
Lorentzian distance on the Lobachevsky plane*

Yu.L. Sachkov
Program Systems Institute

Russian Academy of Sciences
Pereslavl-Zalessky, Russian Federation

RUDN University
6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

yusachkov@gmail.com

June 22, 2024

Abstract

Left-invariant Lorentzian structures on the 2D solvable non-Abelian Lie group are studied. Sectional curvature,
attainable sets, Lorentzian length maximizers, distance, spheres, and infinitesimal isometries are described.
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1 Introduction

Lorentzian geometry is the mathematical foundation of the theory of General Relativity [4–6]. It differs from the
Riemannian one in that here information can only propagate along curves with velocity vectors from some sharp
cone. Here, the natural problem is to find the curves that maximize the length-type functional along admissible
curves. Therefore, an important problem is to describe the Lorentzian length maximizers for all pairs of points where
the second point is reachable from the first one along an admissible curve. As far as we know, this problem has
been fully investigated only in the simplest case of a left-invariant Lorentzian structure in Rn, for the Minkowski
space Rn1 [4].

This paper presents a description of Lorentzian length maximizers, distances and spheres for the next natural
case — for left-invariant Lorentzian structures on a unique connected simply connected non-Abelian two-dimensional
Lie group. These results are obtained by methods of geometric control theory [1, 2]. Curiously, in these problems,
the Lorentzian length maximizers do not exist for some reachable pairs of points, and the Lorentzian distance can be
infinite at some points. In these problems, all extremal trajectories (satisfying the Pontryagin maximum principle)
are optimal, that is, there are neither conjugate points nor cut points. Optimal trajectories are parametrized by
elementary functions, as are spheres and distances.

This work has the following structure. In Sec. 2 we recall necessary basic definitions of Lorentzian geometry.
In Sec. 3 we describe the group of proper affine mappings of the real line Aff+(R) which bears the left-invariant
Lorentzian problems stated in Sec. 4. We show in Sec. 5 that these problems have constant curvature K, thus are
locally isometric to model Lorentzian spaces of constant curvature (2D Minkowski space for K = 0, de Sitter space
for K > 0, anti-de Sitter space for K < 0). In Sec. 6 we describe positive and negative time attainable sets (causal
futures and pasts) of the corresponding control systems. Section 7 is devoted to the study of existence of Lorentzian
length maximizers. In Sec. 8 we apply the Pontryagin maximum principle to the problems studied and parametrize
geodesics. In Sec. 9 we prove that in fact all geodesics are optimal, and construct explicitly optimal synthesis. On the
basis of these results in Sec. 10 we describe Lorentzian distance and spheres. In Sec. 11 we describe Lie algebras of
infinitesimal isometries (Killing vector fields) and the connected component of identity of the Lie groups of isometries
for the problems considered. Moreover, in the case K = 0 we construct explicitly an isometric embedding of Aff+(R)
into a half-plane of the 2D Minkowski space. Finally, in Sec. 12 we specialize the results obtained to three model
problems P1, P2, P3.

2 Lorentzian geometry

Let us recall some basic definitions of Lorentzian geometry [4, 5]. A Lorentzian metric on a smooth manifold M is
a nondegenerate quadratic form g of index 1. A vector v ∈ TqM , q ∈ M , is called timelike if g(v) < 0, spacelike if
g(v) > 0 or v = 0, lightlike (or null) if g(v) = 0 and v ̸= 0, and nonspacelike if g(v) ≤ 0. A Lipschitzian curve in M is
called timelike if it has timelike velocity vector a.e.; spacelike, lightlike and nonspacelike curves are defined similarly.
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A time orientation X0 is an arbitrary timelike vector field inM . A nonspacelike vector v ∈ TqM is future directed
if g(v,X0(q)) < 0, and past directed if g(v,X0(q)) > 0.

A future directed timelike curve q(t), t ∈ [0, t1], is called arclength parametrized if g(q̇(t), q̇(t)) ≡ −1. Any future
directed timelike curve can be parametrized by arclength, similarly to Riemannian geometry.

The Lorentzian length of a nonspacelike curve γ ∈ Lip([0, t1],M) is l(γ) =

∫ t1

0

|g(γ̇, γ̇)|1/2dt. For points q0, q1 ∈M

denote by Ωq0q1 the set of all future directed nonspacelike curves in M that connect q0 to q1. In the case Ωq0q1 ̸= ∅
define the Lorentzian distance (time separation function) from the point q0 to the point q1 as

d(q0, q1) = sup{l(γ) | γ ∈ Ωq0q1}. (2.1)

And if Ωq0q1 = ∅, then by definition d(q0, q1) = 0. A future directed nonspacelike curve γ is called a Lorentzian
length maximizer if it realizes the supremum in (2.1) between its endpoints γ(0) = q0, γ(t1) = q1.

