, 4], is optimal.

Let A = (—to,¢) € C, §(t) = Exp(\, 1), t € [0,t,]. Denote = 2K/(al), then () = §(f) and
l(q(-)|[07ﬂ) = l((}(-)hoﬂ), i.e., the trajectories ¢(-) and ¢(-) have a Maxwell point at ¢ = ¢ [20]. Now
consider the trajectory

. q(1), t€0,1],
q(t) = 9.
q(t), t € [t,ta].
Since 1(q()]jo4,) = 1(a()]jg,1,))> then the trajectory g(t), t € [0,¢1], is optimal. But g(t) has a corner
point at ¢ = ¢, which is not possible for normal trajectories. Thus q(t) is abnormal, so its support

belongs to 0.4;. But this is impossible since the support of the normal trajectory ¢(t) belongs to
int A;. A contradiction obtained completes the proof. O

Define the following function:
t: C — (0,400, A = (o, c) € C,

c=0 = t(\)=+oo,
c#0, Pp=0 = t(\) = +o0,

2kK
C>0>¢07é0 = t()‘):T>

kK
<0 U0 = t0) ="

We prove (see Cor. 2) that t(A) is the cut time for an extremal trajectory Exp(\,t):
t(A) = teur(A) :=sup{t; > 0| Exp(\, t) is optimal for ¢ € [0, %]}

Theorem 5. Let A € C, t; € (0,t(\)). Then the trajectory q(t) = Exp(A,t), t € [0,t1], is optimal.
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Proof. By Theorem 4, there exists an optimal trajectory connecting g and ¢; := q(t;). Since
q1 € int Ay, this trajectory is a normal extremal trajectory. Since ¢ € M, U M_, by Theorem 2
there exists a unique arclength parametrized normal extremal trajectory connecting gy and ¢, hence
it coincides with ¢(t). O

Theorem 6. Let A = (1g,c) € C, ¢ >0, g # 0, t; = t(X). Then the trajectory q(t) = Exp(\,t),
t €0,t1], is optimal.

Proof. Similarly to Th. 5 with the only distinction that now there are exactly two optimal trajec-
tories corresponding to the covectors (£, c) € C, these trajectories are symmetric by virtue of
the reflection (3.15). O

Proposition 8 together with Theorems 5 and 6 imply the following.
Corollary 2. For any A € C' we have tew(\) = t(N).
Proposition 9. Any abnormal extremal trajectory is optimal.

Proof. Abnormal extremal trajectories are exactly trajectories belonging to the boundary of the
attainable set A;. If ¢(t), t € [0,¢;], is an abnormal trajectory, then, up to reparametrization, the
corresponding control has the following form:

In the case 1) we have I(q(-)) = 0. If g(t), t € [0,1,], is a trajectory such that g(t;) = q(t,), then,
up to reparametrization, ¢(t) = ¢(t), thus ¢(t) is optimal.
In the case 2) we have [(¢(-)) = 71, and a similar argument shows that ¢(t) is optimal. O

Theorems 5, 6 and Propos. 9 yield the following description of the optimal synthesis.

Theorem 7. (1) Let ¢, € (int Ay) \ II. Then there exists a unique optimal trajectory Exp(\,t),
t €10,t1], where (A, ;) = Exp ' (q1).

(2) Let ¢4 € (int Ay) NII. Then there exist exactly two optimal trajectories Exp(A;, t), t € [0, 1],
i =1,2, where {(\,t1), (Mo, t1)} = Exp ' (qu).

(3) Let q1 = (z1,y1,21) € S1US, sgnxy = +1. Then there exists a unique optimal trajectory

o HEXIHX2) (), t € (0,7,
q - e(t—q—l)($X1+X2) o eTl(iX1+X2)(q0)’ t e [7’17t1],

7= (1 £21)/2, th = y1.
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(4) Let g1 = (x1,11,21) € S3U Sy, sgnxy = £1. Then there exists a unique optimal trajectory

0 [ ), teml,
q - e(t771)(:|:X1+X2) o 6T1X2 (QO), t € [Tl’tl]’
=1 :|:[E1, tl =MW-
(5) Let ¢ = (0,y1,0), y1 > 0. Then there exists a unique optimal trajectory q(t) = e*2(qo),

t e [O,tﬂ, tl =Y.

