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Abstract: We study a time-optimal problem in the roto-translation group with admissible control
in a circular sector. The problem reveals the trajectories of a car model that can move forward on a
plane and turn with a given minimum turning radius. Our work generalizes the sub-Riemannian
problem by adding a restriction on the velocity vector to lie in a circular sector. The sub-Riemannian
problem is given by a special case when the sector is the full disc. The trajectories of the system are
applicable in image processing to detect salient lines. We study the local and global controllability
of the system and the existence of a solution for given arbitrary boundary conditions. In a general
case of the sector opening angle, the system is globally but not small-time locally controllable. We
show that when the angle is obtuse, a solution exists for any boundary conditions, and when the
angle is reflex, a solution does not exist for some boundary conditions. We apply the Pontryagin
maximum principle and derive a Hamiltonian system for extremals. Analyzing a phase portrait of
the Hamiltonian system, we introduce the rectified coordinates and obtain an explicit expression
for the extremals in Jacobi elliptic functions. We show that abnormal extremals are of circular type,
and they correspond to motions of a car along circular arcs of minimal possible radius. The normal
extremals in a general case are given by concatenation of segments of sub-Riemannian geodesics in
SE2 and arcs of circular extremals. We show that, in a general case, the vertical (momentum) part of
the extremals is periodic. We partially study the optimality of the extremals and provide estimates
for the cut time in terms of the period of the vertical part.

Keywords: geometric control; model of a car; extremal trajectories; Pontryagin maximum principle;
group of motions of a plane

MSC: 49K15

1. Introduction

Consider a car model that can move forward on a plane and turn with a given
minimum turning radius (see Figure 1). The car has two wheels, equidistant from the
axle of the wheelset. Both wheels have independent drives that can rotate so that the
corresponding rolling of the wheels occurs without slipping. The configuration of the
system is described by the triple q = (x, y, θ) = R2 × S1, where (x, y) ∈ R2 is the central
point, and θ ∈ S1 is the orientation angle of the car. In such a way, the configuration space
forms the Lie group of roto-translations SE2 ' R2 × S1.

The car has two controls: the tangential velocity u1 and the angular velocity u2.
Consider the configuration Id = (0, 0, 0), when the car is located at the origin and oriented
along the positive direction of Ox. An infinitesimal translation is generated by the vector
∂x and rotation by the vector ∂θ . They are possible motions controlled by u1 and u2. The
remaining direction ∂y is forbidden since the immediate motion of the car in a direction
perpendicular to its wheels is not possible. Thus, the dynamics of the car at the origin is
given by ẋ = u1, ẏ = 0, and θ̇ = u2.
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Figure 1. A model of a car that can move forward and turn within a given minimal radius. The
control u1 is responsible for moving forward and u2 for the turn.

The origin Id is the unit element of the group SE2 (see Section 2). Any element q ∈ SE2
is generated by the left translation Lq Id. The dynamics at an arbitrary configuration q are

q̇ = u1X1(q) + u2X2(q), (1)

where Xi represents left-invariant vector fields (see Section 2).
Various sets of admissible controls U 3 (u1, u2) lead to different models (see Figure 2).

The time-optimal problem for

• u1 = 1, |u2| ≤ κ, κ > 0 leads to Dubins car [1];
• |u1| = 1, |u2| ≤ κ, κ > 0 leads to Reeds–Shepp car [2];
• u1 ≥ 1, u1 + |u2| ≤ κ < 1 leads to a generalized Dubins car, studied by Ardentov [3];
• u2

1 + u2
2 ≤ 1 leads to the model whose solutions are sub-Riemannian length minimals,

studied by Sachkov [4];
• u2

1 + u2
2 ≤ 1, u1 6= 0 leads to the model studied by Berestovskii [5];

• u1 ≥ 0, u2
1 + u2

2 ≤ 1 leads to the model of a car moving forward and turning in place,
proposed by Duits [6];

• u1 = r cos φ, u2 = r sin φ, 0 ≤ r ≤ 1, |φ| ≤ α leads to the general model of a car with
control in a circular sector, which is studied in this paper.

Figure 2. Set of admissible controls for various models of a car on a plane: Dubins car [1]; Reeds–
Shepp car [2]; Ardentov model [3] (generalized Dubins car); Sachkov model [4] (sub-Riemannian
problem); Berestovskii model [5]; Duits model [6]; our model with control in a sector.
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In 1957, Dubins described [1] the problem of finding the shortest path for a car in
plane moving with no reverse gear from an initial configuration (position and direction) to
a final configuration penalizing the curvature of its trajectory in the plane. Later in 1990,
Reeds and Shepp studied [2] the same problem, but for a car that has reverse gear. Both
papers are devoted to a description of the general shape of the optimal paths, without
providing explicit solutions for given boundary conditions. It was shown that the optimal
trajectories of Dubins and Reeds–Shepp cars are given by concatenation of arcs of a circle
of minimum possible radius (circular trajectories) and segments of a straight line (straight
trajectories). In a recent study [3], Ardentov refines the Dubins model by considering the
bounded angular speed of two wheels, which results in maximal tangential speed when
the car is moving straight. For the refined model, extremal trajectories have been found.
They are also given by concatenation of circular and straight trajectories. Note that such
trajectories have bounded curvature: the upper bound is given by reciprocal to the minimal
turning radius.

In 2011, Sachkov [4] obtained optimal synthesis in a sub-Riemannian problem in
SE2. This problem can be seen as the shortest path problem for a car that can move
forward/backward and turn in place. In such a model, the curvature of trajectories is
unbounded, and it was shown that optimal trajectories may contain cusp points, the points
where the direction of motions is switching to the opposite one. Berestovskii [5] studied
segments of the trajectories that contain no cusps and can be parameterized by the length
of the planar projection.

In 2018, Duits and coauthors [6] studied a modification of the sub-Riemannian problem
obtained by the restriction of the reverse gear. In the Duits model, the car can move forward
and rotate in place, but it cannot move backward. Motivation came from image analysis
applications, where the trajectories of the car are used to detect salient lines in images.
An exact expression for the extremals was obtained in [7]. The original idea of the Duits
model was to reduce the number of undesirable cusp points by suppressing the backward
motions. However, it turned out that the cusp points are replaced by turning points (the
points of in-place rotation on π radians), and the projection of extremal trajectories of the
Duits car to the image plane coincide with the projection of sub-Riemannian geodesics in
SE2. This observation shows that in order to entirely solve the “cusp problem", the model
needs further adaptation. In the present paper, we propose a model of a car that can move
forward, stay in place, and turn with a given minimal turning radius. Trajectories of this
system a priori cannot have cusp points in the planar projection.

The problem of transferring the car between the given initial and final configurations
is known in robotics as a motion planning problem. There are different approaches to
tackle this problem [8]. Introducing a cost function for the system leads to an optimal
control problem. Such optimal control problems are tackled by various numerical methods,
see, e.g., [9]. However, exact solutions (optimal synthesis) are known only for a few of the
simplest models in robotics [4,10]. In the present paper, we obtain explicit expressions for
extremals in a more complicated model with control in a circular sector.

System (1) arises in the modeling of the human visual system. An important discovery
of the neurophysiology of vision was made by Hubel and Wiesel in 1959 [11], who showed
that in the striate cortex of a cat, there exist groups of neurons sensitive to positions and
directions (orientations). In the first stage of processing, the image is lifted by the brain
to the extended space of positions and directions. In [12], a sub-Riemannian structure on
the Heisenberg group was proposed for contour perception and completion. The model
was refined in [13] by taking into account the global nature of the orientation angle. The
roto-translation group SE2 endowed with a sub-Riemannian metric has been proposed to
model the functional architecture of the primary visual cortex. This model is known as
the Petiot–Citti–Sarti model, where sub-Riemannian geodesics (extremal trajectories) are
used for the completion of occluded contours. The usage of sub-Riemannian geodesics for
modeling the association field in the psychophysiology of vision was studied in [14]. It was
shown that good candidates for the association field lines are given by sub-Riemannian
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geodesics with cuspless planar projection. Application of sub-Riemannian geodesics for
modeling illusory contours in geometrical optical illusions has been studied in [15,16].

The principles of biological visual systems are actively used in computer vision. Based
on these principles, effective image processing methods are created, e.g., image reconstruc-
tion [17] and detection of salient lines in images [18,19]. In [18], optimal trajectories of a
System (1) are used to detect salient lines in images. The motivation for our study is to solve
the problem of cusp points that appear in the salient line detection method [18], which
is based on tracking via sub-Riemannian geodesics. At such points, the car reverses its
direction of motion, and a detected salient line has an undesirable cusp point. In our model
with control in a circular sector with an acute opening angle, the cusp points are impossible.

Our work generalizes the sub-Riemannian problem [4] by adding a restriction on the
velocity vector to lie in a circular sector. The sub-Riemannian problem is given by a special
case when the sector is the full disc. In addition to its importance for applications, the
problem under study is of independent interest in geometric control theory [20] as a model
example of an optimal control problem in which zero control lies on the boundary of the
set of control parameters.

The problem can be seen as a rolling geodesic problem [21,22], where a disc is rolling
on a plane. We explicitly derive the geodesics and analyze their optimality.

In the present paper, we study the time-optimal problem for System (1) with control
in a circular sector. We generalize the results [7], where we studied the special case
of admissible controls in a half-disc. The present paper is an extended version of the
preliminary work [23], where we studied the case of the sector opening angle less than
π and parameterized the extremal trajectories by the length of their planar projection
(s–parametrization). Now we study the general case of the sector opening angle and derive
the explicit formulas for the time-parameterized extremals (t–parametrization), which is
natural for time-optimal problems. We also provide an analysis of their optimality.

The present paper is organized as follows. In Section 2, we give preliminary materials
on the Lie group SE2. In Section 3, we formulate an optimal control problem under
consideration. In Section 4, we study local and global controllability (see Definitions 1–3)
of the system and the existence of a solution for given arbitrary boundary conditions. In
Section 5, we apply a necessary optimality condition, the Pontryagin maximum principle
(PMP), and describe a phase portrait of the Hamiltonian system of PMP. In Section 6, we
integrate the Hamiltonian system and obtain an explicit expression for the extremals. In
Section 7, we partially study the optimality of the extremals and provide estimates for the
cut time.

2. Preliminaries

The roto-translation group SE2 is the group of proper motions of the Euclidean plane.
Any such motion q = (x, y, θ) ∈ SE2 consists of a rotation around a given point on angle
θ ∈ S1 = R/2πZ and a parallel translation on a vector (x, y) ∈ R2.

The composition of two motions results in the product of two elements q′, q ∈ SE2:

q′ · q = (x cos θ′ − y sin θ′ + x′, x sin θ′ + y cos θ′ + y′, θ + θ′).

The identical transformation of the plane is the unit element Id = (0, 0, 0) ∈ SE2.
For any q ∈ SE2, there exists q−1 ∈ SE2 such that q−1 · q = q · q−1 = Id given by

q−1 = (−x cos θ − y sin θ, x sin θ − y cos θ, −θ).

