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Abstract

Two flat sub-Lorentzian problems on the Martinet distribution are studied. For the first
one, the attainable set has a nontrivial intersection with the Martinet plane, but for the second
one it does not. Attainable sets, optimal trajectories, sub-Lorentzian distances and spheres
are described.
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1 Introduction

Sub-Riemannian geometry studies manifolds M in which the distance between points q0, q1 ∈M is
the infimum of the lengths of all curves tangent to a given distribution ∆ ⊂ TM and connecting q0
to q1 [2, 18]. In particular, each subspace ∆q ⊂ TqM of the distribution is equipped with a scalar
product gq and the length of a curve q(t), t ∈ [0, t1], with tangents in ∆, is defined as in Riemannian

geometry by the familiar integral expression l(q) =
∫ t1
0

√
g(q̇(t), q̇(t))dt. If in each space ∆q ⊂ TqM

we define a non-degenerate quadratic form gq of index 1, then a sub-Lorentzian structure (∆, g)
will be defined on the manifold M . Here the natural problem is to find the longest relative to g
curve connecting given points. Sub-Lorentzian geometry strives to build a theory similar to the rich
theory of sub-Riemannian geometry, and is at the beginning of its development. The foundations
of sub-Lorentzian geometry were laid in the works of M. Grochowski [7–12], see also [6, 13–15].

Just as in sub-Riemannian geometry, the simplest sub-Lorentzian problem arises on the Heisen-
berg group; it has been fully studied [9, 22]. The next most important model of sub-Riemannian
geometry after the Heisenberg group arises on the Martinet distribution [2, 3, 18, 23].

The purpose of this work is to consider two flat sub-Lorentzian problems on the Martinet dis-
tribution: to describe the optimal synthesis, distance and spheres. In the first problem, the future
cone has a non-trivial intersection with the tangent space to the Martinet surface; in the second
case this intersection is trivial. Accordingly, in the first case the sub-Lorentzian geometry is much
more complicated, see Conclusion.

The structure of this work is as follows. In Section 2 we recall the basic facts of sub-Lorentzian
geometry required in the sequel.

The main Sections 3 and 4 are devoted respectively to the first and the second flat sub-Lo-
rentzian problems on the Martinet distribution; they have identical structure as follows. First
we find an invariant set (a candidate attainable set) via the geometric statement of Pontryagin
maximum principle. Then we describe explicitly abnormal and normal extremal trajectories; normal
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trajectories are parametrized by the sub-Lorentzian exponential mapping. We prove diffeomorphic
properties of the exponential mapping via Hadamard’s global diffeomorphism theorem. On this basis
we show that the above-mentioned invariant set is indeed the attainable set, and prove a theorem
on existence of optimal trajectories. After that we study optimality of extremal trajectories and
construct an optimal synthesis, i.e., for any point q1 reachable from a fixed initial point q0 we find
an optimal trajectory connecting q0 to q1. We complete our study by describing the main properties
of sub-Lorentzian distances and spheres. It turns out that for the first problem (where the future
cone intersects nontrivially the tangent space of the Martinet surface Π) the optimal synthesis has
cut points and is two-valued on Π.

Some additional features of the two problems are presented in the concluding Sec. 5.
Symbolic computations and generation of pictures were performed in Wolfram Mathematica.

2 Sub-Lorentzian geometry

A sub-Lorentzian structure on a smooth manifold M is a pair (∆, g) consisting of a vector distribu-
tion ∆ ⊂ TM and a Lorentzian metric g on ∆, i.e., a nondegenerate quadratic form g of negative
inertia index 1. Let us recall some basic definitions of sub-Lorentzian geometry. A vector v ∈ TqM ,
q ∈M , is called horizontal if v ∈ ∆q. A horizontal vector v is called:

� timelike if g(v) < 0,

� spacelike if g(v) > 0 or v = 0,

� lightlike if g(v) = 0 and v ̸= 0,

� nonspacelike if g(v) ≤ 0.

A Lipschitz curve in M is called timelike if it has timelike velocity vector a.e.; spacelike, lightlike
and nonspacelike curves are defined similarly.

A time orientation X is an arbitrary timelike vector field in M . A nonspacelike vector v ∈ ∆q

is future directed if g(v,X(q)) < 0, and past directed if g(v,X(q)) > 0.
A future directed timelike curve q(t), t ∈ [0, t1], is called arclength parametrized if g(q̇(t), q̇(t)) ≡

−1. By a simple change of variables, any future directed timelike curve can be parametrized by
arclength.

The length of a nonspacelike curve γ ∈ Lip([0, t1],M) is

l(γ) =

∫ t1

0

|g(γ̇, γ̇)|1/2dt.

For points q1, q2 ∈ M denote by Ωq1q2 the set of all future directed nonspacelike curves in M
that connect q1 to q2. In the case Ωq1q2 ̸= ∅ denote the sub-Lorentzian distance from the point q1
to the point q2 as

d(q1, q2) = sup{l(γ) | γ ∈ Ωq1q2}. (2.1)

And if Ωq1q2 = ∅ then d(q1, q2) := 0. A future directed nonspacelike curve γ is called a sub-Lo-
rentzian length maximizer if it realizes the supremum in (2.1) between its endpoints γ(0) = q1,
γ(t1) = q2.
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The causal future of a point q0 ∈M is the set J+(q0) of points q1 ∈M for which there exists a
future directed nonspacelike curve γ that connects q0 and q1.

Let q0 ∈ M , q1 ∈ J+(q0). The search for sub-Lorentzian length maximizers that connect q0
with q1 reduces to the search for future directed nonspacelike curves γ that solve the problem

l(γ) → max, γ(0) = q0, γ(t1) = q1. (2.2)

A set of vector fields X1, . . . , Xk ∈ Vec(M) is an orthonormal frame for a sub-Lorentzian struc-
ture (∆, g) if for all q ∈M

∆q = span(X1(q), . . . , Xk(q)),

gq(X1, X1) = −1, gq(Xi, Xi) = 1, i = 2, . . . , k,

gq(Xi, Xj) = 0, i ̸= j.

Assume that a time orientation is defined by a timelike vector field X ∈ Vec(M) for which
g(X,X1) < 0 (e.g., X = X1). Then the sub-Lorentzian causal future problem for the sub-Lo-
rentzian structure with the orthonormal frame X1, . . . , Xk is stated as the following optimal control
problem:

q̇ =
k∑
i=1

uiXi(q), q ∈M,

u ∈ U =

{
(u1, . . . , uk) ∈ Rk | u1 ≥

√
u22 + · · ·+ u2k

}
,

q(0) = q0, q(t1) = q1,

l(q(·)) =
∫ t1

0

√
u21 − u22 − · · · − u2k dt→ max .

Remark 1. The sub-Lorentzian length is preserved under monotone Lipschitz time reparametriza-
tions t(s), s ∈ [0, s1]. Thus if q(t), t ∈ [0, t1], is a sub-Lorentzian length maximizer, then so are any
of its reparametrizations q(t(s)), s ∈ [0, s1].

In this paper we choose primarily the following parametrization of trajectories: the arclength
parametrization (u21 − u22 − · · · − u2k ≡ 1) for timelike trajectories, and the parametrization with
u1(t) ≡ 1 for future directed lightlike trajectories.