(6) Let q = (0,91,21), 21 = y3/24 > 0. Then there erist exactly two optimal trajectories

1(t) B et(X1+X2)(qo), t - [07 7—1]7
q p(t=m)(=X1+X2) o 671(X1+X2)(q0)’ te [Tla tl}?

sy <[4, telom)
q =T (X14X2) eTl(_X1+X2)(QO)a te [Tla tl}v

T =1t/2, ti =y

(7) Let g1 = (x1,91,21), sgnay = *1, y; = dx1, 2, = 32/6. Then there exists a unique optimal
trajectory q(t) = X112 (q), t € 0, 1], 81 = y1.

Remark 4. In Theorem 7, existence of exactly one (or two) optimal trajectories is understood up
to reparametrization.

3.7 Sub-Lorentzian distance

In this subsection we study the function d(q) := d(qo,q), ¢ € M.

Theorem 8. (1) The distance d is real-analytic on (int Ay) \ II and continuous on int A;.
(2) The distance d has discontinuity of the first kind at each point of S3 U Sy.

(3) The restriction d| is real-analytic on the set {x =0, z € (0,4°/24), y > 0} and discontinuous
of the first kind on the set {x =0, z =y3/24, y > 0}.

(4) The distance d is homogeneous of order 1 w.r.t. dilations (3.16):
d(0a(@)) = ad(q),  dalz,y.2) = (az,ay,a’z),  a>0, q=(z,y,2) € M.

Proof. (1) Follows from Th. 2 and Propos. 7.

(2) Take any ¢1 = (x1,31,21) € S3U Sy, then d(q;) = y1 > 0 by item (4) of Th. 7. On the
other hand, ¢; € d.A;, thus there are points ¢ € M \ A; arbitrarily close to ¢;. Since d(gq) = 0, the
distance d has discontinuity of the first kind at ¢;.

(3) The restriction d|; is real-analytic on the set {x =0, z € (0,4°/24), y > 0} by Propos. 7.

Let ¢1 = (x1,91,21) € Ay, 1 = z1 = 0, yy > 0. Then ¢ € 0A;, and the distance d has
discontinuity of the first kind at ¢, similarly to item (2).

(4) is obvious in view of symmetry (3.16). O

Let ¢ = (0,y, 2) € II, then d(q) = y*d(0,1, z/y*) = y*d(0,1,n + 1/24) since n|; = z/y* — 1/24.
We plot the function n +— d(0,1,n+ 1/24) in Fig. 11.
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Figure 11: Plot of n — d(0,1,n7+ 1/24)

3.8 Sub-Lorentzian sphere
By virtue of dilations (3.16), the Lorentzian spheres
S(R)={qe M |d(q) =R}, R>0,
satisfy the relation S(R) = dr(S(1)), thus we describe only the unit sphere S := S(1).
Theorem 9. (1) The set S\ (I1UO0A,) is a real-analytic manifold.
(2) The sphere S is nonsmooth and Lipschitz at points of S N1I.
(3) The intersection S N1II is defined parametrically for k € [0,1):

AB(K) — 2(1 — K2)K (k)
2(1 — k2K (k)
21— R)K (k) - 2(1+ K)E(K) _ K

1201 — R K3 :p+0(k:4), k — 0.

y = =14+ K+ O(k"), k — 0,

In particular, the intersection S N 11 is semi-analytic.

Proof. (1) Follows from Th. 2.

(2) The hemi-spheres Sy = S N {£z > 0} have at points of S NII the normal vectors ny =
+(g(k),*,*), where the function g(k) is given by (3.25) and is negative for £ € (0,1). So the
sphere S has a transverse self-intersection at points of S NII. .

(3) The parametrization of S N II is obtained from the parametrization of the exponential
mapping in the case 2.2 of Subsec. 3.3.2 for 7 = 2K, t = 1. m

Remark 5. One of the most important results of the paper [3] is non-subanalyticity of the sub-
Riemannian sphere in the Martinet flat case. Its proof relies on non-semianalyticity of the inter-
section of the sub-Riemannian sphere with the Martinet surface. Item (3) of the preceding theorem
states that such an intersection is semi-analytic in the sub-Lorentzian case. We leave the question of
subanalyticity of the sub-Lorentzian sphere in the first flat problem on the Martinet distribution open
since we cannot conclude on subanalyticity (or its lack) at points of the boundary of the sphere S.
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Denote S,, = SNint A;, S, = SN OA,.