Note that the group operation is not commutative. The left translation is defined as

Lq′q = q′ · q.
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The tangent space TId SE2 = span(∂x, ∂y, ∂θ) with the Lie bracket operation

[∂x, ∂y] = 0, [∂x, ∂θ ] = −∂y, [∂y, ∂θ ] = ∂x

forms the Lie algebra se2. It is isomorphic to the Lie algebra of the left-invariant vector field
span(X1, X2, X3), where the vector fields Xi are obtained via push-forward

X1(q) = Lq∗∂x = cos θ ∂x + sin θ ∂y,

X2(q) = Lq∗∂θ = ∂θ ,

X3(q) = Lq∗(−∂y) = sin θ ∂x − cos θ ∂y.

3. Statement of the Problem

For a given angle α ∈ [0, π], consider the following control system:
ẋ = u1 cos θ,
ẏ = u1 sin θ,
θ̇ = u2,

(x, y, θ) = q ∈ SE2,

(u1, u2) ∈ U,

U = {(r cos φ, r sin φ)
∣∣ 0 ≤ r ≤ 1, |φ| ≤ α}.

(2)

For given boundary conditions q0, q1 ∈ SE2, we aim to find the controls u1(t), u2(t) ∈
L∞([0, T],R) such that the corresponding trajectory q : [0, T] → SE2 transfers the system
from the initial q0 to the final configuration q1 in minimal time:

q(0) = q0, q(T) = q1, T =
∫ T

0
dt→ min . (3)

Remark 1. The problem is invariant under the left action of SE2 since the vector fields X1 and X2
are left-invariant. Due to this property without loss of generality, we set q(0) = Id.

4. Existence of the Solution
4.1. Controllability and Existence of Optimal Controls

In this section, we study the existence of the solution in Problem (2), (3). First, we give
some necessary definitions.

Denote by A the attainable set [20] of System (2) from Id for any non-negative time.

Definition 1. System (2) is called globally controllable if A = SE2.

In other words, a control system is globally controllable if any two points of its
configuration space can be connected by an admissible trajectory.

Let t ≥ 0. Denote by A≤t the attainable set of System (2) from Id ∈ SE2 for time ≤ t.
Denote by intA≤t the interior of the set A≤t.

Definition 2. System (2) is called small-time locally controllable at Id if for all t > 0 , there holds
the inclusion intA≤t 3 Id .

Definition 3. System (2) is called locally controllable for time t > 0 at Id if intA≤t 3 Id .

Next, we provide an analysis of global and small-time local controllability of System (2)
and study the existence of optimal control. We show that there are four different possible
cases depending on the domain of angle α. The result is gathered in Theorem 1.

Theorem 1. Consider Problem (2), (3) with q0 = Id. The following statements hold:

1. For α = 0, the system is not globally controllable. The attainable set isA = {(x, 0, 0) | x ≥ 0}.
For any q1 ∈ A, there exists a unique optimal trajectory;
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2. For α ∈ (0, π
2 ], the system is globally controllable, but not small-time locally controllable. For

any q1 ∈ SE2, there exists an optimal trajectory;
3. For α ∈ (π

2 , π), the system is globally controllable and small-time locally controllable. An
optimal trajectory does not exist for some boundary conditions;

4. For α = π, the system is globally and small-time locally controllable. For any q1 ∈ SE2, there
exists an optimal trajectory.

Proof. First, we show that the system is not globally controllable if α = 0. Indeed, when
α = 0, System (2) is reduced to q̇ = u1X1(q), u1 ∈ [0, 1], q(0) = Id, and the attainable
set A≤t is a segment of the trajectory eτX1(Id) = (τ, 0, 0), 0 ≤ τ ≤ t. Consequently, the
attainable set for any non-negative time is a ray A = {(x, 0, 0) | x ≥ 0}. The optimal control
is given by u1 ≡ 1, and there exists a unique optimal trajectory, a segment of a straight line,
which transfers the system from Id to any element q1 ∈ A.

Next, we provide three different proofs of global controllability for α 6= 0. The global
controllability of System (2) for α 6= 0 follows from the global controllability of Dubins
car (see [1]). Indeed, the sets of admissible trajectories of the two systems are the same,
since the convex cones of the sets of admissible controls in these problems coincide with
one another. Thus, the controllability of the Dubins car is equivalent to the controllability
of our problem. The second proof follows from the general statement in [24]. According
to [24], a left-invariant system is globally controllable on SE2 if and only if the system is full-
rank (bracket generating), i.e., the Lie algebra at every point forms the full tangent space.
We have Lie(cos αX1 + sin αX2, cos αX1 − sin αX2) = span(X1, X2, X3), thus System (2) is
globally controllable. The third proof of controllability is given in [23]. It relies on the Lie
saturation method (see [20]), which is standard in geometric control theory.

Now we study the case α ∈ (0, π
2 ]. For any u ∈ U, we have u1 ≥ 0. Thus,

x(t) =
∫ t

0
u1(τ) cos θ(τ)dτ ≥ 0 for small t > 0.

Consequently, System (2) is not small-time locally controllable for α ∈ (0, π
2 ]. Further,

in Theorem 2, we give a precise time estimate for local controllability in this case. The
existence of an optimal trajectory that transfers the system for α ∈ (0, π

2 ] from Id to
any q1 ∈ SE2 is guaranteed by the Filippov theorem [20]. Indeed, all the conditions of
the Filippov theorem hold due to the compactness and convexity of U and the global
controllability of the system.

Next, we analyze the case α ∈ (π
2 , π). First, we show that the system is small-time

locally controllable. To this end, we consider a convex closure V = co(U) of the set U and
the corresponding relaxed control system (2) with the set of admissible controls V 3 (u1, u2).
Denote by B≤t the attainable set of the relaxed system by time ≤ t. Since 0 ∈ int V and the
relaxed system is full-rank, it is small-time locally controllable, i.e., for all t > 0, we have
intB≤t 3 Id. By Thm. 8.2 of [20], the attainable sets of the original and the relaxed systems
are related by B≤t ⊂ A≤t, where S is the closure of a set S. Thus, intA≤t 3 Id. Since the
original system is full-rank, we have intA≤t 3 Id, and hence we prove that the system is
small-time locally controllable.

In the case α ∈ (π
2 , π), the set U is not convex. Now we show that there exists a

boundary condition q1 for which an optimal trajectory does not exist. Consider q1 =
(cos α, 0, 0). We show that it satisfies the following conditions:

(a) inf{t1 > 0 | there exists a trajectory q(·), s.t. q(0) = Id, q(t1) = q1} ≤ 1;
(b) A trajectory q(·), s.t. q(0) = Id, q(1) = q1 does not exist.
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It is obvious that Conditions (a) and (b) imply the nonexistence of optimal trajectory
connecting Id and q1. Let us prove Item (a). Let n ∈ N. Consider the following control:

t ∈
[

i
n

,
2i + 1

2n

)
⇒ u1(t) = cos α, u2(t) = sin α, (4)

t ∈
[

2i + 1
2n

,
i + 1

n

]
⇒ u1(t) = cos α, u2(t) = − sin α. (5)

For u1 = cos α, u2 = ± sin α, the corresponding trajectory satisfies the following ODE:

ẋ = cos α cos θ, ẏ = cos α sin θ, θ̇ = ± sin α, (x, y, θ)(0) = (x0, y0, θ0),

and is given by

x(t) = x0 ± cot α(sin(θ0 ± t sin α)− sin θ0),

y(t) = y0 ∓ (cos(θ0 ± t sin α)− cos θ0),

θ(t) = θ0 ± t sin α.

Thus, the trajectory (x, y, θ)(t) with Controls (4) and (5) departing from Id has an
end point

x(1) = xn = 2n cot α sin
(

sin α

2n

)
→ cos α, n→ +∞,

y(1) = yn = 2n
(

1− cos
(

sin α

2n

))
→ 0, n→ +∞,

θ(t) = 0.

Therefore, point qn = (xn, yn, 0) is attainable from Id by time t1 = 1, and we have
qn → q1 when n → +∞. However, the system is small-time locally controllable at any
point, thus for any ε > 0, an attainable set in reverse time from point q1 for time ≤ ε
contains a neighborhood of point q1. Therefore, for any ε > 0, point q1 is attainable from q0
by time 1 + ε, and Item (a) is proved.

Now we prove Item (b). Assume that there exists a trajectory that transfers the system
from Id to q1 for time t1 = 1. The corresponding control has the form

u1(t) = r(t) cos φ(t), u2(t) = r(t) sin φ(t), r(t) ∈ [0, 1], φ(t) ∈ [−α, α].

Then,

x(1) = cos α =
∫ 1

0
r(t) cos φ(t) cos θ(t)dt, (6)

θ(1) = 0 =
∫ 1

0
r(t) sin φ(t)dt. (7)

Assume that the function cos θ(t) changes its sign on the segment t ∈ [0, 1]. Then,
for some t ∈ [0, 1], we have θ(t) ∈

(
π
2 , π

]
∪ [−π,−π

2 ). However, |θ̇| = |u2| ≤ 1;
therefore, t > π

2 > 1, and we obtain a contradiction. Thus, cos θ(t) > 0 for t ∈ [0, 1].
Then, we have r(t) cos θ(t) cos φ(t) ≥ cos α, and from (6), we conclude that |φ(t)| ≡ α,
r(t) ≡ 1, θ(t) ≡ 0, which contradicts (7), and Item (b) is proved.

The case α = π coincides with the well-known sub-Riemannian problem in SE2
studied in [4]. In this case, the system is globally and small-time locally controllable. For
any q1 ∈ SE2, there exists an optimal trajectory (sub-Riemannian length minimizer) from Id
to q1, which is explicitly computed in [4]. Note that for some boundary conditions q1 ∈ SE2,
there exist two distinct length minimizers. Such points are located on the so-called Maxwell
set. In the general case, when q1 does not belong to the Maxwell set, there exists a unique
optimal trajectory from Id to q1.
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Remark 2. In Theorem 1, we showed that α = 0 and α ∈
(

π
2 , π

)
, Problem (2), (3) is ill-posed,

and the case α = π gives rise to a well-known sub-Riemannian problem in SE2 where the optimal
synthesis is known. In the remainder of this paper, we consider the case α ∈

(
0, π

2
]
, which is an

open, well-posed problem.

Remark 3. For α ∈
(

π
2 , π

)
, a natural modification of the ill-posed time minimization problem in a

circular sector is given by replacing the set of admissible controls U by its convex closure.

4.2. Local Controllability

In this subsection, we study the local controllability of System (2) for α ∈
(
0, π

2
]
.

In Theorem 1, we showed that the system is not small-time locally controllable. In this
subsection, we find an instant of time T > 0 at which the local controllability is attained.

We denote

• By At, the attainable set of System (2) from Id for a time t > 0;
• By A≤t, the attainable set of System (2) from Id for time not greater than t;
• By Aq

≤t, the attainable set of System (2) from q ∈ SE2 for time not greater than t.