3 The first problem

Let M = R3
x,y,z, X1 = ∂

∂ x
, X2 = ∂

∂ y
+ x2

2
∂
∂ z
. The distribution ∆ = span(X1, X2) is called the

Martinet distribution [2, 3, 18, 23]. The plane Π = {x = 0} is called the Martinet surface. The
distribution ∆ has growth vector (2, 3) outside of Π, and growth vector (2, 2, 3) on Π. The Lie
algebra generated by the vector fields X1, X2 is a Carnot algebra (Engel algebra), the nonzero Lie
brackets of these vector fields are: [X1, X2] = xX3, [X1, xX3] = X3 :=

∂
∂ z
.

In this section we study a sub-Lorentzian problem in which the interior of the future cone
intersects nontrivially with the tangent space to the Martinet plane Π.
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3.1 Problem statement

The first flat sub-Lorentzian problem on the Martinet distribution is stated as the following optimal
control problem [4,21]:

q̇ = u1X1 + u2X2, q ∈M, (3.1)

u = (u1, u2) ∈ U1 = {u2 ≥ |u1|}, (3.2)

q(0) = q0 = (0, 0, 0), q(t1) = q1, (3.3)

l =

∫ t1

0

√
u22 − u21dt→ max, (3.4)

see Fig. 1.

-1.0 -0.5 0.0 0.5 1.0
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Figure 1: The set U1

3.2 Invariant set

In this subsection we compute an invariant set B1 of system (3.1), (3.2). Later, in Th. 3, we prove
that B1 is the attainable set A1 of system (3.1), (3.2) from the point q0 for arbitrary nonnegative
time (the causal future of the point q0).

By the geometric statement of the Pontryagin maximum principle (PMP) for free time ( [4],
Th. 12.8), if a trajectory q(t) corresponding to a control u(t), t ∈ [0, t1], satisfies the inclusion
q(t1) ∈ ∂A1, then there exists a Lipschitz curve λt ∈ T ∗

q(t)M , λt ̸= 0, t ∈ [0, t1], such that

λ̇t = h⃗u(t)(λt), (3.5)

hu(t)(λt) = max
u∈U1

hu(λt), (3.6)

hu(t)(λt) = 0

for almost all t ∈ [0, t1]. Here hu(λ) = u1h1(λ) + u2h2(λ), hi(λ) = ⟨λ,Xi(π(λ))⟩, i = 1, 2, and
π : T ∗M →M is the canonical projection of the cotangent bundle, π(λ) = q, λ ∈ T ∗

qM . Moreover,

h⃗u(λ) is the Hamiltonian vector field on the cotangent bundle T ∗M with the Hamiltonian hu(λ).
We have [X1, X1] = xX3, X3 =

∂
∂ z
, and if we denote h3(λ) = ⟨λ,X3(π(λ))⟩, then the Hamiltonian

system (3.5) reads as

ḣ1 = −u2xh3, ḣ2 = u1xh3, ḣ3 = 0, q̇ = u1X1 + u2X2.
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The maximality condition (3.6) implies that up to reparametrization there can be two cases:

a) u(t) = (±1, 1),

b) u(t) = (0, 1), x(t) = 0.

Take any 0 ≤ t1 ≤ t2 and compute trajectories with one switching corresponding to the following
controls:

1) Let

u(t) =

{
(1, 1), t ∈ [0, t1],

(−1, 1), t ∈ [t1, t2].

Then x(t) = t, y(t) = t, z(t) = t3/6 for t ∈ [0, t1], x(t) = 2t1− t, y(t) = t, z(t) = t31/6+(4t21(t− t1)−
2t1(t

2−t21)+(t3−t31)/3) for t ∈ [t1, t2], thus x(t2) = 2t1−t2, y(t2) = t2, z(t2) = −t31+2t21t2−t1t22+t32/6.
Thus the endpoint q(t2) satisfies the equality

z = (−3x3 + 3x2y + 3xy2 + y3)/24. (3.7)

2) Let

u(t) =

{
(−1, 1), t ∈ [0, t1],

(1, 1), t ∈ [t1, t2].

Then x(t) = −t, y(t) = t, z(t) = t3/6 for t ∈ [0, t1], x(t) = t − 2t1, y(t) = t, z(t) = ((t3 −
t31)/3 − 2t1(t

2 − t21) + 4t21(t − t1))/2 for t ∈ [t1, t2], thus x(t2) = t2 − 2t1, y(t2) = t2, z(t2) =
−t31 + 2t21t2 − t1t

2
2 + t32/6. Thus the endpoint q(t2) satisfies the equality

z = (3x3 + 3x2y − 3xy2 + y3)/24. (3.8)

3) Let

u(t) =

{
(0, 1), t ∈ [0, t1],

(1, 1), t ∈ [t1, t2].

Then x(t) = 0, y(t) = t, z(t) = 0 for t ∈ [0, t1], x(t) = t − t1, y(t) = t, z(t) = (t − t1)
3/6 for

t ∈ [t1, t2], thus x(t2) = t2 − t1, y(t2) = t2, z(t2) = (t2 − t1)
3/6. Thus the endpoint q(t2) satisfies the

equality
z = x3/6. (3.9)

4) Finally, let

u(t) =

{
(0, 1), t ∈ [0, t1],

(−1, 1), t ∈ [t1, t2].

Then x(t) = 0, y(t) = t, z(t) = 0 for t ∈ [0, t1], x(t) = t1 − t, y(t) = t, z(t) = (t − t1)
3/6 for

t ∈ [t1, t2], thus x(t2) = t1 − t2, y(t2) = t2, z(t2) = (t2 − t1)
3/6. Thus the endpoint q(t2) satisfies the

equality
z = −x3/6. (3.10)
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Consider the surfaces S1–S4 given by Eqs. (3.7)–(3.10) respectively,

S1 : z = (−3x3 + 3x2y + 3xy2 + y3)/24, x ≥ 0,

S2 : z = (3x3 + 3x2y − 3xy2 + y3)/24, x ≤ 0,

S3 : z = x3/6, x ≥ 0,

S4 : z = −x3/6, x ≤ 0.

Introduce the homogeneous coordinates on the set {y ̸= 0} induced by the one-parameter group of
dilations δα : (x, y, z) 7→ (αx, αy, α3z), α > 0:

ξ =
x

y
, η =

24z − 3x2y − y3

24y3
. (3.11)

Then the surfaces S1–S4 are given as follows:

S1 : η =
ξ(1− ξ2)

8
=: φ1(ξ), ξ ∈ [0, 1],

S2 : η =
ξ(ξ2 − 1)

8
=: φ2(ξ) = φ1(−ξ), ξ ∈ [−1, 0],

S3 : η =
ξ3

6
− 3ξ2 + 1

24
=: φ3(ξ), ξ ∈ [0, 1],

S4 : η = −ξ
3

6
− 3ξ2 + 1

24
=: φ4(ξ) = φ3(−ξ), ξ ∈ [−1, 0].

The surface ∪4
i=1Si bounds a domain

B1 =

{
φ3(ξ) ≤ η ≤ φ1(ξ), 0 ≤ ξ ≤ 1,

φ4(ξ) ≤ η ≤ φ2(ξ), −1 ≤ ξ ≤ 0,

see Figs. 2–5.

Figure 2: The boundary of B1 Figure 3: The boundary of B1

Recall that A1 is the attainable set of system (3.1), (3.2) from the point q0 for arbitrary non-
negative time (the causal future of the point q0).
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Figure 4: The boundary of B1 Figure 5: The boundary of B1 projected
to (ξ, η)

Proposition 1. The set B1 is an invariant domain of system (3.1), (3.2). Moreover, A1 ⊂ B1.