Remark 6. The set S, (resp. S,) is filled with the endpoints of optimal normal (resp. abnormal)
trajectories of length 1 starting at qq.

Lemma 1. We have cl(S,) D S,.

Proof. Take any point ¢ € S, and choose any neighbourhood ¢ € O C M. By Proposition 8.1 [7],
the distance d is upper semicontinuous on 4;, thus there exists a point ¢_ € O Nint.A; such that
d(q-) < d(q) = 1. Further, for small ¢ > 0 there exists a point

gy = !X tueX2) () ¢ O Mint Ay, (u1,us) € Uy.

Then d(qy) > 1. Since O Nint A; is arcwise connected and d|;,, , is continuous, there exists a
point ¢ € O Nint A; such that d(g) = 1. Then g € S,, N O. Hence cl(S,) D S,. O

Proposition 10. The sphere S is homeomorphic to the closed half-plane R2 := {(a,b) € R* | b >
0}.

Proof. Denote the group of dilations (3.16) as G = {d, | @« > 0} and consider the projection

p:M—M/G, M =M\ {q}. (3.26)
If y # 0 (which is the case on S), then projection (3.26) is given in coordinates as

pqg=(v,y,2) 0= (£n),

where &, n are defined in (3.11). The mapping (3.26) is smooth.
The image of the sphere S under the action of the projection p is given as follows:

a(§) <n < pa(§), —1<E<0,

see Fig. 19. It is obvious that p(S) is homeomorphic to R?. Let us show that p : .S — p(S) is a
homeomorphism.

First, the mapping p : S — p(S) is a bijection since the sphere S intersects with each orbit
of G at not more than one point.

Second, the mapping p : S — p(S) is continuous as a restriction of a smooth mapping (3.26).

It remains to prove that the inverse mapping p~! : p(S) — S is continuous. Continuity of
Py, and pt]s,) is obvious. Let

p(Sn) D01 — 7 € p(Sa),
k—oo

we show that p~1(oy) =: g 7 q:=p (). It follows from Propos. 3 that gy T q € S,, where
—00 S

%
p(q) = 7. Since orbits of G are one-dimensional, it remains to prove that d(q) = 1.
By Lemma 1, there exists a sequence S,, 3 g = g. Thus oy := p(qx) T a. Denote by p and p
—00 —00

the Euclidean distances in M and M /G respectively. Then p(oy, %) 2 0, thus p(qk, qx) B~ 0,
—00 —00

whence ¢ = q.
Thus p : S — p(S) is a homeomorphism, and S ~ R%. ]
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Corollary 3. (1) The sphere S is a topological manifold with boundary S,, homeomorphic to the
closed half-plane R3 .

(2) The sphere S is a stratified space with real-analytic strata ST := S, N {sgnz = +1}, S° :=
SNII, SE == S,N{sgnz = +1}, S° := S,NII = {(0,1,0)}. Wherein there are diffeomorphisms
SE 5 R?;, S0 S 5 R.

(3) Under a homeomorphic embedding of the sphere S into the half-plane R3 = {(a,b) € R* | b >
0} the indicated strata are mapped as follows: S= — {sgna = £1,b > 0}, S° — {a =0,b >
0}, S* — {sgna =41,b=0}, S° — {a =b=0}.

See Fig. 19.

Remark 7. There is a numerical evidence that the sphere S is a piecewise smooth manifold with
boundary, with a stratification shown in Fig. 19.

Figure 12: The sphere S Figure 13: The sphere S

Figure 14: Intersection of S and 0.A4; Figure 15: Intersection of S and 0.4
with {y = 2} with {z =1}
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Figure 16: S inside of 0.A;
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Figure 18: Intersection of S with II

3.0 Y

Figure 17: S inside of 0.A;
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-0.02
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-1.0 -0.5 0.0 0.5 1.0

Figure 19: Stratification of p(5)

22



Proposition 11. The sphere S is closed.

Proof. Since S = S, U S,, cl(S,) D S, and cl(S,) = S,, we have to prove that cl(S,) C S. Take
any sequence S, S g i~ g. Let o = p(qi) and & = p(q) € M /G. We may consider only the case
— 00

o€ p(S,). Ifo = (£,7) is on the upper part of the boundary of p(S,), i.e., 7 = ¢1(€), £ € (0,1),
or 7 = ¢2(&), £ € (0,1), then it follows from the proof of Propos. 2 that gy 00, which is
—00

impossible. If o = (€,7) is on the lower part of the boundary of p(S,), i.e., 7 = p3(£), € € (0,1), or
7= w4(&), £ €(0,1), then 7§ € 0A;. A similar argument to that used in the proof of Propos. 10
shows that d(q) = 1. So the claim of this proposition follows. O

Proposition 12. The restriction d| 4 is continuous.