Theorem 2. Let α ∈
(
0, π

2
]
, and let T = 2π

sin α . Then, for any ε > 0, System (2) is locally
controllable at Id for time not greater than T + ε, i.e.,

Id ∈ intA≤T+ε.

The proof of this theorem follows from the next Lemmas 1–3.

Lemma 1. For any t > 0, the point (−t, 0, 0) ∈ AT+t.

Lemma 2. For any t > 0 and any ε > 0, the point (t, 0, 0) ∈ intA≤t+ε.

Lemma 3. For any t > 0 and any ε > 0, the point Id ∈ intA(−t,0,0)
≤t+ε .

Now we prove Theorem 2 on the basis of Lemmas 1–3.

Proof. Fix any ε > 0, and denote q1 = (−ε/2, 0, 0) ∈ SE2. It follows from Lemma 1 that
q1 ∈ AT+ε/2. Further, it follows from Lemma 3 that Id ∈ Aq1

≤ε/2. However

Aq1
≤ε/2 ⊂ A≤T+ε/2+ε/2 = A≤T+ε ,

thus Id ∈ intA≤T+ε.

Now we prove Lemma 1.

Proof. Fix any t > 0. Consider the following admissible control:

u(s) =

{
(cos α, sin α), s ∈ [0, T/2] ∪ [T/2 + t, T + t],
(1, 0), s ∈ (T/2, T/2 + t).

Then, immediate computation shows that the corresponding trajectory q(s) passes
through the points

q(T/2) = (0, 2 cot α, π), q(T/2 + t) = (−t, 2 cot α, π), q(T + t) = (−t, 0, 0).

Further, we prove Lemma 2.
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Proof. Denote the vector field Xϕ = cos ϕ X1 + sin ϕ X2, |ϕ| ≤ α. Consider the mapping

F(s, ϕ1, ϕ2) = exp(sXϕ2) ◦ exp(sXϕ1)(Id) ∈ A2s, s > 0, |ϕi| ≤ α. (8)

Let t > 0, p =
( t

2 , 0, 0
)
∈ (0,+∞)s × [−α, α]ϕ1 × [−α, α]ϕ2 , and let q = F(p) =

exp(tX1)(Id) = (t, 0, 0) ∈ SE2. Then

∂ F
∂ s

(p) = X1(q),

∂ F
∂ ϕ1

(p) =
t
2

X2(q),

∂ F
∂ ϕ2

(p) =
(

X2 −
t
2

X3

)
(q),

thus
∂ F

∂ (s, ϕ1, ϕ2)
(p) = − t2

4
6= 0. (9)

Fix any ε ∈ (0, t/2). Consider the mapping

F : D → SE2, D =

(
t− ε

2
,

t + ε

2

)
s
× [−α, α]ϕ1 × [−α, α]ϕ2

given by (8). Notice that p ∈ int D. In view of (9), by the inverse function theorem, F is a
local diffeomorphism from a neighborhood of p onto a neighborhood of F(p) = q ∈ SE2.
Thus, q ∈ int F(D). However F(D) ⊂ A≤t+ε, so q = (t, 0, 0) ∈ intA≤t+ε.

Finally, we prove Lemma 3.

Proof. Fix any t > 0 and any ε ∈ (0, t/2). By Lemma 2, the point q2 := (t, 0, 0) ∈ intA≤t+ε.
System (2) is invariant with regard to left translations Lq : SE2 → SE2, q ∈ SE2, thus

L−1
q2

(q2) = Id ∈ intAq3
≤t+ε, q3 = L−1

q2
(Id) = (−t, 0, 0) ∈ SE2 .

Remark 4. There is numerical evidence that the lower bound T + ε, ε > 0, of the time at which the
local controllability is attained (see Theorem 2) is exact, i.e., Id /∈ intA≤T .

5. Pontryagin Maximum Principle
5.1. Hamiltonian System and Maximality Condition

A necessary optimality condition is given by the Pontryagin maximum principle
(PMP) [20,25]. In this section, we apply the PMP to Problem (2), (3).

Let p ∈ T∗q SE2. Define the Pontryagin function

Hu(p, q) = 〈p, u1X1(q) + u2X2(q)〉 = u1(p1 cos θ + p2 sin θ) + u2 p3,

where (p1, p2, p3) are canonical coordinates in the cotangent space T∗q SE2 corresponding to
the coordinates (x, y, θ) in SE2.

The PMP states the following. Let u(t), q(t), t ∈ [0, T] be an optimal control and the
corresponding optimal trajectory. Then, there exists a Lipshitzian curve p(t) for which
p2

1(t) + p2
2(t) + p2

3(t) 6= 0 for t ∈ [0, T] (the nontriviality condition), and the following
conditions hold for almost every t ∈ [0, T]:

1. The Hamiltonian system

ṗ(t) = −∂Hu

∂q
(p(t), q(t)), q̇(t) =

∂Hu

∂p
(p(t), q(t));
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2. The maximality condition

Hu(t)(p(t), q(t)) = max
u∈U

Hu(p(t), q(t)) = H(p(t), q(t)) ≥ 0.

The maximized Pontryagin function H(p, q) is called the Hamiltonian. It is the first
integral of the Hamiltonian system. The case H = 0 is called abnormal, and the case H > 0
is called normal.

Natural coordinates for left-invariant systems [20] are given linearly on fibers of
cotangent bundle Hamiltonians hi associated with the basis left-invariant vector fields:
hi(p, q) = 〈p, Xi(q)〉, p ∈ T∗q SE2. In canonical coordinates, they read as

h1 = p1 cos θ + p2 sin θ, h2 = p3, h3 = p1 sin θ − p2 cos θ.

The Pontryagin function takes the form

Hu = u1h1 + u2h2. (10)

The Hamiltonian system is given by
ẋ = u1 cos θ,
ẏ = u1 sin θ,
θ̇ = u2,


ḣ1 = −u2h3,
ḣ2 = u1h3,
ḣ3 = u2h1.

(11)

The subsystem for state variables x, y, and θ is called the horizontal part, and the
subsystem for adjoint variables h1, h2, and h3 is called the vertical part of the Hamiltonian
system.

Now we analyze the maximum condition

H = max
u∈U

Hu = max
u∈U

(h1u1 + h2u2).

Note that the Pontryagin function Hu can be seen as a scalar product of two vectors
(h1, h2) ∈ R2 and (u1, u2) ∈ U ⊂ R2. From this point of view, the maximum condition has
a clear geometric interpretation (see Figure 3).

Introduce polar coordinates in the planes Oh1h2 and Ou1u2:

h1 = ρ cos ψ, h2 = ρ sin ψ, ψ ∈ (−π, π], ρ ≥ 0;
u1 = r cos φ, u2 = r sin φ, φ ∈ (0, α] ⊂ (0, π

2 ), r ∈ [0, 1].

Figure 3. The maximum condition.

For |ψ| ∈ (π
2 + α, π], we have H = 0 and u1 = u2 = 0. In this case, we have trivial

abnormal extremals.
For ψ = ±

(
π
2 + α

)
, we have H = 0, u1 = r cos α, and u2 = ±r sin α. In this case, we

have nontrivial abnormal extremals. We study them in detail in Section 5.2.
For ρ = 0, we have H = 0 for any (u1, u2) ∈ U. In this case, we have abnormal

extremals. Since the Hamiltonian H = 0 is constant along the extremals, the point ρ = 0
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can lie on a trivial or a nontrivial abnormal extremal that we listed in the two cases above.
Further, we consider ρ > 0.

For ±ψ ∈ (α, π
2 + α), we have u1 = cos α, u2 = ± sin α. In this case, we have H =

ρ cos(α∓ ψ) > 0 and the normal extremals corresponding to the motion of a car along a
circle of minimal possible radius, as we will show in Section 5.3.

For |ψ| ≤ α, we have u1 = cos ψ, u2 = sin ψ. In this case, we have H = ρ > 0 that
and the normal extremals corresponding to the motion of a car along sub-Riemannian
geodesics, as we will show in Section 5.3.

5.2. Abnormal Case H = 0

Trivial abnormal extremal control (u1, u2) ≡ 0 corresponds to the fixed point of the
Hamiltonian system.

Nontrivial abnormal extremal controls are given by

u1(t) = r(t) cos α, u2(t) = sign(ψ(t)) r(t) sin α, where 0 ≤ r(t) ≤ 1.

Proposition 1. If an admissible control u(t) = (u1, u2)(t) ∈ U, t ∈ [0, T] is not arc length
parameterized, i.e., there exists a positive measure set σ ⊂ [0, T] such that u2

1(t) + u2
2(t) < 1 for

t ∈ σ, then u(t) is not optimal.

Proof. Let r(t) =
√

u2
1(t) + u2

2(t) for a given trajectory. Let us show that if 0 ≤ r(t) < 1
on a set σ ⊂ [0, T] of measure µ(σ) > 0, then the trajectory is not optimal. First, note that
if r(t) = 0 for all t ∈ σ, then this part of the trajectory is a fixed point. Staying in place is
not optimal in a time minimization problem. Now, if r(t) ∈ (0, 1) for t ∈ σ, then one can
reparametrize the trajectory with ds = r(t)dt. In this case, the support of the trajectory
stays the same, new controls are also admissible, but the new motion time S becomes
strictly less than the original one:

S =
∫ S

0
ds =

∫ T

0
r(t)dt =

∫
σ

r(t)dt +
∫
[0,T]\σ

r(t)dt < µ(σ) + µ([0, T] \ σ) = T.

Further, we consider arclength parameterized abnormal extremals.

Theorem 3. Abnormal arclength parameterized extremal controls are piecewise constant

u1(t) = cos α, u2(t) = s2(t) sin α, where s2(t) ∈ {−1, 1},

with switching times (discontinuity points of s2(t)) differing by π
sin α . The corresponding trajectories

are motions of a car along circular arcs of the minimal possible radius by angle π (except the first
and the last arcs, which may have angles not greater than π).

Proof. Abnormal extremals satisfy the statements of the PMP: the maximum condition,
the Hamiltonian system (11), and nontriviality condition h2

1(t) + h2
2(t) + h2

3(t) 6= 0 for all
t ∈ [0, T].

From the maximum condition we have

h1(t) = −R(t) sin α, h2(t) = s2(t)R(t) cos α, R(t) ≥ 0. (12)

Here, s2(t) = sign h2(t).
The vertical part of the Hamiltonian system (11) is given by

ḣ1(t) = −s2(t) sin α h3(t),
ḣ2(t) = cos α h3(t),
ḣ3(t) = s2(t) sin α h1(t).

(13)
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This system preserves the Hamiltonian H = cos α h1 + sin α |h2| and the Casimir

E =
h2

1+h2
3

2 (see Figure 4). Since H = 0 for abnormal extremals, the nontriviality condition
implies E > 0.

h2

h3

y

x

Figure 4. Abnormal case. (Left) Level surfaces of the Hamiltonian H = 0 (in green) and the Casimir
E > 0 (in red). (Center) Phase portrait on the surface H = 0. (Right) An abnormal extremal trajectory.

