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SUMMARY

We study a time minimization problem for a car model on a plane. The problem is a modification of a well-known sub-Riemannian problem in the roto-translation group, where the set of
admissible controls is a circular sector. We prove controllability and existence of optimal trajectories. Then, we apply Pontryagin maximum principle, a necessary optimality condition. We
provide a qualitative analysis of the Hamiltonian system and obtain an explicit expression for the extremal controls and trajectories. We partially study optimality of extremals.

INTRODUCTION

We study a time minimization problem for a car model that can
move forward on a plane and turn with a given minimum turn-
ing radius. The car has two parallel wheels, equidistant from
the axle of the wheelset. Both wheels have independent drives
that can rotate so that the corresponding rolling of the wheels
occurs without slipping. The configuration of the system is de-
scribed by q = (x, y, θ) ∈ M = R2 × S1, where (x, y) ∈ R2 is
the central point, and θ ∈ S1 is the orientation angle of the car.
Thus, M forms the Lie group of roto-translations SE2 ≃ M.

O

The car has two controls: the linear speed u1 and the angular
speed u2. Dynamics at an arbitrary configuration q is given by
q̇ = u1X1(q) + u2X2(q), where Xi are left-invariant vector fields:

X1(q) = cos θ ∂x + sin θ ∂y, X2(q) = ∂θ, X3(q) = sin θ ∂x − cos θ ∂y.

u

u

1

2

Various sets of admissible controls U ∋ (u1, u2) lead to different
models. The time minimization problem for
▶ u1 = 1, |u2| ≤ κ, κ > 0 leads to Dubins car;
▶ |u1| = 1, |u2| ≤ κ, κ > 0 leads to Reeds-Shepp car;
▶ u2

1 + u2
2 ≤ 1 leads to the model whose trajectories are

sub-Riemannian length minimizes, studied by Sachkov;
▶ u2

1 + u2
2 ≤ 1, u1 ̸= 0 studied by Berestovskii;

▶ u1 ≥ 0, u2
1 + u2

2 ≤ 1 leads to the model of a car moving
forward and turning in place, studied by Duits;

▶ u1 = r cosϕ, u2 = r sinϕ, 0 ≤ r ≤ 1, |ϕ| ≤ α leads to a
model with control in a sector, studied in this work.

The problem is a modification of a well-known sub-Riemannian
problem. The problem is of interest in geometric control theory
as a model example, in which the set of admissible controls
contains zero on the boundary. The trajectories of this system
are applicable in image processing to detect salient lines. They
aim to solve the “cusp problem” of the sub-Riemannian model.

STATEMENT OF THE PROBLEM

Consider the following control system:
ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u2,

(x, y, θ) = q ∈ SE2 = M,

u1 = r cosϕ, u2 = r sinϕ,
0 ≤ r ≤ 1, |ϕ| ≤ α, 0 < α ≤ π

2.

For given boundary conditions q0, q1 ∈ M, we aim to find the
controls u1(t), u2(t) ∈ L∞([0,T ],R), such that the corresponding
trajectory γ : [0,T ] → M transfers the system from the initial
state q0 to the final state q1 by the minimal time:

γ(0) = q0, γ(T) = q1, T → min .

Due to invariance under SE2 action w.l.o.g. we set q0 = (0, 0, 0).

EXISTENCE OF THE SOLUTION

By Lie saturation method we prove that there exists a trajectory
connecting any q0 and q1. Further, a question of existence of
optimal trajectories arises: does there always exist an admis-
sible trajectory that connects the boundary conditions by mini-
mal time? For our problem, due to compactness and convexity
of U and global controllability existence of optimal trajectories
is guaranteed by the Filippov theorem.
Theorem. In the time minimization problem on the roto-
translation group with admissible control in a circular sector
with a convex central angle, there always exists an optimal tra-
jectory that transfers the system from an arbitrary given initial
configuration to an arbitrary given final configuration.
We also prove that the system is not small time controllable,
i.e. the attainable set At

q0
from q0 by time ≤ t may not contain

q0 in its interior: ∃t > 0 : q0 ̸∈ intAt
q0

.
Theorem. Let T = 2π

sinα. Then for any ϵ > 0 and any q0 ∈ M the
system is locally controllable at the point q0 for time not greater
than T + ϵ, i.e., q0 ∈ intAT+ϵ

q0
.

PONTRYAGIN MAXIMUM PRINCIPLE

A necessary optimality condition is given by PMP.
Denote hi = ⟨λ,Xi⟩, λ ∈ T∗M.
The Pontryagin function reads as Hu = u1h1 + u2h2.
The Hamiltonian system is given by

ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u2,


ḣ1 = −u2h3,

ḣ2 = u1h3,

ḣ3 = u2h1.