Proof. Direct computation shows that on each of the surfaces S1–S4 the vector field u1X1 + u2X2,
(u1, u2) ∈ U1, is directed inside the domain B1. Since q0 ∈ B1, then A1 ⊂ B1.

We show in Th. 3 that A1 = B1.

3.3 Extremal trajectories

The family of Hamiltonians determined by the Pontryagin maximum principle (PMP) [4, 19] are
given by the hνu(λ) = u1h1(λ) + u2h2(λ) − ν

√
u22 − u21, where λ ∈ T ∗M , (u1, u2) ∈ U1 and ν ∈

{−1, 0}. By PMP (Th. 12.10 [4]), if q(t), t ∈ [0, t1], is an optimal trajectory in problem (3.1)–(3.4),
then there exist a Lipschitz curve λt ∈ T ∗

q(t)M , t ∈ [0, t1], and a number ν ∈ {−1, 0} such that

λ̇t = h⃗νu(t)(λt),

hνu(t)(λt) = max
v∈U1

hv(λt),

(λt, ν) ̸= (0, 0)

for almost all t ∈ [0, t1].

3.3.1 Abnormal extremal trajectories

If ν = 0, then the control satisfies, up to reparametrization, the conditions

a) u(t) = (±1, 1),

b) u(t) = (0, 1), x(t) = 0,

and has up to one switching. These trajectories were computed in Subsec. 3.2, they form the
boundary of the candidate attainable set B1.
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Remark 2. Abnormal trajectories starting from an arc on the plane Π change their causal type:
first they are timelike (when they belong to Π), then lightlike. The remaining extremal trajectories
preserve the causal type.

3.3.2 Normal extremals

If ν = −1, then extremals satisfy the Hamiltonian system with the Hamiltonian H = (h21 − h22)/2,
h2 < −|h1|:

ḣ1 = h2h3x, ḣ2 = h1h3x, ḣ3 = 0, ẋ = h1, ẏ = −h2, ż = −h2x2/2. (3.12)

We can choose the arclength parametrization on normal extremal trajectories and thus assume that
H ≡ −1/2. In the coordinates h1 = sinhψ, h2 = − coshψ, h3 = c; ψ, c ∈ R, the Hamiltonian
system (3.12) reads as

ψ̇ = −cx, ċ = 0, (3.13)

ẋ = sinhψ, ẏ = coshψ, ż =
x2

2
coshψ. (3.14)

This system has an energy integral E = cx2/2 + coshψ ∈ [1,+∞).

Remark 3. The normal Hamiltonian system (3.13), (3.14) has a discrete symmetry — reflection

(ψ, c, x, y, z) 7→ (−ψ, c,−x, y, z), (3.15)

and a one-parameter family of symmetries — dilations

(t, ψ, c, x, y, z) 7→ (αt, ψ, c/α2, αx, αy, α3z), α > 0. (3.16)

Moreover, the parallel translations

(x, y, z) 7→ (x, y + a, z + b), a, b ∈ R, (3.17)

are symmetries of the problem since their generating vector fields ∂
∂ y

, ∂
∂ z

commute with the vector
fields X1, X2 of the orthonormal frame.

1) If c = 0, then

ψ ≡ ψ0, x = t sinhψ0, y = t coshψ0, z = t3/6 coshψ0 sinh
2 ψ0. (3.18)

If c ̸= 0, then extremal trajectories in the Martinet flat case are obtained by a linear change
of variables from extremal trajectories of a left-invariant sub-Lorentzian problem on the Engel
group [5].

2) Let c = l2 > 0.
2.1) If ψ0 = 0, then x = z ≡ 0, y = t.
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2.2) Let sgnψ0 = ±1, E = coshψ0 > 1, k =
√

E−1
E+1

∈ (0, 1), k′ =
√
1− k2, m = lk′, æ = 1/k′,

τ = ælt. Then

x = ±2k

m
sn τ,

y =
1

m
(2 E(τ)− k′2τ),

z = − 2

3m3

(
k′2τ + 2k2 sn τ cn τ dn τ − (1 + k2) E(τ)

)
,

where sn τ , cn τ , dn τ are Jacobi’s elliptic functions with modulus k, and E(τ) =
∫ τ
0
dn2 tdt is

Jacobi’s epsilon function [17,25]. See Figs. 6–9.
3) Let c = −l2 < 0.
3.1) If ψ0 = 0, then x = z ≡ 0, y = t.

3.2) Let sgnψ0 = ±1, E = coshψ0 > 1, k =
√

2
1+E

∈ (0, 1), k′ =
√
1− k2, m = kl, τ = lt/k.

Then

x = ±2k′

m

sn τ

cn τ
,

y =
1

m

(
(2− k2)τ + 2

dn τ sn τ

cn τ
− 2E(τ)

)
,

z = − 2

3m3

(
2k′2τ + (k2 − 2) E(τ) + (k2 + (k2 − 2) sn2 τ)

dn τ sn τ

cn3 τ

)
,

τ ∈ [0, K(k)),

where K(k) is the complete elliptic integral of the second kind [17,25].

1 2 3 4 5
y

-1.0

-0.5

0.5

1.0

x

2 4 6 8 10 12
y

-1.0
-0.5

0.5
1.0

x

Figure 6: The curve (x(t), y(t)) for c =
1, ψ0 = 0

Figure 7: The curve (x(t), y(t)) for c =
1, ψ0 = 1

3.4 Exponential mapping

Introduce the exponential mapping

Exp : N →M, Exp(λ, t) = π ◦ etH⃗(λ),
N = {(λ, t) ∈ C × R+ | t ∈ (0,+∞) for c ≥ 0; t ∈ (0,+kK/l) for c < 0},
C = T ∗

q0
M ∩ {H = −1/2, h2 < 0}.
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Figure 8: The curve (x(t), y(t)) for c =
1, ψ0 = 2

Figure 9: The curve (x(t), y(t)) for c =
1, ψ0 = 4

Formulas of Subsec. 3.3.2 give an explicit parametrization of the exponential mapping.
In this subsection we describe diffeomorphic properties of the exponential mapping via the

classical Hadamard’s theorem on global diffeomorphism:

Theorem 1 ( [16]). Let F : X → Y be a smooth mapping of smooth manifolds, dimX = dimY .
Suppose that the following conditions hold:

(1) X and Y are connected,

(2) Y is simply connected,

(3) F is nondegenerate,

(4) F is proper (i.e., for any compact set K ⊂ Y , the preimage F−1(K) ⊂ X is compact).

Then F is a diffeomorphism.

Consider the following stratification in the image of the exponential mapping:

intB1 = ∪6
i=0Mi,

M0 : x = 0, −1/24 < η < 0,

M1 : x > 0, φ5(ξ) < η < φ1(ξ), (3.19)

M2 : x < 0, φ5(ξ) < η < φ2(ξ),

M3 : x > 0, φ3(ξ) < η < φ5(ξ),

M4 : x < 0, φ2(ξ) < η < φ4(ξ),

M5 : x > 0, η = φ5(ξ),

M6 : x < 0, η = φ5(ξ),

φ5(ξ) = (ξ2 − 1)/24,

see Fig. 10.
Now define the following stratification of the subset

Ñ = {(λ, t) ∈ N | t ∈ (0, 2K/(æl)) for c > 0; t ∈ (0,+∞) for c = 0; t ∈ (0, kK/l) for c < 0}
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Figure 10: Stratification in the image of Exp

in the preimage of the exponential mapping:

Ñ = ∪6
i=1Ñi,

Ñ1 : c > 0, ψ0 > 0, τ ∈ (0, 2K),

Ñ2 : c > 0, ψ0 < 0, τ ∈ (0, 2K),

Ñ3 : c < 0, ψ0 > 0, τ ∈ (0, K),

Ñ4 : c < 0, ψ0 < 0, τ ∈ (0, K),

Ñ5 : c = 0, ψ0 > 0,

Ñ6 : c = 0, ψ0 < 0.