Denote a =
√

2E > 0. Let h1 = a cos ϕ, h3 = a sin ϕ, and c = h2, where ϕ ∈ [π
2 , 3π

2 ] as
we have h1 ≤ 0 (see (12)). System (13) reads{

ϕ̇(t) = sin α s2(t),
ċ(t) = a cos α sin ϕ(t).

If c(t1) = 0, for some t1 ∈ [0, T], then H = 0 implies h1(t1) = 0 and ϕ(t1) = π ± π
2 .

Thus, sin ϕ(t1) = ±1 and from the second equation of the system, we have ċ(t) 6= 0 for
[t1 − ε, t1 + ε] for sufficiently small ε > 0. Thus, the function c(t) changes its sign in a
neighborhood of t1. We see that t1 is an isolated point where c(t) changes its sign.

If c(t) 6= 0, then s2(t) = sign c(t) (see (12)). The extremal control u2(t) = sign c(t) sin α
is piecewise constant with interval between switchings ∆t = t2 − t1 = π

sin α , as it follows
from the first equation of the system with boundary values ϕ(t1) = π ± π

2 , ϕ(t2) = π ∓ π
2 .

The corresponding trajectory of the horizontal part of (11) is easy to find by direct
integration. For time intervals between switchings, the point (x(t), y(t)) moves along the
circular arc with increments of angle ∆θ = ± sin α∆t = ±π.

5.3. Normal Case H > 0

In this section, we provide a qualitative analysis of the dynamics in the normal case
H > 0. Note that the normal case appears iff |ψ| < π

2 + α. In the normal case, we set the
Hamiltonian value H = 1 without loss of generality (see [20]).

The vertical part has the first integrals: the Hamiltonian

1 = H =

{
h1 cos α + |h2| sin α, for α < |ψ| < π

2 + α,√
h2

1 + h2
2, for |ψ| ≤ α,

(14)

and the Casimir

E =
h2

1
2

+
h2

3
2

. (15)

In Figure 5, we show variants of the mutual arrangement of the level surface of the
Hamiltonian H = 1, which consists of two half-planes glued with a segment of the cylinder,
and the level surface of the Casimir E ≥ 0, which is a cylinder.
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Figure 5. Level surfaces of the Hamiltonian H (in green) and the Casimir E (in red). (Left) E < 1
2 .

(Center) E = 1
2 . (Right) E > 1

2 .

For the description of the phase portrait of the vertical part, we use techniques of
convex trigonometry [26]. The polar set to U is

Uo =
{
(h1, h2) ∈ R2∗

∣∣∣ u1h1 + u2h2 ≤ 1, (u1, u2) ∈ U
}
=(h1, h2) = (ρ cos ψ, ρ sin ψ)

∣∣∣∣∣∣∣
for |ψ| ≤ α :

√
h2

1 + h2
2 ≤ 1,

for α < ψ < α + π
2 : h1 cos α + h2 sin α ≤ 1,

for − α− π
2 < ψ < −α : h1 cos α− h2 sin α ≤ 1

.

The corresponding functions of convex trigonometry are

cosUo φo =

{
cos φo, for |φo| ≤ α,
cos α− (φo − α) sin α, for |φo| > α,

sinUo φo =

{
sin φo, for |φo| ≤ α,
± (sin α + (φo − α) cos α), for |φo| > α,

where ± = sign(φo).
Along the extremal trajectories, we have

u1 = cos φ, u2 = sin φ, h1 = cosUo φo, h2 = sinUo φo.

Denote K(φo) = 1
2 cos2

Uo φo. The Casimir E can be seen as a total energy integral (sum
of potential and kinetic energy)

E =
h2

1
2

+
h2

3
2

=
h2

3
2

+ K(φo)

of conservative system with one degree of freedom [27]

φ̇o = h3, ḣ3 = −K′(φo). (16)

The phase portrait of this system is depicted in Figure 6.
Analyzing the phase portrait of (16), we conclude:

E = 0⇒ (φo, h3) ≡ (±(α + cot α), 0) is stable equilibrium;
E ∈ (0, 1

2 ) ∪ ( 1
2 ,+∞)⇒ the trajectory (φo, h3)(t) is periodic;

E = 1
2 ⇒ either (φo, h3) ≡ (0, 0) is unstable equilibrium or (φo, h3)(t) is a separatrix

of the saddle point.
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��

h3

�� �
Figure 6. The phase portrait on the level surfaces of the Hamiltonian H = 1.

6. Explicit Expression for Normal Extremals
6.1. Stratification of the Hamiltonian System Adjoint Variables Domain

In this section, we derive explicit expressions for the normal extremals. To this end, we
stratify the domain of adjoint variables h1, h2, and h3 into five subdomains and introduce
the coordinates (ξ, k) that rectify the phase portrait of the vertical part in each subdomain.
Next, we integrate the horizontal part and derive explicit expressions for the extremal
trajectories. This method was applied for the construction of optimal synthesis in several
optimal control problems [28].

In Figure 7, we stratify the domain of the vertical part with respect to the value of
the Casimir E, the value of φo, and the sign si = sign hi, i = 2, 3. From the analysis in
the previous section, we know that there are two generic types of motion: |φ0| < α and
|φ0| > α, which are equivalent to h1 > cos α and h1 < cos α, respectively. We denote by the
letter S the domain with the first type of motion and by O the domain with the second type
of motion. Such notions are motivated by S — sub-Riemannian, and O — circle, as we will
show next that the corresponding extremal trajectory (solution to the horizontal part) is
given by arcs of sub-Riemannian geodesics in SE2 [4] and arcs of circular extremals (which
correspond to motion of a car along circles of minimal possible radius).

Denote E =
√

2E. There are five qualitative types of normal extremal trajectories:

1. Arcs of noninflectional sub-Riemannian geodesics in SE2, joined by arcs of the circular
extremals, when cos α < E < 1 (the subdomain S±1 ∪O±1 ; ± = sign h2);

2. Arcs of inflectional sub-Riemannian geodesics in SE2 joined by arcs of the circular
extremals, when E > 1 (the subdomain S±2 ∪O±2 ; here, ± = sign h3 in the S-domain,
and ± = sign h2 in the O-domain);

3. Arcs of the separatrix sub-Riemannian geodesics in SE2 joined by an arc of the cir-
cular extremal, when E = 1 and h1 < 1 (the subdomain S±±3 ∪O±3 ; here, (±,±) =
(sign h3, sign h2) in the S-domain, and ± = sign h2 in the O-domain);

4. The circular extremals, when E ≤ cos α (the subdomains O±4 ; here, ± = sign h2
correspond to the motion of the car clockwise or counterclockwise);

5. The straight extremal (the ray), when E = 1 and h1 = 1 (the subdomain S5).
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Figure 7. Stratification of the domain of the vertical part.

Next, we derive explicit formulas for the extremals in each case. In order to avoid
difficulties in the interpretation of formulas of convex trigonometry, which appeared very
useful for qualitative analysis of the Hamiltonian system in the previous section, we return
to the classical coordinates (h1, h2, h3) ∈ C ⊂ R3, where the vertical part (16) takes the form

ḣ1 = −h2h3,
ḣ2 = h1h3,
ḣ3 = h2h1,

for h1 > cos α;


ḣ1 = −s2 sin αh3,
ḣ2 = cos αh3,
ḣ3 = s2 sin αh1,

for h1 < cos α; (17)

where s2 = sign h2. The extremal controls are given by

(u1, u2) = (h1, h2), for h1 > cos α; (u1, u2) = (cos α, s2 sin α), for h1 < cos α; (18)

and the horizontal part is given by 
ẋ = u1 cos θ,
ẏ = u1 sin θ,
θ̇ = u2.

(19)

Note that for h1 > cos α, System (17)–(19) coincides with the system for sub-Riemannian
geodesics in SE2 [4]. Thus, the solutions in the S-domains are given by arcs of sub-
Riemannian geodesics. Denote by σ : R× C → SE2 : (t, h0) 7→ σ(t, h0) the flow from Id
along the sub-Riemannian geodesic with the initial covector h0 ∈ C. The exact formula for
the operator σ in the different domains is presented in the subsections below.

For h1 < cos α, System (17)–(19) is easily integrated, and the solutions are given by
arcs of circles of radius cot α, which is the minimal possible turning radius for the car model.
Denote by ω : R× C → SE2 : (t, h0) 7→ ω(t, h0) the corresponding flow from Id:

ω(t, h0) = (cot α sin(t sin α), s2 cot α(1− cos(t sin α)), s2t sin α). (20)

The case h1 = cos α is joined to the case h1 > cos α when s2s3 < 0, and joined to the
case h1 < cos α, when s2s3 > 0 (see Figure 7). Here, s2 = sign h2, and s3 = sign h3.

To obtain a general solution for the horizontal part we separate the timeline by the
intervals, in which the S or the O mode holds. We denote by t0i, i ∈ N, the instances of time
when the dynamics switches (see Figure 8). Denote by h0i ∈ C the corresponding value
of the adjoint covector, and by q0i = q(t0i) ∈ SE2 the corresponding point of the extremal
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trajectory. Due to left-invariance (see Remark 1), the arc of the trajectory starting from q0i is
given by

q(t) = Lq0i σ(t− t0i, h0i) = q0i · σ(t− t0i, h0i), in S-domain,
q(t) = Lq0i ω(t− t0i, h0i) = q0i ·ω(t− t0i, h0i), in O-domain.

(21)

0 t01 t02 t03 t04 t

q02 q01

q04 q03

q0

Figure 8. Timeline with indicated instances of switching and the corresponding trajectory.

6.2. The Domain cos α < E < 1

Here, we consider the case when the initial covector h0 belongs to the subdomain
S±1 ∪O±1 , where ± = sign h2 =: s2. Notice that in this case, the trajectory of the vertical
part is periodic, and s2 is constant (see Figure 7). Denote the period by To + Ts, where To is
the full time of motion in the O-domain, and Ts is the full time of motion in the S-domain.

Denote k := E . Introduce the coordinates (ξ, k) ∈ [− Ts
2 , Ts

2 + To] × (cos α, 1)
(see Figure 9). Here, ξ is periodic with the period Ts + To.

O1
- O1

+

S1

-
S1

+

h3

� = 0� = 0

� = Ts

2

� = Ts

2 +To � = Ts

2

� = Ts

2 +To

h  < cos �1

h  > 02

h  < cos �1

h  < 02

h  > cos �1

h  < 02

h  > cos �1

h  > 02

Figure 9. Rectified coordinates in the domain cos α < E < 1.

For h0 = (h10, h20, h30) in S±1 , where ± = s2 = sign h20:
h1 = k sn(ξc + ξ),
h2 = s2 dn(ξc + ξ),
h3 = −s2k sn(ξc + ξ),

(22)

where ξc = K, ξ ∈
[
− Ts

2 , Ts
2

]
. The time Ts of the full motion is computed as

Ts = 2
(

F
(

arg
(
−
√

k2 − cos2 α + i cos α
))
−K

)
, where arg ∈

(π

2
, π
)

, (23)
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and the initial value ξ0 is expressed via h0 as follows:

ξ0 = F(arg(−s2h30 + ih10))− ξc, where arg ∈ (0, π).