Proof. Let Ay 3 qp i~ g € Ay, we have to prove that d(qx) o d(q).
— 00 — 00

If ¢ € int Ay, then the claim follows by Th. 8.

Let ¢ € 0A;. Since d is upper semicontinuous (Propos. 8.1 [7]), we have limsup,_, . d(qx) <
d(q). In order to show that d(g) < liminf, . d(gx), we assume by contradiction that d(g) >
liminfy . d(gx). In other words, there exists a subsequence {qs,, } such that d(q) > lim,, oo d(qx,, )-
By virtue of dilation (3.16), we can construct a sequence ¢"™ € S converging to a point ¢ € 9.A; with
d(q) > 1. This contradicts the closedness of S. Thus d(gx) d d(q), and the statement follows. [

4 The second problem

In this section we consider a flat sub-Lorentzian problem on the Martinet distribution whose future
cone has trivial intersection with the tangent plane to the Martinet surface II. It is natural that
this problem is more simple than the first problem considered in the previous section. All proofs for
the second problem are completely similar or more simple than for the first one, so we skip them.

4.1 Problem statement

The second sub-Lorentzian problem on the Martinet distribution is stated as the following optimal
control problem:

¢=wuXi+uXo, qgeM, (4.1)
u = (ug,uz) € Uy = {uy > |usl}, .
Q(O) =dqo = (07 07 0)7 Q<t1) ={q1, (43)

t1
l:/ \Ju? — uddt — max. (4.4)
0

See Fig. 20.

4.2 Invariant set

By PMP, the boundary of the attainable set A5 of system (4.1), (4.2) from the point g for arbitrary
nonnegative time consists of lightlike trajectories corresponding to piecewise constant controls with
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values u = (1, £1) and up to one switching. These trajectories fill the boundary of the set
By ={(z,y,2) € M | x> yl, 2'(w,y) < 2 < 2*(2,y)},
where 2! (z,y) = ((z +y)® — 423) /24, 2*(z,y) = (42 — (z — y)*)/24. See Fig. 21.
Proposition 13. The set By is an invariant domain of system (4.1), (4.2). Moreover, Ay C Bs.

Proof. Similarly to Propos. 1. O

Figure 20: The set U, Figure 21: The set By

4.3 Extremal trajectories
4.3.1 Abnormal extremal trajectories

Abnormal trajectories, up to time reparametrization, correspond to controls u = (1,+£1) with up
to one switching.

4.3.2 Normal extremals

Normal extremals satisfy the Hamiltonian system with the Hamiltonian H = (—h? + h3)/2, by <
~|ha: . ,

h1 - —h2h3]37 hg - —h1h3$, hg = O, T = —h17 y = hg, z = h2$2/2. (45)
We can choose arclength parametrization on normal extremal trajectories and thus assume that

= —1/2. In the coordinates hy = —coshp, hy = sinh®, hy = ¢; ¥,¢ € R, the Hamiltonian
system (4.5) reads as

¥ = cr, ¢=0, (4.6)
2

#=coshe),  §=sinhe, 5= ‘% sinh 9. (4.7)
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This system has a first integral £ = % —sinhy € R.

Solutions to this system with the initial condition ¥ (0) = 1, z(0) = y(0) = 2(0) = 0 are as
follows.

1) If ¢ = 0, then

) = 1, x = t cosh g, y = tsinh ¢y, z = % /6 cosh? 1y sinh ).

2) Let ¢ # 0. Denote k = \/% (1 + \/%) € (0,1), 1 =/]e], £1 =sgne, & = /Y. Then

1 —k%(1 +sn*7)

sinh ) = 28’ 5 ,
cn? T

dnTsnt

r=2r—mM—
lent

2x T dntsnt
— 4+ (- _E =t
Y l (4]{:2884 () + lenT )’

303 \ \ 3k2e02 4oe? k2
T =elt € [0, K(k)).