Proposition 2. The inclusion Exp(Ñ1) ⊂M1 holds. Moreover, the mapping Exp : Ñ1 →M1 is a
real-analytic diffeomorphism.

Proof. a) Let us show that Exp(Ñ1) ⊂M1.

Let (λ, t) ∈ Ñ1. We have to prove that (ξ2 − 1)/24 < η < ξ(1− ξ2)/8, i.e.,

(x2 − y2)y <
1)
24z − 3x2y − y3 <

2)
3x(y2 − x2).

Inequality 1) can be rewritten as
6z > x2y, (3.20)

let us prove this inequality. Differentiating the both sides of (3.20) by virtue of ODEs (3.14), we
get

x coshψ > y sinhψ. (3.21)

Further, differentiating the both sides of (3.21) by virtue of ODEs (3.14), we get

x sinhψ > y coshψ. (3.22)

Since coshψ > sinhψ > 0, we have y > x by the first two equalities in (3.14), and inequality (3.22)
is proved. Since the both sides of this inequality vanish at t = 0, inequality (3.21) is proved as well
by integration. Similarly, inequality (3.20) is proved, thus inequality 1) follows.
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Now we prove similarly inequality 2): it is equivalent to

24z < y3 + 3x2y + 3xy2 − 3x3. (3.23)

Differentiating the both sides of (3.23) by virtue of ODEs (3.14), we get

3x2 < y2 + 2xy, (3.24)

which holds since y > x. Returning back from (3.24) to (3.23) by integration, we prove inequality 2).

So the inclusion Exp(Ñ1) ⊂M1 is proved.

b) We show that the mapping Exp : Ñ1 → M1 is nondegenerate, i.e., the Jacobian J = ∂(x,y,z)
∂(c,ψ,t)

does not vanish on Ñ1. Direct computation of this Jacobian gives

J = f · ∂(x, y, z)
∂(m, τ, k)

= f · 9(1− k2)k2m6

32
J1, f ̸= 0,

J1 = J0 + o(1), k → 0,

J0 = cos(3τ) + (8τ 2 − 1) cos τ − 4τ sin τ.

Since (
J0
sin τ

)′

= −2(2τ − sin 2τ)2

sin2 τ
< 0, τ ∈ (0, π),

thus J0(τ) < 0, τ ∈ (0, π].
Moreover,

J1|τ=2K = 12(1− k2)g(k),

g(k) = E2(k)− 2E(k)K(k) + (1− k2)K2(k). (3.25)

We have g(k) = g1(k)g2(k), g1(k) = E(k) − (1 + k)K(k), g2(k) = E(k) − (1 − k)K(k). Since

g′1(k) =
E(k)
k−1

< 0, then g1(k) < 0 for k ∈ (0, 1). Similarly, since g′2(k) =
E(k)
k+1

> 0, then g2(k) > 0 for
k ∈ (0, 1). Thus g(k) < 0 and J2|τ=2K < 0 for k ∈ (0, 1).

By homotopy invariance of the Maslov index (the number of conjugate points on an extremal) [1],

we have J(τ) < 0 for τ ∈ (0, 2K]. Thus the mapping Exp : Ñ1 →M1 is nondegenerate.

c) We show that this mapping is proper. We have to prove that if Ñ1 ∋ (m, k, τ) → ∂Ñ1,

then q = Exp(m, k, τ) → ∂M1. This implication follows from the representation Ñ1 = {m >
0, k ∈ (0, 1), am τ ∈ (0, π)}, the definition (3.19) of the domain M1, and the parametrization of
the exponential mapping given in Subsec. 3.3.2.

Since Ñ1 and M1 are connected and simply connected, this mapping is a diffeomorphism by
Th. 1.

Proposition 3. The inclusion Exp(Ñ3) ⊂M3 holds. Moreover, the mapping Exp : Ñ3 →M3 is a
real-analytic diffeomorphism.

Proof. A similar argument to that used in the proof of Propos. 2 proves the claim.

Proposition 4. The inclusions Exp(Ñ2) ⊂ M2 and Exp(Ñ4) ⊂ M4 hold. Moreover, the mappings

Exp : Ñ2 →M2 and Exp : Ñ4 →M4 are real-analytic diffeomorphisms.
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Proof. Follows from Propositions 2 and 3 via reflection (3.15).

Proposition 5. The inclusions Exp(Ñ5) ⊂ M5 and Exp(Ñ6) ⊂ M6 hold. Moreover, the mappings

Exp : Ñ5 →M5, Exp : Ñ6 →M6 are real-analytic diffeomorphisms.

Proof. Follows from the parametrization (3.18) of the exponential mapping Exp|Ñ5.

Introduce the following subsets in the preimage of the exponential mapping:

N±
0 = {(λ, t) ∈ N | c > 0, sgnψ0 = ±1, t = 2K/(æl)}.

Proposition 6. The inclusions Exp(N±
0 ) ⊂ M0 hold. Moreover, the mappings Exp : N±

0 → M0

are real-analytic diffeomorphisms.

Proof. In view of the reflection (3.15), it suffices to consider only the set N+
0 . And in view of the

dilations (3.16), it is enough to consider only the case c = 1.
If c = 1, ψ0 > 0, t = 2K/(æl) = 2K/k′, then

x = 0,

y = k′(4E(k)− 2k′2K(k)),

z =
4

3
k′3((1 + k2)E(k)− k′2K(k)),

ξ = 0,

η = − 1

24
+

(1 + k2)E(k)− (1− k2)K(k)

6(2E(k)− (1− k2)K(k))3
=: η1(k).

We have limk→0 η1(k) = −1/24, limk→1 η1(k) = 0 and η′1(k) = − (1−k2)g(k)
2k(2E(k)−(1−k2)K(k))4

, where the

function g(k) is given by (3.25). We showed in the proof of Propos. 2 that g(k) < 0, k ∈ (0, 1),
thus η1 : (0, 1) → (−1/24, 0) is a strictly increasing diffeomorphism.

Thus Exp(N+
0 ) ⊂M0 and Exp : N+

0 →M0 is a diffeomorphism.

Denote

N+ = Ñ1 ∪ Ñ3 ∪N5,

N− = Ñ2 ∪ Ñ4 ∪N6,

M+ =M1 ∪M3 ∪M5 = (intB1) ∩ {x > 0},
M− =M2 ∪M4 ∪M6 = (intB1) ∩ {x < 0}.

Theorem 2. The inclusions Exp(N±) ⊂ M± hold. Moreover, the mappings Exp : N± → M± are
real-analytic diffeomorphisms.

Proof. By virtue of the reflection (3.15), it suffices to consider only the domain N+.
The inclusion Exp(N+) ⊂M+ follows from Propositions 2, 3, 5.
The mappings Exp|Ñ1

and Exp|Ñ3
are nondegenerate by Propositions 2 and 3 respectively. Since

Ñ5 ⊂ cl(Ñ1) and Exp|Ñ1
is nondegenerate, then it follows by homotopy invariance of the Maslov

index that the mapping Exp : N+ →M+ is also nondegenerate at the set N5. Summing up, Exp|N+

is nondegenerate.
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Reasoning in a way similar to argument used in Proposition 2, it follows that the mapping
Exp : N+ →M+ is proper.