Here, sn, cn, and dn are Jacobi elliptic functions; F is the elliptic integral of the first
kind; and K = F

(
π
2
)

is the complete elliptic integral of the first kind.
For h0 = (h10, h20, h30) in O±1 , where ± = s2 = sign h20:

h1 = k cos(sin α(ξc + ξ)),
h2 = s2

sin α (1− k cos α cos(sin α(ξc + ξ))),
h3 = s2k sin(sin α(ξc + ξ)),

(24)

where ξc =
ϕ

sin α −
Ts
2 , ξ ∈

[
Ts
2 , Ts

2 + To

]
. The time To of the full motion is computed as

To =
2

sin α
(π − ϕ), where ϕ = arg

(
cos α + i

√
k2 − cos2 α

)
∈
(

0,
π

2

)
, (25)

and the initial value ξ0 is expressed via h0 as follows:

ξ0 = arg(h10 + is2h30)/ sin α− ξc, where arg ∈
(

0,
π

2

)
∪
(

3π

2
, 2π

)
.

The direct computation shows that (17) is rectified in the coordinates (ξ, k):

ξ(t) = ξt = ξ0 + t, k = const .

Remark 5. There is a symmetry between the solutions for s2 = 1 and s2 = −1: the substitution
(h1, h2, h3)→ (h1,−h2,−h3) translates a trajectory in S±1 ∪O±1 to the trajectory in S∓1 ∪O∓1 .

Remark 6. The values Ts and To are computed as the minimal positive time instances when

(h1(0), h3(0)) =
(

cos α,−
√

k2 − h2
1(0)

)
, (h1(Ts), h3(Ts)) =

(
cos α,

√
k2 − h2

1(0)
)

,

(h1(0), h3(0)) =
(

cos α,
√

k2 − h2
1(0)

)
, (h1(To), h3(To)) =

(
cos α,−

√
k2 − h2

1(0)
)

.

Now we integrate the horizontal part and find the exact expression for the extremal
trajectories. Recall that in the O-domain, the extremal trajectories q(t) = ω(t, h0) are given
by arcs of the circles (20), and in the S-domain, the extremal trajectories q(t) = σ(t, h0)
are given by arcs of sub-Riemannian geodesics. Exact formulas for the sub-Riemannian
geodesics are found in [4]. In our notation, they read as:

σ(t, h0) = (x(t), y(t), θ(t)),

x(t) = 1
k

(
sβ(t− E(am(ξc + ξt)) + E(β))− cβ

(
dn(ξc + ξt)−

√
1− k2sβ2

))
,

y(t) = s2
k

(
cβ(t− E(am(ξc + ξt)) + E(β)) + sβ

(
dn(ξc + ξt)−

√
1− k2sβ2

))
,

θ(t) = s2(−β + am(ξc + ξt)),

(26)

where

β = am(ξ0 + ξc), sβ = sin β = sn(ξ0 + ξc), cβ = cos β = cn(ξ0 + ξc).

Here, am, sn, cn, and dn are Jacobi elliptic functions, and E is the elliptic integral of
the second kind.



Mathematics 2023, 11, 3931 18 of 31

To obtain a general solution for the horizontal part, we separate the timeline
by the intervals

[0, t] = [0, t01) ∪ [t01, t02) ∪ [t02, t03) ∪ . . . ∪ [t0(2m−1), t0(2m+1)) ∪ [t0(2m+1), t0(2m+1) + t̃],

in which the S or the O mode holds (see Figure 10). Here, we have

t̃ = t− t01 −m(To + Ts), m =

[
t− t01

To + Ts

]
, t01 = min{t > 0 | h1(t) = cos α}, (27)

where the square brackets denote the integer part.
Denote

h±o =
(

cos α,± sin α,±
√

k2 − cos2 α
)

, h±s =
(

cos α,± sin α,∓
√

k2 − cos2 α
)

(28)

the initial covector for the full arc of O and S segment of the extremals (see Figure 7), and

q±ω = ω(To, h±o ), q±σ = σ(Ts, h±s ) (29)

the end point of the corresponding extremal trajectory.
Now we obtain the resulting formula for the extremal trajectories by usage of (21).

0 t01 t02 t03 t04 t

T +To s T +To s T +To s
... t

~

1 2 m

t01

t05 t0(2m-1) t0(2m+1)

Figure 10. Timeline for the trajectory with indicated instances of switches.

Theorem 4. For h0 ∈ S±1 , the corresponding extremal trajectory is given by

q(t) =


σ(t, h0), for t ∈ [0, t01),
q01 · (q±σ · q±ω )

m ·ω(t̃, h±o ), for 0 ≤ t̃ < To,
q01 · (q±σ · q±ω )

m · q±ω · σ(t̃− To, h±s ), for To ≤ t̃ < To + Ts,

where q01 = σ
(
t01, h0).

For h0 ∈ O±1 , the corresponding extremal trajectory is given by

q(t) =


ω(t, h0), for t ∈ [0, t01),
q01 · (q±σ · q±ω )

m · σ(t̃, h±s ), for 0 ≤ t̃ < Ts,
q01 · (q±σ · q±ω )

m · q±σ ·ω(t̃− Ts, h±o ), for Ts ≤ t̃ < To + Ts,

where q01 = ω
(
t01, h0).

For both cases, the operators σ and ω are defined by (26) and (20); the values Ts and To are
defined by (23) and (25); the values t̃, m, and t01 are defined by (27); and the initial covectors h±o
and h±s and the corresponding end points q±σ and q±ω are defined by (28) and (29).

In Figure 11, we show an example of the extremal trajectories in the domain S±1 ∪O±1 .

Remark 7. The power of an element q ∈ SE2 is defined as

qm =

 Id, for m = 0,
m times︷ ︸︸ ︷

q · . . . · q, for m ≥ 1.
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x

y

Figure 11. Two extremal trajectories in S±1 ∪ O±1 with α = 3π
7 for t ∈ [0, 15.4]: for h0 =

(0.32,−0.85,−0.66) and h0 = (0.52, 0.85,−0.46). The sub-Riemannian arcs are depicted in red,
and arcs of the circles are depicted in blue.

6.3. The Domain E > 1

Here, we consider the case when the initial covector h0 belongs to the subdomain
S±2 ∪O±2 , where± = sign h3 =: s3 in the S-domain, and± = sign h2 =: s2 in the O-domain.
Notice that in this case, the trajectory of the vertical part is periodic (see Figure 7). Denote
the period by 2(To + Ts), where To is the full time of motion in the O-domain, and Ts is the
full time of motion in the S-domain.

Denote k := 1
E . Introduce the coordinates (ξ, k) ∈ [− Ts

2 , 3Ts
2 + 2To] × (0, 1)

(see Figure 12). Here, ξ is periodic with the period 2(Ts + To).

h3

S2
+

S2

-

O2
+

O2
-

_

�  = 0

�  = Ts

2 +To

�  = Ts

2

�  = Ts+To

2� =  Ts+To
3

2
3� =  Ts+2To

h  < cos �1

h  > 02

h  < cos �1

h  < 02

h  > cos �1

h  < 02

h  > cos �1

h  > 02

� = Ts

2
To

2+� = 3Ts

2
3To

2+

Figure 12. Rectified coordinates in the domain E > 1.

For h0 = (h10, h20, h30) in S±2 , where ± = s3 = sign h30:
h1 = s3 sn

(
ξc+ξ

k

)
,

h2 = − cn
(

ξc+ξ
k

)
,

h3 = s3
k dn

(
ξc+ξ

k

)
,

(30)
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where the time Ts of the full motion is computed as

Ts = 2k
(

F
(

α +
π

2

)
−K

)
. (31)

For h0 ∈ S+
2 , we have

ξc = k K, ξ ∈
[
−Ts

2
,

Ts

2

]
,

and the initial value ξ0 is expressed via h0 as follows:

ξ0 = k F(arg(−h20 + ih10))− ξc, where arg ∈ (0, π).

For h0 ∈ S−2 , we have

ξc = k
(

F
(π

2
− 2K

))
−
(

To +
Ts

2

)
, ξ ∈

[
Ts

2
+ To,

3Ts

2
+ To

]
,

and the initial value ξ0 is expressed via h0 as follows:

ξ0 = k F(arg(−h20 − ih10))− ξc, where arg ∈ (−π, 0).

For h0 = (h10, h20, h30) in O±2 , where ± = s2 = sign h20:
h1 = 1

k cos(sin α(ξc + ξ)),
h2 = s2

sin α

(
1− cos α

k cos(sin α(ξc + ξ))
)
,

h3 = s2
k sin(sin α(ξc + ξ)),

(32)

where the time To of the full motion is computed as

To =
2

sin α
(π − ϕ), where ϕ = arg

(
k cos α + i

√
1− k2 cos2 α

)
∈
(

0,
π

2

)
. (33)

For h0 ∈ O+
2 , we have

ξc =
ϕ

sin α
− Ts

2
, ξ ∈

[
Ts

2
,

Ts

2
+ To

]
,

and the initial value ξ0 is expressed via h0 as follows:

ξ0 = arg(h10 + ih30)/ sin α− ξc, where arg ∈
(
−π

2
,

π

2

)
.

For h0 ∈ O−2 , we have

ξc =
ϕ

sin α
−
(

Ts

2
+ To

)
, ξ ∈

[
3Ts

2
+ To,

3Ts

2
+ 2To

]
,

and the initial value ξ0 is expressed via h0 as follows:

ξ0 = arg(h10 − ih30)/ sin α− ξc, where arg ∈
(

0,
π

2

)
∪
(

3π

2
, 2π

)
.

The direct computation shows that (17) is rectified in the coordinates (ξ, k):

ξ(t) = ξt = ξ0 + t, k = const .

Now we integrate the horizontal part and find the exact expression for the extremal
trajectories. Recall that in the O-domain, the extremal trajectories q(t) = ω(t, h0) are given
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by arcs of the circles (20), and in the S-domain, the extremal trajectories q(t) = σ(t, h0)
are given by arcs of sub-Riemannian geodesics. Exact formulas for the sub-Riemannian
geodesics are found in [4]. In our notation, they read as:

σ(t, h0) = (x(t), y(t), θ(t)),

x(t) = s3k
(

sβ
(

E(β)− E
(

am
(

ξc+ξt
k

))
+ t

k

)
+
√

1− k2sβ2
(

cβ− cn
(

ξc+ξt
k

)))
,

y(t) = s3

(
k2sβ

(
cβ− cn

(
ξc+ξt

k

))
−
√

1− k2sβ2
(

E(β)− E
(

am
(

ξc+ξt
k

))
+ t

k

))
,

cos θ(t) = k2sβ sn
(

ξc+ξt
k

)
+
√

1− k2sβ2 dn
(

ξc+ξt
k

)
,

sin θ(t) = k
(

sβ dn
(

ξc+ξt
k

)
−
√

1− k2sβ2 sn
(

ξc+ξt
k

))
,

(34)

where

β = am
(

ξ0 + ξc

k

)
, sβ = sin β = sn

(
ξ0 + ξc

k

)
, cβ = cos β = cn

(
ξ0 + ξc

k

)
.