1
r= (( T —4EE(7')>cn37— dnTsnT—l—2Ecn27'dnTsn7'+4ae2k:20n47'dn7'sn7'),

4.4 Exponential mapping

Formulas of Subsec. 4.3.2 parametrize the exponential mapping

Exp: N > M,  Exp(\t)=roef(N),
N={(\Mt)eC xR, |te (0,400) for c=0; te (0,+K/(l=e)) for ¢ # 0},
C=T:Mn{H=-1/2, h <0}

Proposition 14. The inclusion Exp(N) C int By holds. Moreover, the mapping Exp : N — int By
1$ a real-analytic diffeomorphism.

Proof. A similar argument to that used in the proof of Th. 2 proves the claim. n

4.5 Attainable set and existence of optimal trajectories

Theorem 10. We have Ay = Bs.
Proof. A similar argument to that used in the proof of Th. 3 proves the required equality. [

Theorem 11. Let points qy,q1 € M satisfy the inclusion ¢ € As. Then there exists an optimal
trajectory in problem (4.1)—(4.4).

Proof. A similar argument to that used in the proof of Th. 4 proves the claim. O
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4.6 Optimality of extremal trajectories

Define the following function:

t: C — (0,400, A= (Yo,¢) € C
c=0 = t(\)=+o0,

c#£0 = t()\):%.

Theorem 12. Let A € C, t; € (0,t()\)). Then the trajectory q(t) = Exp(\, t), t € [0,t1], is optimal.
Proof. A similar argument to that used in the proof of Th. 5 proves the claim. O

Corollary 4. For any A € C we have tey(X) = t(N).

Proof. Let A € C. By virtue of Th. 12, t.,(A) > t(A). On the other hand, the extremal trajectory
Exp(A, t) is defined only for t € [O,t()\)) thus teu () = t(N). O

Proposition 15. Any abnormal extremal trajectory is optimal.
Proof. A similar argument to that used in the proof of Propos. 9 proves the claim. O]

Theorem 13. (1) Let ¢ € int As. Then there exists a unique optimal trajectory Exp(\t), t €
[0,t1], where (A1) = Exp ™ (q1).

(2) Letqy = (w1,91,21) € OA, —y1 < w1 < y1, 21 = 2%(x1,y1). Then there exists a unique optimal
trajectory corresponding to a control

u(t) = {(1,1), t e (0,7,

(17_1)7 te [Tl’tl]’
o et(X1+X2)(q0)7 t € [0’ 7_1]’
q( ) = e(t—Tl)(Xl_XQ) o 6T1(X1+X2)(q0)7 te [T17t1]7

n=(n+z1)/2, t1=uz.

(3) Let qi = (w1,91,21) € OAz, —y1 < w1 < w1, 21 = 2 (x1,y1). Then there exists a unique optimal
trajectory corresponding to a control

ult) = {(1,—1), t e [0,7],

(1,1), t e [Tl,tl],
et(X1—X2) o), T,
q(t):{ (a0) teo,m]

et=m1)(X1+X2) o 671(X1_X2)(QO)> te [Tl’ tl]’

T = (y1 +£B1)/27 ty = 7.

Proof. A similar argument to that used in the proof of Th. 7 proves the claim. ]
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4.7 Sub-Lorentzian distance

Theorem 14. The distance d(q) = d(qo,q) is real-analytic on int Ay and continuous on M.

Proof. A similar argument to that used in the proof of Th. 8 proves the claim. ]

4.8 Sub-Lorentzian sphere

Theorem 15. The sphere S is a real-analytic manifold diffeomorphic to R? parametrized as follows:
S ={Exp(\,1) | A e C}.

Proof. A similar argument to that used in the proof of Th. 9 proves the claim. [

See the plot of two sub-Lorentzian spheres S(R;), S(R2) inside the attainable set A, in Fig. 22.

Figure 22: Spheres inside the attainable set for the second problem

5 Conclusion

The first problem is fundamentally different from the second one by the following properties of the
optimal synthesis:

e some optimal trajectories change causal type,
e cxtremal trajectories have cut points on the Martinet surface II,
e the optimal synthesis is two-valued on II,

e the sub-Lorentzian distance is nonsmooth on Il and suffers a discontinuity of the first kind at
some points of the boundary of the attainable set 0.4,
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e the sub-Lorentzian sphere S is a manifold with boundary.

These features are associated with non-trivial intersection of the attainable set A; (the causal
future of the initial point gy) and the Martinet surface II for the first problem.

The optimal synthesis in the second problem is qualitatively the same as in the sub-Lorentzian
problem on the Heisenberg group [22].
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