Then Theorem 1 implies that this mapping is a diffeomorphism.

Proposition 7. The mapping Exp : N →M is a local diffeomorphism at points of N±
0 .

Proof. By virtue of the reflection (3.15), we can consider only the case N+
0 .

Observing that N+
0 ⊂ cl(Ñ1) and Exp : Ñ1 →M is nondegenerate, the homotopy invariance of

the Maslov index then implies that the mapping Exp : N →M is a local diffeomorphism at points
of N+

0 .

3.5 Attainable sets and existence of optimal trajectories

Theorem 3. We have A1 = B1.

Proof. By virtue of Propos. 1, it remains to prove the inclusion A1 ⊃ B1. But Theorem 2 and
Propos. 6 imply that Exp(N+ ∪N− ∪N+

0 ) ⊃M+ ∪M− ∪M0 = intB1. Thus A1 ⊃ intB1.
Further, each point of ∂B1 is reachable from q0 by an abnormal trajectory, thus A1 ⊃ ∂B1.
Summing up, A1 ⊃ B1, and the equality A1 = B1 follows.

Recall that J+(q) is the causal future of a point q ∈ M , i.e., the attainable set from q for
arbitrary nonnegative time. Similarly, J−(q) is the causal past of q, i.e., the set of points attainable
from q for arbitrary nonpositive time. Notice that A1 = J+(q0).

Corollary 1. Let q = (0, y0, z0) ∈M . Then

J+(q) =

{
φ3(ξ0) ≤ η0 ≤ φ1(ξ0), 0 ≤ ξ0 ≤ 1, y ≥ y0,

φ4(ξ0) ≤ η0 ≤ φ2(ξ0), −1 ≤ ξ0 ≤ 0, y ≥ y0,

ξ0 =
x

y − y0
, η0 =

24(z − z0)− 3x2(y − y0)− (y − y0)
3

24(y − y0)3
,

J−(q) =

{
φ3(ξ1) ≤ η1 ≤ φ1(ξ1), 0 ≤ ξ1 ≤ 1, y ≤ y0,

φ4(ξ1) ≤ η1 ≤ φ2(ξ1), −1 ≤ ξ1 ≤ 0, y ≤ y0,

ξ1 = −ξ0, η1 = η0.

Proof. The expression for J+(q) follows from the expression for J+(q0) = A1 via the translation
(3.17). And the expression for J−(q) follows by time inversion.

Theorem 4. Let points q0, q1 ∈ M satisfy the inclusion q1 ∈ J+(q0). Then there exists an optimal
trajectory in problem (3.1)–(3.4).

Proof. By Theorem 2 and Remark 2 [24], the following conditions are sufficient for existence of an
optimal trajectory connecting q0 and q1:

(1) q1 ∈ J+(q0),

(2) There exists a compact K ⊂M such that J+(q0) ∩ J−
q1
⊂ K,
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(3) T (q0, q1) < +∞,

where T (q0, q1) is the supremum of time required to reach q1 from q0 for a trajectory of system (3.1)
reparametrized so that u1 ≡ 1.

Condition (1) holds by assumption of this theorem.
Condition (3) holds since if u ≡ 1 then ẏ ≡ 1, thus T (q0, q1) = y1 − y0 < +∞.
Now we prove condition (2). It is easy to see from Cor. 1 that

∪q∈ΠJ+(q) = ∪q∈ΠJ−(q) =M.

Thus there exist p0, p1 ∈ Π such that p0 ∈ J+(q0), q1 ∈ J−(p1). Thus J+(q0) ⊂ J+(p0), J
−(q1) ⊂

J−(p1), so J
+(q0) ∩ J−(q1) ⊂ J+(p0) ∩ J−(p1). It is easy to see from Cor. 1 that the set K :=

J+(p0) ∩ J−(p1) is compact. So condition (2) above holds, and the theorem is proved.

3.6 Optimality of extremal trajectories

Proposition 8. Let λ = (ψ0, c) ∈ C, c > 0, ψ0 ̸= 0, and let t1 > 2K/(æl). Then the extremal
trajectory q(t) = Exp(λ, t), t ∈ [0, t1], is not optimal.

Proof. By virtue of the reflection (3.15), we can assume that ψ0 > 0. By contradiction, suppose
that q(t), t ∈ [0, t1], is optimal.

Let λ̃ = (−ψ0, c) ∈ C, q̃(t) = Exp(λ̃, t), t ∈ [0, t1]. Denote t̄ = 2K/(æl), then q(t̄) = q̃(t̄) and
l(q(·)|[0,t̄]) = l( q̃(·)|[0,t̄]), i.e., the trajectories q(·) and q̃(·) have a Maxwell point at t = t̄ [20]. Now
consider the trajectory

q̂(t) =

{
q̃(t), t ∈ [0, t̄],

q(t), t ∈ [t̄, t1].

Since l( q̂(·)|[0,t1]) = l(q(·)|[0,t1]), then the trajectory q̂(t), t ∈ [0, t1], is optimal. But q̂(t) has a corner
point at t = t̄, which is not possible for normal trajectories. Thus q̂(t) is abnormal, so its support
belongs to ∂A1. But this is impossible since the support of the normal trajectory q(t) belongs to
intA1. A contradiction obtained completes the proof.

Define the following function:

t : C → (0,+∞], λ = (ψ0, c) ∈ C,

c = 0 ⇒ t(λ) = +∞,

c ̸= 0, ψ0 = 0 ⇒ t(λ) = +∞,

c > 0, ψ0 ̸= 0 ⇒ t(λ) =
2kK

l
,

c < 0, ψ0 ̸= 0 ⇒ t(λ) =
kK

l
.

We prove (see Cor. 2) that t(λ) is the cut time for an extremal trajectory Exp(λ, t):

t(λ) = tcut(λ) := sup{t1 > 0 | Exp(λ, t) is optimal for t ∈ [0, t1]}.

Theorem 5. Let λ ∈ C, t1 ∈ (0, t(λ)). Then the trajectory q(t) = Exp(λ, t), t ∈ [0, t1], is optimal.
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Proof. By Theorem 4, there exists an optimal trajectory connecting q0 and q1 := q(t1). Since
q1 ∈ intA1, this trajectory is a normal extremal trajectory. Since q1 ∈ M+ ∪M−, by Theorem 2
there exists a unique arclength parametrized normal extremal trajectory connecting q0 and q1, hence
it coincides with q(t).

Theorem 6. Let λ = (ψ0, c) ∈ C, c > 0, ψ0 ̸= 0, t1 = t(λ). Then the trajectory q(t) = Exp(λ, t),
t ∈ [0, t1], is optimal.

Proof. Similarly to Th. 5 with the only distinction that now there are exactly two optimal trajec-
tories corresponding to the covectors (±ψ0, c) ∈ C, these trajectories are symmetric by virtue of
the reflection (3.15).

Proposition 8 together with Theorems 5 and 6 imply the following.

Corollary 2. For any λ ∈ C we have tcut(λ) = t(λ).

Proposition 9. Any abnormal extremal trajectory is optimal.