Here, am, sn, cn, and dn are Jacobi elliptic functions, and E is the elliptic integral of
the second kind.

To obtain a general solution for the horizontal part, we separate the timeline
by the intervals

[0, t] = [0, t01) ∪ [t01, t02) ∪ [t02, t03) ∪ . . . ∪ [t0(2m−1), t0(2m+1)) ∪ [t0(2m+1), t0(2m+1) + t̃],

in which the S or the O mode holds (see Figure 10). Here, we have

t̃ = t− t01 −
[m

2

]
(2To + 2Ts), m =

[
t− t01

To + Ts

]
, t01 = min{t > 0 | h1(t) = cos α}, (35)

where the square brackets denote the integer part.
Denote

h±o =

(
cos α,± sin α,±

√
1
k2 − cos2 α

)
, h±s =

(
cos α,± sin α,∓

√
1
k2 − cos2 α

)
(36)

the initial covector for the full arc of O and S segment of the extremals
(see Figure 7), and denote

q±ω = ω(To, h±o ), q±σ = σ(Ts, h±s ) (37)

the end point of the corresponding extremal trajectory.
Now we obtain the resulting formula for the extremal trajectories by usage of (21).

Theorem 5. For h0 ∈ S±2 , the corresponding extremal trajectory is given by

q(t) =


σ(t, h0), for t ∈ [0, t01),
q01 · qm ·ω(t̃, h±o ), for 0 ≤ t̃ < To,
q01 · qm · q±ω · σ(t̃− To, h∓s ), for To ≤ t̃ < To + Ts,
q01 · qm · q±ω · q∓σ ·ω(t̃− To − Ts, h∓o ), for To + Ts ≤ t̃ < 2To + Ts,
q01 · qm · q±ω · q∓σ · q∓ω · σ(t̃− 2To − Ts, h±s ), for 2To + Ts ≤ t̃ < 2To + 2Ts,

where q01 = σ(t01, h0), and qm = (q±ω · q∓σ · q∓ω · q±σ )[
m
2 ].
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For h0 ∈ O±2 , the corresponding extremal trajectory is given by

q(t) =


ω(t, h0), for t ∈ [0, t01),
q01 · qm · σ(t̃, h∓s ), for 0 ≤ t̃ < Ts,
q01 · qm · q∓σ ·ω(t̃− Ts, h∓o ), for Ts ≤ t̃ < Ts + To,
q01 · qm · q∓σ · q∓ω · σ(t̃− Ts − To, h±s ), for Ts + To ≤ t̃ < 2Ts + To,
q01 · qm · q∓σ · q∓ω · q±σ ·ω(t̃− 2Ts − To, h±o ), for 2Ts + To ≤ t̃ < 2Ts + 2To,

where q01 = ω(t01, h0), and qm = (q∓σ · q∓ω · q±σ · q±ω )[
m
2 ].

For both cases, the operators σ and ω are defined by (34) and (20); the values Ts and To are
defined by (31) and (33); the values t̃, m, and t01 are defined by (35); and the initial covectors h±o
and h±s and the corresponding end points q±σ and q±ω are defined by (36) and (37).

In Figure 13, we show an example of the extremal trajectories in the domain S±2 ∪O±2 .

x

y

Figure 13. Two extremal trajectories in S±2 ∪O±2 with α = π
4 : for h0 = (0.7,−0.714,−1.05) and

h0 = (0.7, 0.714,−0.85), for t ∈ [0, 16]. The sub-Riemannian arcs are depicted in red, and arcs of the
circles are depicted in blue.

6.4. The Domain E = 1 and h1 < 1

In this subsection, we consider the case when the initial covector h0 = (h10, h20, h30)
belongs to the subset Ss3s2

3 ∪Os2
3 , where (s2, s3) = (sign h2, sign h3). Notice that in this case,

the trajectory of the vertical part is a separatrix of the saddle point (see Figure 7). It consists
of not greater than three arcs of the types S, O, and S.

Introduce the coordinate ξ ∈ (−∞, ∞) by (39), (40), and (39) (see Figure 14) in the
domains 

ξ ∈
(
−∞,− To

2

)
, for s2s3 > 0, h10 > cos α;

ξ ∈
[
− To

2 , To
2

]
, for h10 ≤ cos α;

ξ ∈
(

To
2 , ∞

)
, for s2s3 < 0, h10 > cos α,

where
To =

2
sin α

(π − α), Ts = − arctanh(cos α). (38)
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For h0 ∈ Ss2s3
3 , we have: 

h1 = −s2s3 tanh(ξc + ξ),
h2 = s2 sech(ξc + ξ),
h3 = s3 sech(ξc + ξ),

(39)

where

ξc = s2s3

(
To

2
+ Ts

)
.

For h0 ∈ Os2
3 : 

h1 = cos(sin α(ξc + ξ)),
h2 = s2

sin α (1− cos α cos(sin α(ξc + ξ))),
h3 = s2 sin(sin α(ξc + ξ)),

(40)

where
ξc =

π

sin α
.

The direct computation shows that (17) is rectified:

ξ(t) = ξt = ξ0 + t,

where

ξ0 =

 −s2s3 arctanh(h10)−
(

To
2 + Ts

)
, for h10 > cos α;

arg
(

h10 + is2s3

√
1− h2

10

)
/ sin α− ξc, for h10 ≤ cos α,

where arg ∈ (0, 2π).

O3
+

S3
++

h3

h  < cos �1

h  > 02

h  < cos �1

h  < 02

h  > cos �1

h  < 02

h  > cos �1

h  > 02

� =�

� =��� =�

S3
   +

� =��

O3

S3

S3
+

�� = To
2

� = To
2

�� = To
2

� = To
2

� = 0 � = 0 

Figure 14. Rectified coordinates in the domain E = 1, h1 < 1.

Now we integrate the horizontal part and find the exact expression for the extremal
trajectories. Recall that in the O-domain, the extremal trajectories q(t) = ω(t, h0) are given
by arcs of the circles (20), and in the S-domain, the extremal trajectories q(t) = σ(t, h0)
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are given by arcs of sub-Riemannian geodesics. Exact formulas for the sub-Riemannian
geodesics are found in [4]. In our notation, they read as:

σ(t, h0) = (x(t), y(t), θ(t)),

x(t) = −s2s3
(
sech

(
ξ0
)

x̃(t) + tanh
(
ξ0
)
ỹ(t)

)
,

y(t) = s3
(
tanh

(
ξ0
)
x̃(t)− sech

(
ξ0
)
ỹ(t)

)
,

cos θ(t) = sech
(
ξ0
)

sech
(
ξ0 + t

)
+ tanh

(
ξ0
)

tanh
(
ξ0 + t

)
,

sin θ(t) = sech
(
ξ0
)

sech
(
ξ0 + t

)
− sech

(
ξ0 + t

)
tanh

(
ξ0
)
,

(41)

where
x̃(t) = sech

(
ξ0
)
− sech

(
ξ0 + t

)
,

ỹ(t) = t + tanh
(
ξ0
)
− tanh

(
ξ0 + t

)
,

ξ0 = ξ0 + s2s3

(
To
2 + Ts

)
.

Denote the first switching time by

t01 = min{t > 0 | h1(t) = cos α}. (42)

The initial covector for the full O segment of the extremals (see Figure 7), denoted by

h±o = (cos α,± sin α,± sin α) (43)

and the end point of the corresponding trajectory denoted by

q±ω = ω(To, h±o ). (44)

Denote
h±s = (cos α,± sin α,∓ sin α) (45)

the covector, when switching from the O to the S segment appears.
Now we obtain the resulting formula for the extremal trajectories by usage of (21).

Theorem 6. For h0 ∈ Ss3s2
3 , s3s2 > 0, the corresponding extremal trajectory is given by

q(t) =


σ(t, h0), for t ∈ [0, t01),
q01 ·ω

(
t− t01, hs2

o
)
, for t01 ≤ t < t01 + To,

q01 · qs2
ω · σ

(
t− To − t01, hs2

s
)
, for t ≥ t01 + To,

where q01 = σ(t01, h0).
For h0 ∈ Os2

3 , the corresponding extremal trajectory is given by

q(t) =
{

ω(t, h0), for t ∈ [0, t01),
q01 · σ

(
t− t01, hs2

s
)
, for t ≥ t01,

where q01 = ω(t01, h0).
For h0 ∈ Ss3s2

3 , s3s2 < 0, the corresponding extremal trajectory is given by

q(t) = σ(t, h0), for t ≥ 0.

For all cases, the operators σ and ω are defined by (41) and (20), the values Ts and To are
defined by (38), the value t01 is defined by (42), the initial covectors h±o and h±s are defined by (43)
and (45), and the corresponding end point q±ω is defined by (44).

In Figure 15, we show an example of the extremal trajectories in the set S3 ∪O3.
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x

y

Figure 15. Three extremal trajectories in S±±3 ∪O±3 with α = π
4 : for (h10, s20, s30) = (0.95,−1, 1) and

T = 12; for (h10, s20, s30) = (0.99999, 1, 1) and T = 21; for (h10, s20, s30) = (0.9, 1, 1) and T = 15.5. The
sub-Riemannian arcs are depicted in red, and arcs of the circles are depicted in blue.

6.5. The Domain E ≤ cos α

When h0 ∈ O±4 = Os2
4 , the Hamiltonian system (17)–(19) is easily integrated:

h1(t) = h10 cos(sin αt)− h30s2 sin(sin αt),
h2(t) = s2 cot α(h10 + h20s2 tan α− h10 cos(sin αt) + s2h30 sin(sin αt)),
h3(t) = h30 cos(sin αt) + h10s2 sin(sin αt),

(46)

(x(t), y(t), θ(t)) = (cot α sin(t sin α), s2 cot α(1− cos(t sin α)), s2t).

The extremal trajectories are given by circles (20) (see Figure 16).

x

y

Figure 16. Extremal trajectories in O±4 .

Theorem 7. For h0 ∈ Os2
4 , the corresponding extremal trajectory is given by the circle

x(t) = cot α sin(t sin α), y(t) = s2 cot α(1− cos(t sin α)), θ(t) = s2t sin α, t ≥ 0.

6.6. The Domain E = 1 and h1 = 1

When h0 ∈ S5, i.e., h0 = (1, 0, 0), the Hamiltonian system (17)–(19) is reduced to

ẋ = 1, ẏ = θ̇ = 0, ḣ1 = ḣ2 = ḣ3 = 0,
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which is easily integrated

x(t) = t, y(t) = 0, θ(t) = 0, h1(t) = 1, h2(t) = 0, h3(t) = 0.

Theorem 8. For h0 ∈ S5, i.e., h0 = (1, 0, 0), the corresponding extremal trajectory is the ray

x(t) = t, y(t) = θ(t) = 0, t ≥ 0. (47)

The extremal trajectory for h0 ∈ S5 is depicted in Figure 17.

x

y

Figure 17. Extremal trajectory in S5.