The subsystem for state variables x, y, θ is called the horizon-
tal part, and the subsystem for adjoint variables h1, h2, h3 is
called the vertical part of the Hamiltonian system. An extremal
control is determined by the vertical part, while an extremal
trajectory is a solution to the horizontal part.
The maximum condition reads as H = max

u∈U
Hu.

The nontriviality condition implies that if h1 = h2 = 0 then the
corresponding extremal is trivial, i.e., it is a fixed point.
Let h1 = ρ cosψ, h2 = ρ sinψ, ψ ∈ (−π, π], ρ > 0.
The maximum condition implies the following.
For |ψ| ∈ (π2 + α, π]: H = 0, u1 = u2 = 0.
For ±ψ = π

2 + α: H = 0, u1 = r cosα, u2 = ±r sinα.
For ±ψ ∈ (α, π2+α): H=h1 cosα±h2 sinα, u1=cosα, u2=± sinα.

For |ψ| ≤ α: H =
√

h2
1 + h2

2, u1 = cosψ, u2 = sinψ.

FIRST INTEGRALS

The vertical part has the first integrals:
the Hamiltonian (the maximized Pontryagin function)

H =


√

h2
1 + h2

2, for |ψ| ≤ α,

h1 cosα + |h2| sinα, for α < |ψ| < α + π
2,

0, for |ψ| ≥ α + π
2.

and the Casimir E =
h2

1
2 +

h2
3

2 .
The case H = 0 is called abnormal; H = 1 is called normal.

ABNORMAL EXTREMALS

Abnormal extremal controls are given by u1(t) = r(t) cosα,
u2(t) = ±r(t) sinα, where 0 ≤ r(t) ≤ 1 and the sign ± is fixed.
It corresponds to motion of a car along an arc of a circle of
minimal possible radius. It is easy to show that if r(t) < 1
then the trajectory is not optimal. The trajectories for r(t) ≡ 1
are not strictly abnormal, i.e. they are also normal extremals.

NORMAL EXTREMALS

The level surface of the Hamiltonian H = 1 consists of two
half-planes glued with a segment of the cylinder, and the level
surface of the Casimir E ≥ 0 is a cylinder.

To analyse the vertical part we use technique of convex
trigonometry. Along the extremal trajectories we have

u1 = cosϕ, u2 = sinϕ, h1 = cosUo ϕo, h2 = sinUo ϕo,

where Uo is the polar set to U, cosUo and sinUo are the functions
of convex trigonometry. Denote K(ϕo) = 1

2 cos
2
Uo ϕo. The vertical

part is reduced to the system ϕ̇o = h3, ḣ3 = K′(ϕo).
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Analyzing the phase portrait we conclude:
▶ E = 0 ⇒ (ϕo, h3) ≡ (±(α + cotα), 0) is stable equilibrium;
▶ E ∈ (0, 1

2) ∪ (1
2,+∞) ⇒ the trajectory (ϕo, h3)(t) is periodic;

▶ E = 1
2 ⇒ either (ϕo, h3) ≡ (0, 0) is unstable equilibrium or

(ϕo, h3)(t) is a separatrix.

EXPLICIT EXPRESSION OF EXTREMALS

We introduce rectifying coordinates for the vertical part and
derive explicit expression for the extremals.
▶ For stable equilibrium, the corresponding extremal

trajectory is given by a segment of a straight line. It is
optimal up to infinity.

▶ For periodic adjoint trajectories, depending on the sign of
a = sign(|ϕo| − α) = sign(h1(t)− cosα), we have two
different dynamics. When a switches, the dynamics switch
from one to another. The corresponding solution to the
horizontal part is given by consequent concatenation of
motions of a car along an arc of the circle and an arc of
the sub-Riemannian geodesic.

▶ For unstable equilibrium, the corresponding extremal
trajectory is given by motion of a car along the circle.

▶ For separatrix, the extremal trajectory is given by
concatenation of maximum three intervals (possibly zero
length): motion along a segment of the tractrix, an arc of
the circle, a segment of the tractrix.

For α < π
2 we also derive explicit parametrization of the ex-

tremals by the arc-length in the plane Oxy. It is always possible
for nontrivial trajectories since u1 > 0.
For α = π

2, projection to Oxy of the extremals coincide with the
projection of sub-Riemannian geodesics, while the dynamics
of θ differs: cusp points are replaced by in-place rotations. An
optimal motion can not have internal in-place rotations.
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