Proof. Abnormal extremal trajectories are exactly trajectories belonging to the boundary of the
attainable set A1. If q(t), t ∈ [0, t1], is an abnormal trajectory, then, up to reparametrization, the
corresponding control has the following form:

1) u(t) =

{
(±1, 1), t ∈ [0, τ1],

(∓1, 1), t ∈ [τ1, t1],
τ1 ∈ [0, t1], or

2) u(t) =

{
(0, 1), t ∈ [0, τ1],

(±1, 1), t ∈ [τ1, t1],
τ1 ∈ [0, t1].

In the case 1) we have l(q(·)) = 0. If q̃(t), t ∈ [0, t̃1], is a trajectory such that q̃(t̃1) = q(t1), then,
up to reparametrization, q̃(t) ≡ q(t), thus q(t) is optimal.

In the case 2) we have l(q(·)) = τ1, and a similar argument shows that q(t) is optimal.

Theorems 5, 6 and Propos. 9 yield the following description of the optimal synthesis.

Theorem 7. (1) Let q1 ∈ (intA1) \ Π. Then there exists a unique optimal trajectory Exp(λ, t),
t ∈ [0, t1], where (λ, t1) = Exp−1(q1).

(2) Let q1 ∈ (intA1) ∩ Π. Then there exist exactly two optimal trajectories Exp(λi, t), t ∈ [0, t1],
i = 1, 2, where {(λ1, t1), (λ2, t1)} = Exp−1(q1).

(3) Let q1 = (x1, y1, z1) ∈ S1 ∪ S1, sgnx1 = ±1. Then there exists a unique optimal trajectory

q(t) =

{
et(±X1+X2)(q0), t ∈ [0, τ1],

e(t−τ1)(∓X1+X2) ◦ eτ1(±X1+X2)(q0), t ∈ [τ1, t1],

τ1 = (y1 ± x1)/2, t1 = y1.
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(4) Let q1 = (x1, y1, z1) ∈ S3 ∪ S4, sgnx1 = ±1. Then there exists a unique optimal trajectory

q(t) =

{
etX2(q0), t ∈ [0, τ1],

e(t−τ1)(±X1+X2) ◦ eτ1X2(q0), t ∈ [τ1, t1],

τ1 = y1 ± x1, t1 = y1.

(5) Let q1 = (0, y1, 0), y1 > 0. Then there exists a unique optimal trajectory q(t) = etX2(q0),
t ∈ [0, t1], t1 = y1.

(6) Let q1 = (0, y1, z1), z1 = y31/24 > 0. Then there exist exactly two optimal trajectories

q1(t) =

{
et(X1+X2)(q0), t ∈ [0, τ1],

e(t−τ1)(−X1+X2) ◦ eτ1(X1+X2)(q0), t ∈ [τ1, t1],

q2(t) =

{
et(−X1+X2)(q0), t ∈ [0, τ1],

e(t−τ1)(X1+X2) ◦ eτ1(−X1+X2)(q0), t ∈ [τ1, t1],

τ1 = t1/2, t1 = y1.

(7) Let q1 = (x1, y1, z1), sgnx1 = ±1, y1 = ±x1, z1 = y31/6. Then there exists a unique optimal
trajectory q(t) = et(±X1+X2)(q0), t ∈ [0, t1], t1 = y1.

Remark 4. In Theorem 7, existence of exactly one (or two) optimal trajectories is understood up
to reparametrization.

3.7 Sub-Lorentzian distance

In this subsection we study the function d(q) := d(q0, q), q ∈M .

Theorem 8. (1) The distance d is real-analytic on (intA1) \ Π and continuous on intA1.

(2) The distance d has discontinuity of the first kind at each point of S3 ∪ S4.

(3) The restriction d|Π is real-analytic on the set {x = 0, z ∈ (0, y3/24), y > 0} and discontinuous
of the first kind on the set {x = 0, z = y3/24, y > 0}.

(4) The distance d is homogeneous of order 1 w.r.t. dilations (3.16):

d(δα(q)) = αδ(q), δα(x, y, z) = (αx, αy, α3z), α > 0, q = (x, y, z) ∈M.

Proof. (1) Follows from Th. 2 and Propos. 7.
(2) Take any q1 = (x1, y1, z1) ∈ S3 ∪ S4, then d(q1) = y1 > 0 by item (4) of Th. 7. On the

other hand, q1 ∈ ∂A1, thus there are points q ∈ M \ A1 arbitrarily close to q1. Since d(q) = 0, the
distance d has discontinuity of the first kind at q1.

(3) The restriction d|Π is real-analytic on the set {x = 0, z ∈ (0, y3/24), y > 0} by Propos. 7.
Let q1 = (x1, y1, z1) ∈ A1, x1 = z1 = 0, y1 > 0. Then q1 ∈ ∂A1, and the distance d has

discontinuity of the first kind at q1 similarly to item (2).
(4) is obvious in view of symmetry (3.16).

Let q = (0, y, z) ∈ Π, then d(q) = y3d(0, 1, z/y3) = y3d(0, 1, η + 1/24) since η|Π = z/y3 − 1/24.
We plot the function η 7→ d(0, 1, η + 1/24) in Fig. 11.
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Figure 11: Plot of η 7→ d(0, 1, η + 1/24)

3.8 Sub-Lorentzian sphere

By virtue of dilations (3.16), the Lorentzian spheres

S(R) = {q ∈M | d(q) = R}, R > 0,

satisfy the relation S(R) = δR(S(1)), thus we describe only the unit sphere S := S(1).

Theorem 9. (1) The set S \ (Π ∪ ∂A1) is a real-analytic manifold.

(2) The sphere S is nonsmooth and Lipschitz at points of S ∩ Π.

(3) The intersection S ∩ Π is defined parametrically for k ∈ [0, 1):

y =
4E(k)− 2(1− k2)K(k)

2(1− k2)K(k)
= 1 + k2 +O(k4), k → 0,

z =
2(1− k2)K(k)− 2(1 + k2)E(k)

12(1− k2)3K3(k)
=
k2

π2
+O(k4), k → 0.

In particular, the intersection S ∩ Π is semi-analytic.

Proof. (1) Follows from Th. 2.
(2) The hemi-spheres S± = S ∩ {±x ≥ 0} have at points of S ∩ Π the normal vectors n± =

±(g(k), ∗, ∗), where the function g(k) is given by (3.25) and is negative for k ∈ (0, 1). So the
sphere S has a transverse self-intersection at points of S ∩ Π. .

(3) The parametrization of S ∩ Π is obtained from the parametrization of the exponential
mapping in the case 2.2 of Subsec. 3.3.2 for τ = 2K, t = 1.

Remark 5. One of the most important results of the paper [3] is non-subanalyticity of the sub-
Riemannian sphere in the Martinet flat case. Its proof relies on non-semianalyticity of the inter-
section of the sub-Riemannian sphere with the Martinet surface. Item (3) of the preceding theorem
states that such an intersection is semi-analytic in the sub-Lorentzian case. We leave the question of
subanalyticity of the sub-Lorentzian sphere in the first flat problem on the Martinet distribution open
since we cannot conclude on subanalyticity (or its lack) at points of the boundary of the sphere S.
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Denote Sn = S ∩ intA1, Sa = S ∩ ∂A1.

Remark 6. The set Sn (resp. Sa) is filled with the endpoints of optimal normal (resp. abnormal)
trajectories of length 1 starting at q0.

Lemma 1. We have cl(Sn) ⊃ Sa.