7. Optimality of Extremal Trajectories
7.1. General Upper Bound of Cut Time

The limitation of the Pontryagin maximum principle is that it is only a necessary but
not a sufficient condition of optimality. It provides a Hamiltonian system for the extremals,
which are first-order candidates for being optimal among all admissible trajectories of a
control system. An extremal loses its optimality at a cut point [20].

In this section, we provide an upper bound of the cut time for a time-optimal problem

q̇ = u1X1 + u2X2, q = (x, y, θ) ∈ SE2, u = (u1, u2) ∈ U ⊂ R2, (48)

X1 = cos θ
∂

∂ x
+ sin θ

∂

∂ y
, X2 =

∂

∂ θ
, (49)

q(0) = q0, q(t1) = q1, (50)

t1 → min . (51)

Recall that the cut time for a trajectory q(·) of an optimal control problem is defined as

tcut(q(·)) = sup
{

T > 0 | q|[0,T] is optimal
}

.

A trajectory q(t) = (x(t), y(t), θ(t)), t ∈ R, of the control system (48) is called
quasiperiodic with a period T > 0 if the following two conditions hold:

(1) θ(t) = θ(t + T) for all t ∈ R;
(2) There exists a linear function l : R2 → R, l 6= 0 such that

l(x(t + T), y(t + T)) = l(x(t), y(t)) for all t ∈ R. (52)

Proposition 2. Let the time-optimal Problem (48)–(51) satisfies the hypotheses:

(1) u2
1 + u2

2 ≤ 1 and u1 > 0 for any u = (u1, u2) ∈ U;
(2) (1, 0) ∈ U.

Let a trajectory q(t) = (x(t), y(t), θ(t)), t ∈ R, of the control system (48) be quasiperiodic
with a period T > 0. Assume moreover that the curve γ(t) = (x(t), y(t)), t ∈ R, is not a straight
line.

Then, the cut time of the trajectory q(·) for the time-optimal problem (48)–(51) admits an
upper bound
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tcut(q(·)) ≤ 2T. (53)

Proof. Consider the function l from Condition (52). The function f (t) = l(x(t), y(t)) is
T-periodic and continuous, thus it attains a maximum M = f (τ), τ ∈ [0, T]. The curve γ(t)
is tangent to the straight line l−1(M) for each value of the parameter t = τ + nT, n ∈ Z.
Moreover, γ is distinct from the line l−1(M), thus the control u(·) corresponding to the
trajectory q(·) satisfies the inequality u(t) 6≡ 1. On the other hand, the vector (ẋ, ẏ)|τ =
u1(cos θ, sin θ)|τ is collinear with the line l−1(M), as well as the vector (cos θ, sin θ)|τ .

Consider now the trajectory q̂(·) of the control system (48) with the initial condition
q̂(0) = q(τ) and the control u ≡ (1, 0). There exists t̂1 > 0 such that q̂(t̂1) = q(τ + T). Since
u(t) 6≡ 1, then t̂1 < T. Indeed, (x̂, ŷ)(t), t ∈ [0, t̂1], is a straight line segment connecting
the points (x, y)(τ) and (x, y)(τ + T), while (x, y)(t), t ∈ [τ, τ + T], is a curvilinear arc
connecting the same points (see Figure 18). Thus, the trajectory q|[τ,τ+T] is not optimal for
Problem (48)–(51).

The arc q|[0,2T] is not optimal as well since it contains a non-optimal arc q|[τ,τ+T]. The
required bound (53) follows.

q(�) q(T+�)

(x,y)(t)

(x,y)(t) q(2T+�)

Figure 18. Nonoptimal arc of the extremal trajectory.

Remark 8. It is obvious that Proposition 2 is applicable to the time-optimal Problem (2), (3) on
SE2 with control in a circular sector.

7.2. Optimality of Extremals for cos α < E < 1

In this subsection, we analyze optimality of the extremal trajectories for h0 ∈ S±1 ∪O±1 ,
described in Section 6.2.

Proposition 3. Let q(t), t ∈ R+, be an extremal trajectory in the time-optimal Problem (2), (3).
Assume that the corresponding initial covector h0 ∈ S±1 ∪O±1 , and let To and Ts be the traveling
time along full O and full S arc, given by (25) and (23) .

The trajectory q(t), t ∈ [0, t1], is not optimal if t1 > 2(To + Ts). In particular,

tcut(q(·)) ≤ 2(To + Ts).

Proof. First, we fix the sign h0 ∈ S+
1 ∪ O+

1 . The proof for h0 ∈ S−1 ∪ O−1 follows by
Remark 5.

To prove the proposition, we rely on the general upper bound of cut time
in Proposition 2, where obviously the Hypotheses (1) and (2) hold. Let us show that the ex-
tremal trajectory q(t) is quasiperiodic with the period T = To + Ts. To this end, without loss
of generality, we fix the initial covector h0 = h+o =

(
cos α, sin α,

√
k2 − cos2 α

)
correspond-

ing to the beginning of the circular arc of the extremal q(t). The result for another choice of
initial covector follows by left-invariance (21). Denote by h+s =

(
cos α, sin α,−

√
k2 − cos2 α

)
the covector at the end of the circular arc (see Figure 7). Periodicity by θ follows by direct
computation from Theorem 4:

ωθ(To, h+o ) + σθ(Ts, h+s ) = 2π,
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where by ωθ(t, h+o ) and σθ(t, h+s ), we denote the θ-component of the operators ω(t, h+o )
and σ(t, h+s ), which are the flows from Id along the O and S arcs, respectively. Thus,

θ(T)− θ(0) = 2π ⇒ θ(T) = θ(0) (mod 2π), since θ ∈ S1 = R/2πZ.

Now, note that the extremal control (u1, u2)(t) is periodic with the period T = To + Ts,
and thus the components (x, y)(t) of the corresponding extremal trajectory satisfy

(x, y)(2T)− (x, y)(T) = (x, y)(T)− (x, y)(0).

Thus, by Proposition 2, the extremal trajectory q(t) is quasiperiodic and admits the
upper bound for the cut time tcut(q(·)) ≤ T = 2(To + Ts).

7.3. Optimality of Extremals for E > 1

In this subsection, we analyze optimality of the extremal trajectories for h0 ∈ S±2 ∪O±2 ,
described in Section 6.3.

Proposition 4. Let q(t), t ∈ R+, be an extremal trajectory in the time-optimal Problem (2), (3).
Assume that the corresponding initial covector h0 ∈ S±2 ∪O±2 , and let To and Ts be the traveling
time along full O and full S arc, given by (33) and (31) .

The trajectory q(t), t ∈ [0, t1], is not optimal if t1 > 4(To + Ts). In particular,

tcut(q(·)) ≤ 4(To + Ts).

Proof. The proof is similar to the proof of Proposition 4. The only difference appears in
the periodicity by θ. In the case h0 ∈ S±2 ∪O±2 , we have θ(T)− θ(0) = 0, T = 2(To + Ts),
which follows from Theorem 5.

7.4. Optimality of Separatrix Extremals (E = 1, h10 6= 1)

In this subsection, we analyze optimality of extremal trajectories for h0 ∈ S3 ∪O3,
described in Section 6.4.

Proposition 5. Let q(t), t ∈ R+, be an extremal trajectory in Problem (2), (3). Assume that the
initial covector h0 ∈ S3 ∪O3. The trajectory q(t) is optimal for t ∈ [0, t01], i.e, it is optimal before
the first switching. In particular, for h0 ∈ S±∓3 , the trajectory q(t) is optimal up to infinity.

Proof. The extremal trajectory q(t) is given by Theorem 6. For h0 ∈ O±2 , the corresponding
trajectory q(t), t ∈ [0, t01] is given by an arc of circular extremal, which is optimal as we
prove in Proposition 6. For h0 ∈ S3, the corresponding extremal trajectory before the first
switching is given by an arc of separatrix sub-Riemannian geodesic in SE2, which is optimal,
as proved in [4]. In particular, for h0 ∈ S±∓3 , the trajectory q(t) is optimal up to infinity
since it has no switchings.

Remark 9. An upper bound of the cut time for the separatrix extremals of general type, which have
the switching points, remains an open problem.

7.5. Optimality of Circular Trajectories, E ≤ cos α

In this subsection, we analyze optimality of circular extremals described in Section 6.5.

Proposition 6. Let q(t), t ∈ R, be an extremal trajectory in the time-optimal Problem (2), (3).
Assume that q(·) is of circular type and let To =

2π
sin α be its period.

A trajectory q(t), t ∈ [0, t1], is optimal iff t1 ∈ [0, To). In particular,

tcut(q(·)) = To.
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Moreover, for any t1 ∈ [0, To), the trajectory q(t), t ∈ [0, t1], is a unique optimal trajectory
connecting q0 to q(t1).

Proof. First of all, a full circular arc q(t), t ∈ [0, To], is not optimal since it connects the
same points q(0) = q(To) in a positive time To.

Now we prove that for any t1 ∈ (0, To), the trajectory q(t), t ∈ [0, t1], is a unique
optimal trajectory connecting q0 to q(t1). By contradiction, suppose that there is another
trajectory q̃(t) = (θ̃, x̃, ỹ)(t), t ∈ [0, t̃1], with a control (ũ1, ũ2)(t) such that t̃1 ≤ t1 and
q̃(0) = q0, q̃(t̃1) = q(t1). We have ˙̃θ(t) = ũ2(t) ≤ sin α, moreover, this inequality becomes
strict on a nonempty interval since the trajectory q̃(·) is not circular. Thus,

t1 sin α = θ(t1) = θ̃(t̃1) =
∫ t̃1

0
ũ2(t)dt < t̃1 sin α ≤ t1 sin α,

whence t1 sin α < t1 sin α, a contradiction.

7.6. Optimality of the Straight Trajectory (E = 1, h10 = 1)

In this subsection, we analyze the optimality of the straight extremal (47) (see Section 6.6).

Proposition 7. The straight extremal trajectory (47) in Problem (2), (3) is optimal up to infinity.

Proof. Since u1 ≤ 1, an end point (t, 0, 0) cannot be reached from Id by time < t.

7.7. Lower Bound of Cut Time

Proposition 8. Let q(t), t ∈ [0, t1], be an extremal trajectory in the time-optimal problem on SE2
with control in a circular sector. Assume that q(·) is of sub-Riemannian type.

If q(·) is optimal for the sub-Riemannian problem on SE2, then it is optimal in the time-optimal
problem on SE2 with control in a circular sector. Thus,

tcut(q(·)) ≥ tSR
cut(q(·)),

where tSR
cut(q(·)) is the cut time of the trajectory q(·) for the sub-Riemannian problem on SE2

(see [4]).
In particular, there exists ε > 0 such that tcut(q(·)) > ε.

Proof. The sub-Riemannian problem on SE2 can be stated as a time-optimal problem with
a set of control parameters given by the full disc. Now the statements of this proposition are
obvious since if a trajectory is optimal for a problem with a bigger set of control parameters,
then it is also optimal for a problem with a smaller set of control parameters.