Proof. Take any point q ∈ Sa and choose any neighbourhood q ∈ O ⊂ M . By Proposition 8.1 [7],
the distance d is upper semicontinuous on A1, thus there exists a point q− ∈ O ∩ intA1 such that
d(q−) ≤ d(q) = 1. Further, for small t > 0 there exists a point

q+ = et(u1X1+u2X2)(q) ∈ O ∩ intA1, (u1, u2) ∈ U1.

Then d(q+) ≥ 1. Since O ∩ intA1 is arcwise connected and d|intA1
is continuous, there exists a

point q̄ ∈ O ∩ intA1 such that d(q̄) = 1. Then q̄ ∈ Sn ∩O. Hence cl(Sn) ⊃ Sa.

Proposition 10. The sphere S is homeomorphic to the closed half-plane R2
+ := {(a, b) ∈ R2 | b ≥

0}.

Proof. Denote the group of dilations (3.16) as G = {δα | α > 0} and consider the projection

p :
◦
M →

◦
M/G,

◦
M =M \ {q0}. (3.26)

If y ̸= 0 (which is the case on S), then projection (3.26) is given in coordinates as

p : q = (x, y, z) 7→ σ = (ξ, η),

where ξ, η are defined in (3.11). The mapping (3.26) is smooth.
The image of the sphere S under the action of the projection p is given as follows:

p(S) :

{
φ3(ξ) ≤ η < φ1(ξ), 0 < ξ < 1,

φ4(ξ) ≤ η < φ2(ξ), −1 < ξ < 0,

see Fig. 19. It is obvious that p(S) is homeomorphic to R2
+. Let us show that p : S → p(S) is a

homeomorphism.
First, the mapping p : S → p(S) is a bijection since the sphere S intersects with each orbit

of G at not more than one point.
Second, the mapping p : S → p(S) is continuous as a restriction of a smooth mapping (3.26).
It remains to prove that the inverse mapping p−1 : p(S) → S is continuous. Continuity of

p−1|p(Sn)
and p−1|p(Sa)

is obvious. Let

p(Sn) ∋ σk →
k→∞

σ̄ ∈ p(Sa),

we show that p−1(σk) =: qk →
k→∞

q̄ := p−1(σ̄). It follows from Propos. 3 that qk →
k→∞

q̂ ∈ Sa, where

p(q̂) = σ̄. Since orbits of G are one-dimensional, it remains to prove that d(q̂) = 1.
By Lemma 1, there exists a sequence Sn ∋ q̃k →

k→∞
q̄. Thus σ̃k := p(q̃k) →

k→∞
σ̄. Denote by ρ and ρ̂

the Euclidean distances in M and
◦
M/G respectively. Then ρ̂(σk, σ̃k) →

k→∞
0, thus ρ(qk, q̃k) →

k→∞
0,

whence q̂ = q̄.
Thus p : S → p(S) is a homeomorphism, and S ≃ R2

+.
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Corollary 3. (1) The sphere S is a topological manifold with boundary Sa, homeomorphic to the
closed half-plane R2

+.

(2) The sphere S is a stratified space with real-analytic strata S±
n := Sn ∩ {sgnx = ±1}, S0

n :=
S∩Π, S±

a := Sa∩{sgnx = ±1}, S0
a := Sa∩Π = {(0, 1, 0)}. Wherein there are diffeomorphisms

S±
n → R2; S0

n, S
±
a → R.

(3) Under a homeomorphic embedding of the sphere S into the half-plane R2
+ = {(a, b) ∈ R2 | b ≥

0} the indicated strata are mapped as follows: S±
n → {sgn a = ±1, b > 0}, S0

n → {a = 0, b >
0}, S±

a → {sgn a = ±1, b = 0}, S0
a → {a = b = 0}.

See Fig. 19.

Remark 7. There is a numerical evidence that the sphere S is a piecewise smooth manifold with
boundary, with a stratification shown in Fig. 19.

Figure 12: The sphere S Figure 13: The sphere S
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Figure 14: Intersection of S and ∂A1
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Figure 15: Intersection of S and ∂A1
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Figure 16: S inside of ∂A1 Figure 17: S inside of ∂A1
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Figure 18: Intersection of S with Π Figure 19: Stratification of p(S)
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Proposition 11. The sphere S is closed.

Proof. Since S = Sn ∪ Sa, cl(Sn) ⊃ Sa and cl(Sa) = Sa, we have to prove that cl(Sn) ⊂ S. Take

any sequence Sn ∋ qk →
k→∞

q̄. Let σk = p(qk) and σ̄ = p(q̄) ∈
◦
M/G. We may consider only the case

σ̄ ∈ p(Sa). If σ̄ = (ξ̄, η̄) is on the upper part of the boundary of p(Sn), i.e., η̄ = φ1(ξ̄), ξ̄ ∈ (0, 1),
or η̄ = φ2(ξ̄), ξ̄ ∈ (0, 1), then it follows from the proof of Propos. 2 that qk →

k→∞
∞, which is

impossible. If σ̄ = (ξ̄, η̄) is on the lower part of the boundary of p(Sn), i.e., η̄ = φ3(ξ̄), ξ̄ ∈ (0, 1), or
η̄ = φ4(ξ̄), ξ̄ ∈ (0, 1), then q̄ ∈ ∂A1. A similar argument to that used in the proof of Propos. 10
shows that d(q̄) = 1. So the claim of this proposition follows.

Proposition 12. The restriction d|A1
is continuous.

Proof. Let A1 ∋ qk →
k→∞

q̄ ∈ A1, we have to prove that d(qk) →
k→∞

d(q̄).

If q̄ ∈ intA1, then the claim follows by Th. 8.
Let q̄ ∈ ∂A1. Since d is upper semicontinuous (Propos. 8.1 [7]), we have lim supk→∞ d(qk) ≤

d(q̄). In order to show that d(q̄) ≤ lim infk→∞ d(qk), we assume by contradiction that d(q̄) >
lim infk→∞ d(qk). In other words, there exists a subsequence {qkm} such that d(q̄) > limm→∞ d(qkm).
By virtue of dilation (3.16), we can construct a sequence qm ∈ S converging to a point q̂ ∈ ∂A1 with
d(q̂) > 1. This contradicts the closedness of S. Thus d(qk) →

k→∞
d(q̄), and the statement follows.

4 The second problem

In this section we consider a flat sub-Lorentzian problem on the Martinet distribution whose future
cone has trivial intersection with the tangent plane to the Martinet surface Π. It is natural that
this problem is more simple than the first problem considered in the previous section. All proofs for
the second problem are completely similar or more simple than for the first one, so we skip them.

4.1 Problem statement

The second sub-Lorentzian problem on the Martinet distribution is stated as the following optimal
control problem:

q̇ = u1X1 + u2X2, q ∈M, (4.1)

u = (u1, u2) ∈ U2 = {u1 ≥ |u2|}, (4.2)

q(0) = q0 = (0, 0, 0), q(t1) = q1, (4.3)

l =

∫ t1

0

√
u21 − u22dt→ max . (4.4)

See Fig. 20.

4.2 Invariant set

By PMP, the boundary of the attainable set A2 of system (4.1), (4.2) from the point q0 for arbitrary
nonnegative time consists of lightlike trajectories corresponding to piecewise constant controls with
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values u = (1,±1) and up to one switching. These trajectories fill the boundary of the set

B2 = {(x, y, z) ∈M | x ≥ |y|, z1(x, y) ≤ z ≤ z2(x, y)},

where z1(x, y) = ((x+ y)3 − 4x3)/24, z2(x, y) = (4x3 − (x− y)3)/24. See Fig. 21.