Now, Propositions 6 and 8 imply the following.

Corollary 1. Let q(t), t ∈ [0, t1], be an extremal trajectory in the time-optimal problem on SE2
with control in a circular sector. Then, there exists ε > 0 such that tcut(q(·)) > ε.

8. Conclusions

We considered the time minimization Problem (2), (3) in the roto-translation group
SE2 with admissible control in a circular sector. The problem reveals the trajectories of
a car model that can move forward on a plane and turn with a given minimum turning
radius. The model generalizes the sub-Riemannian length minimizers problem by adding
a restriction on the velocity vector to lie in a circular sector with the opening angle 2α ∈ S1.

We studied the local and global controllability of the system and the existence of the
solution for given arbitrary boundary conditions in Theorem 1. We obtained the following.

1. For α = 0, the system is not globally controllable.
2. For α ∈ (0, π

2 ], the system is globally but not small-time locally controllable.
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3. For α ∈ (π
2 , π), the problem is ill-posed. The system is globally and small-time locally

controllable, but an optimal trajectory does not exist for some boundary conditions.
4. For α = π, the system is globally and small-time locally controllable. This case

coincides with the sub-Riemannian length minimizers problem in SE2.

Then, we considered the well-posed case α ∈ (0, π
2 ].

We obtained a lower bound for local controllability time T = 2π
sin α (see Theorem 2).

We applied PMP and obtained explicit expressions for the extremals.
We showed that arclength parameterized abnormal extremals are given by joining of

the half period arcs of the circular extremals (see Theorem 3).
We showed that there are five qualitative types of normal extremal trajectories.

1. Arcs of noninflectional sub-Riemannian geodesics in SE2, joined by arcs of circular
extremals. The exact expression is given by Theorem 4. An upper bound for the cut
time is given by Proposition 3.

2. Arcs of inflectional sub-Riemannian geodesics in SE2, joined by arcs of circular ex-
tremals. The exact expression is given by Theorem 5. An upper bound for the cut time
is given by Proposition 4.

3. Arcs of the separatrix sub-Riemannian geodesics in SE2 joined by an arc of the circular
extremal. The exact expression is given by Theorem 6. The extremals before the first
switching are optimal (see Proposition 5).

4. The circular extremals. The exact expression is given by Theorem 7. The cut time is
given by Proposition 6.

5. The straight extremal. The exact expression is given by Theorem 8. It is optimal up to
infinity (see Proposition 7).

We showed that small arcs of the normal extremals are optimal (see Corollary 1).
As a further extension of the present work, we plan to use the obtained exact expres-

sions for the extremals and the bounds for the cut time to construct the optimal synthesis;
similarly, it is performed for the sub-Riemannian length minimizer problem in SE2 [4].

Author Contributions: Conceptualization, A.M. and Y.S.; methodology, A.M. and Y.S.; software,
A.M.; validation, A.M. and Y.S.; formal analysis, A.M. and Y.S.; investigation, A.M. and Y.S.; resources,
A.M. and Y.S.; data curation, A.M. and Y.S.; writing—original draft preparation, A.M. and Y.S.;
writing—review and editing, A.M. and Y.S.; visualization, A.M.; supervision, Y.S.; project administra-
tion, A.M.; funding acquisition, Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The work is supported by the Russian Science Foundation under grant 22-11-00140
(https://rscf.ru/project/22-11-00140/, accesed on 14 September 2023) and performed in Ailamazyan
Program Systems Institute of Russian Academy of Sciences.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Andrei Ardentov for valuable discussions resulting to clarifi-
cation of the structure of abnormal extremals.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation
The following abbreviation is used in this manuscript:

PMP Pontryagin maximum principle

References
1. Dubins, L.E. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal

Positions and Tangents. Am. J. Math. 1975, 79, 497–516. [CrossRef]
2. Reeds, J.A.; Shepp, L.A. Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 1990, 145, 367–393.

[CrossRef]

https://rscf.ru/project/22-11-00140/
http://doi.org/10.2307/2372560
http://dx.doi.org/10.2140/pjm.1990.145.367


Mathematics 2023, 11, 3931 31 of 31

3. Ardentov, A.A. Markov–Dubins problem with Control on a Triangle. In Proceedings of the International Voronezh Spring
Mathematical School Dedicated to the 115th Anniversary of the Birth of Academician L.S. Pontryagin, Voronezh, Russia, 3–9 May
2023, pp. 43–44. (In Russian)

4. Sachkov, Y.L. Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM: Control.
Optim. Calc. Var. 2011, 17, 293–321. [CrossRef]

5. Berestovskii, V.N. Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane.
Sib. Math. J. 1994, 35, 1083–1088. [CrossRef]

6. Duits, R.; Meesters, S.P.L.; Mirebeau, J.-M.; Portegies, J.M. Optimal Paths for Variants of the 2D and 3D Reeds–Shepp Car with
Applications in Image Analysis. J. Math. Imaging Vis. 2018, 60, 816–848. [CrossRef]

7. Mashtakov, A.P. Time minimization problem on the group of motions of a plane with admissible control in a half-disk. Mat. Sb.
2022, 213, 100–122. (In Russian)

8. Lynch, K.M.; Park, F.C. Modern Robotics. Mechanics, Planning, and Control; Cambridge University Press: Cambridge, UK, 2017.
9. Arismendi, C.; Alvarez, D.; Garrido, S.; Moreno, L. Nonholonomic Motion Planning Using the Fast Marching Square Method. Int.

J. Adv. Robot. Syst. 2015, 12, 60129. [CrossRef]
10. Boscain, U.V.; Chitour, Y. Time-Optimal Synthesis for Left-Invariant Control Systems on SO(3). SIAM J. Control Optim. 2005, 44,

111–139. [CrossRef]
11. Hubel, D.H.; Wiesel, T.N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 1959, 148, 574. [CrossRef]
12. Petitot, J. The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. 2003, 97, 265–309. [CrossRef]
13. Citti, G.; Sarti, A. A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 2006, 24,

307–326. [CrossRef]
14. Duits, R.; Boscain, U.; Rossi, F.; Sachkov, Y.L. Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2). J. Math. Imaging

Vis. 2014, 49, 384–417. [CrossRef] [PubMed]
15. Franceschiello, B.; Mashtakov, A.; Citti, G.; Sarti, A. Geometrical optical illusion via sub-Riemannian geodesics in the roto-

translation group. Differ. Geom. Appl. 2019, 65, 55–77. [CrossRef]
16. Baspinar, E.; Calatroni, L.; Franceschi, V.; Prandi, D. A Cortical-Inspired Sub-Riemannian Model for Poggendorff-Type Visual

Illusions. J. Imaging 2021, 7, 41. [CrossRef] [PubMed]
17. Boscain, U.; Gauthier, J.; Prandi, D.; Remizov, A. Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-

like control systems. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA,
15–17 December 2014; pp. 4278–4283.

18. Bekkers, E.J.; Duits, R.; Mashtakov, A.; Sanguinetti,G.R. A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2).
Siam J. Imaging Sci. 2015, 8, 2740–2770. [CrossRef]

19. Chen, D.; Mirebeau, J.-M.; Shu, M.; Cohen, L.D. Computing geodesic paths encoding a curvature prior for curvilinear structure
tracking. Proc. Natl. Acad. Sci. USA 2023, 120, e2218869120. [CrossRef]

20. Agrachev, A.A.; Sachkov, Y.L. Control Theory from the Geometric Viewpoint; Springer: Berlin/Heidelberg, Germany, 2004.
21. Jurdjevic, V. Rolling Geodesics, Mechanical Systems and Elastic Curves. Mathematics 2022, 10, 4827. [CrossRef]
22. Jurdjevic, V. Integrable Systems: In the Footprints of the Greats. Mathematics 2023, 11, 1063. [CrossRef]
23. Mashtakov, A.P.; Sachkov, Y.L. Extremal Trajectories in a Time Minimization Problem on the Group of Motions of a Plane with

Admissible Control in a Circular Sector. Tr. Mat. Instituta Im. V.A. Steklova 2023, 321, 215–222.
24. Bonnard, B.; Jurdjevic, V.; Kupka, I.; Sallet, G. Transitivity of families of invariant vector fields on the semidirect products of Lie

groups. Trans. Am. Math. Soc. 1982, 271, 525–535. [CrossRef]
25. Agrachev, A.; Barilari, D.; Boscain, U. A Comprehensive Introduction to Sub-Riemannian Geometry; Cambridge Studies in Advanced

Mathematics; Cambridge University Press: Cambridge, UK, 2019.
26. Lokutsievskiy, L.V. Convex trigonometry with applications to sub-Finsler geometry. Sb. Math. 2019, 210, 1179–1205. [CrossRef]
27. Arnold, V.I. Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992.
28. Sachkov, Y.L. Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions. Uspekhi Mat. Nauk.

2023, 78, 67–166. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1051/cocv/2010005
http://dx.doi.org/10.1007/BF02104709
http://dx.doi.org/10.1007/s10851-018-0795-z
http://dx.doi.org/10.5772/60129
http://dx.doi.org/10.1137/S0363012904441532
http://dx.doi.org/10.1113/jphysiol.1959.sp006308
http://dx.doi.org/10.1016/j.jphysparis.2003.10.010
http://dx.doi.org/10.1007/s10851-005-3630-2
http://dx.doi.org/10.1007/s10851-013-0475-y
http://www.ncbi.nlm.nih.gov/pubmed/26321794
http://dx.doi.org/10.1016/j.difgeo.2019.03.007
http://dx.doi.org/10.3390/jimaging7030041
http://www.ncbi.nlm.nih.gov/pubmed/34460697
http://dx.doi.org/10.1137/15M1018460
http://dx.doi.org/10.1073/pnas.2218869120
http://dx.doi.org/10.3390/math10244827
http://dx.doi.org/10.3390/math11041063
http://dx.doi.org/10.1090/S0002-9947-1982-0654849-4
http://dx.doi.org/10.1070/SM9134
http://dx.doi.org/10.4213/rm10063e

	Introduction
	Preliminaries
	Statement of the Problem
	Existence of the Solution
	Controllability and Existence of Optimal Controls
	Local Controllability

	Pontryagin Maximum Principle
	Hamiltonian System and Maximality Condition
	Abnormal Case H = 0
	Normal Case H > 0

	Explicit Expression for Normal Extremals
	Stratification of the Hamiltonian System Adjoint Variables Domain
	The Domain cos< E< 1
	The Domain E>1
	The Domain E= 1 and h1 < 1
	The Domain Ecos
	The Domain E= 1 and h1 = 1

	Optimality of Extremal Trajectories
	General Upper Bound of Cut Time
	Optimality of Extremals for cos<E<1
	Optimality of Extremals for E>1
	Optimality of Separatrix Extremals (E=1, h10=1)
	Optimality of Circular Trajectories, E cos 
	Optimality of the Straight Trajectory (E = 1, h10= 1)
	Lower Bound of Cut Time

	Conclusions
	References