Proposition 13. The set B2 is an invariant domain of system (4.1), (4.2). Moreover, A2 ⊂ B2.

Proof. Similarly to Propos. 1.

0.2 0.4 0.6 0.8 1.0
u1

-1.0

-0.5

0.0

0.5

1.0
u2

Figure 20: The set U2 Figure 21: The set B2

4.3 Extremal trajectories

4.3.1 Abnormal extremal trajectories

Abnormal trajectories, up to time reparametrization, correspond to controls u = (1,±1) with up
to one switching.

4.3.2 Normal extremals

Normal extremals satisfy the Hamiltonian system with the Hamiltonian H = (−h21 + h22)/2, h1 <
−|h2|:

ḣ1 = −h2h3x, ḣ2 = −h1h3x, ḣ3 = 0, ẋ = −h1, ẏ = h2, ż = h2x
2/2. (4.5)

We can choose arclength parametrization on normal extremal trajectories and thus assume that
H ≡ −1/2. In the coordinates h1 = − coshψ, h2 = sinhψ, h3 = c; ψ, c ∈ R, the Hamiltonian
system (4.5) reads as

ψ̇ = cx, ċ = 0, (4.6)

ẋ = coshψ, ẏ = sinhψ, ż =
x2

2
sinhψ. (4.7)
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This system has a first integral E = cx2

2
− sinhψ ∈ R.

Solutions to this system with the initial condition ψ(0) = ψ0, x(0) = y(0) = z(0) = 0 are as
follows.

1) If c = 0, then

ψ ≡ ψ0, x = t coshψ0, y = t sinhψ0, z = t3/6 cosh2 ψ0 sinhψ0.

2) Let c ̸= 0. Denote k =

√
1
2

(
1 + E√

1+E2

)
∈ (0, 1), l =

√
|c|, ±1 = sgn c, æ =

√√
1+E2

2
. Then

sinhψ = 2æ21− k2(1 + sn4 τ)

cn2 τ
,

x = 2æ
dn τ sn τ

l cn τ
,

y = ±2æ

l

(
τ

4k2æ4
− E(τ) +

dn τ sn τ

l cn τ

)
,

z = ± æ

3l3

(( τ

3k2æ2
− 4E E(τ)

)
cn3 τ − 1

4æ2k2
dn τ sn τ + 2E cn2 τ dn τ sn τ + 4æ2k2 cn4 τ dn τ sn τ

)
,

τ = ælt ∈ [0, K(k)).

4.4 Exponential mapping

Formulas of Subsec. 4.3.2 parametrize the exponential mapping

Exp : N →M, Exp(λ, t) = π ◦ etH⃗(λ),
N = {(λ, t) ∈ C × R+ | t ∈ (0,+∞) for c = 0; t ∈ (0,+K/(læ)) for c ̸= 0},
C = T ∗

q0
M ∩ {H = −1/2, h1 < 0}.

Proposition 14. The inclusion Exp(N) ⊂ intB2 holds. Moreover, the mapping Exp : N → intB2

is a real-analytic diffeomorphism.

Proof. A similar argument to that used in the proof of Th. 2 proves the claim.

4.5 Attainable set and existence of optimal trajectories

Theorem 10. We have A2 = B2.

Proof. A similar argument to that used in the proof of Th. 3 proves the required equality.

Theorem 11. Let points q0, q1 ∈ M satisfy the inclusion q1 ∈ A2. Then there exists an optimal
trajectory in problem (4.1)–(4.4).

Proof. A similar argument to that used in the proof of Th. 4 proves the claim.
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4.6 Optimality of extremal trajectories

Define the following function:

t : C → (0,+∞], λ = (ψ0, c) ∈ C,

c = 0 ⇒ t(λ) = +∞,

c ̸= 0 ⇒ t(λ) =
K

læ
.

Theorem 12. Let λ ∈ C, t1 ∈ (0, t(λ)). Then the trajectory q(t) = Exp(λ, t), t ∈ [0, t1], is optimal.

Proof. A similar argument to that used in the proof of Th. 5 proves the claim.

Corollary 4. For any λ ∈ C we have tcut(λ) = t(λ).

Proof. Let λ ∈ C. By virtue of Th. 12, tcut(λ) ≥ t(λ). On the other hand, the extremal trajectory
Exp(λ, t) is defined only for t ∈ [0, t(λ)), thus tcut(λ) = t(λ).

Proposition 15. Any abnormal extremal trajectory is optimal.

Proof. A similar argument to that used in the proof of Propos. 9 proves the claim.

Theorem 13. (1) Let q1 ∈ intA2. Then there exists a unique optimal trajectory Exp(λ, t), t ∈
[0, t1], where (λ, t1) = Exp−1(q1).

(2) Let q1 = (x1, y1, z1) ∈ ∂A2, −y1 < x1 ≤ y1, z1 = z2(x1, y1). Then there exists a unique optimal
trajectory corresponding to a control

u(t) =

{
(1, 1), t ∈ [0, τ1],

(1,−1), t ∈ [τ1, t1],

q(t) =

{
et(X1+X2)(q0), t ∈ [0, τ1],

e(t−τ1)(X1−X2) ◦ eτ1(X1+X2)(q0), t ∈ [τ1, t1],

τ1 = (y1 + x1)/2, t1 = x1.

(3) Let q1 = (x1, y1, z1) ∈ ∂A2, −y1 ≤ x1 < y1, z1 = z1(x1, y1). Then there exists a unique optimal
trajectory corresponding to a control

u(t) =

{
(1,−1), t ∈ [0, τ1],

(1, 1), t ∈ [τ1, t1],

q(t) =

{
et(X1−X2)(q0), t ∈ [0, τ1],

e(t−τ1)(X1+X2) ◦ eτ1(X1−X2)(q0), t ∈ [τ1, t1],

τ1 = (y1 + x1)/2, t1 = x1.

Proof. A similar argument to that used in the proof of Th. 7 proves the claim.
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4.7 Sub-Lorentzian distance

Theorem 14. The distance d(q) = d(q0, q) is real-analytic on intA2 and continuous on M .

Proof. A similar argument to that used in the proof of Th. 8 proves the claim.

4.8 Sub-Lorentzian sphere

Theorem 15. The sphere S is a real-analytic manifold diffeomorphic to R2 parametrized as follows:
S = {Exp(λ, 1) | λ ∈ C}.

Proof. A similar argument to that used in the proof of Th. 9 proves the claim.

See the plot of two sub-Lorentzian spheres S(R1), S(R2) inside the attainable set A2 in Fig. 22.

Figure 22: Spheres inside the attainable set for the second problem

5 Conclusion

The first problem is fundamentally different from the second one by the following properties of the
optimal synthesis:

� some optimal trajectories change causal type,

� extremal trajectories have cut points on the Martinet surface Π,

� the optimal synthesis is two-valued on Π,

� the sub-Lorentzian distance is nonsmooth on Π and suffers a discontinuity of the first kind at
some points of the boundary of the attainable set ∂A1,
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� the sub-Lorentzian sphere S is a manifold with boundary.

These features are associated with non-trivial intersection of the attainable set A1 (the causal
future of the initial point q0) and the Martinet surface Π for the first problem.

The optimal synthesis in the second problem is qualitatively the same as in the sub-Lorentzian
problem on the Heisenberg group [22].
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