The causal future of a point q0 ∈ M is the set J+(q0) of points q1 ∈ M for which there exists a future directed
nonspacelike curve γ that connects q0 and q1. The causal past J

−(q0) is defined analogously in terms of past directed
nonspacelike curves. The chronological future I+(q0) and chronological past I−(q0) of a point q0 ∈ M are defined
similarly via future directed and past directed timelike curves γ.

Let q0 ∈ M , q1 ∈ J+(q0). The search for Lorentzian length maximizers that connect q0 with q1 reduces to the
search for future directed nonspacelike curves γ that solve the problem

l(γ) → max, γ(0) = q0, γ(t1) = q1. (2.2)

A set of vector fields X1, . . . , Xn ∈ Vec(M), n = dimM , is an orthonormal frame for a Lorentzian structure g if
for all q ∈M

gq(X1, X1) = −1, gq(Xi, Xi) = 1, i = 2, . . . , n,

gq(Xi, Xj) = 0, i ̸= j.

Assume that time orientation is defined by a timelike vector field X ∈ Vec(M) for which g(X,X1) < 0 (e.g., X = X1).
Then the Lorentzian problem for the Lorentzian structure with the orthonormal frame X1, . . . , Xn is stated as the
following optimal control problem:

q̇ =

n∑
i=1

uiXi(q), q ∈M,

u ∈ U =

{
(u1, . . . , un) ∈ Rn | u1 ≥

√
u22 + · · ·+ u2n

}
,

q(0) = q0, q(t1) = q1,

l(q(·)) =
∫ t1

0

√
u21 − u22 − · · · − u2n dt→ max .

Remark 1. The Lorentzian length is preserved under monotone Lipschitzian time reparametrizations t(s), s ∈ [0, s1].
Thus if q(t), t ∈ [0, t1], is a Lorentzian length maximizer, then so is any its reparametrization q(t(s)), s ∈ [0, s1].

In this paper we choose primarily the following parametrization of trajectories: the arclength parametrization
(u21 − u22 − · · · − u2n ≡ 1) for timelike trajectories, and the parametrization with u1(t) ≡ 1 for future directed lightlike
trajectories. Another reasonable choice is to set u1(t) ≡ 1 for all future directed nonspacelike trajectories.

Remark 2. In Lorentzian geometry, only nonspacelike curves have a physical meaning since according to the Rela-
tivity Theory information cannot move with a speed greater than the speed of light [4–6]. By this reason, in Lorentzian
geometry typically only nonspacelike curves are studied.

Geometrically, spacelike curves may well be considered. For 2-dimensional Lorentzian manifolds there is not much
geometric difference between timelike and spacelike curves since the first ones are obtained from the second ones by
a change of Lorentzian form g 7→ −g, or, equivalently, by a change of controls (u1, u2) 7→ (u2, u1). Although, for
Lorentzian manifolds of dimension greater than 2 the spacelike cone is nonconvex, so the optimization problem of
finding the longest spacelike curve is not well-defined (optimal trajectories do not exist).

Notice also that curves q(·) of variable causality (sgn g(q̇) ̸= const) cannot be optimal: it is easy to show that the
causal character of extremal trajectories is preserved.
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Remark 3. The Lorentzian distance is defined by maximization (2.1), not by minimization as in Riemannian
geometry. In Lorentzian geometry, the distance means physically the space-time interval between events in a space-
time [4–6]. On the other hand, the minimum of Lorentzian length is always zero (by virtue of lightlike trajectories),
so the minimization problem here is not interesting.

Notice also that the Lorentzian distance d is not a distance (metric) in the sense of metric spaces since d is not
symmetric and satisfies the reverse triangle inequality.

Example 1. The simplest example of Lorentzian geometry is the Minkowski space [4]. In the 2D case it is defined
as R2

1 = R2
xy, g = −dx2 + dy2. The Lorentzian length maximizers are straight line segments along which g ≤ 0, the

Lorentzian distance is

d((x0, y0), (x1, y1)) =

{√
(x1 − x0)2 − (y1 − y0)2 for (x1 − x0)

2 − (y1 − y0)
2 > 0,

0 for (x1 − x0)
2 − (y1 − y0)

2 ≤ 0,

and positive radius Lorentzian spheres are arcs of hyperbolas with asymptotes parallel to lightlike curves x = ±y.
See Fig. 1.

This example has the following generalizations and variations, see [12], Sec. 5.2. Let Rns , 0 ≤ s ≤ n, denote the
vector space Rn = {(x1, . . . , xn)} with the quadratic form gns = −

∑s
i=1 dx

2
i +

∑n
j=s+1 dx

2
j .

Example 2. Let n ≥ 2. The Minkowski space Rn1 is a Lorentzian manifold with the Lorentzian form gn1 . It has
constant curvature K = 0 ( [12], Th. 2.4.3).

Example 3. Let n ≥ 2, and let r > 0. The de Sitter space is the Lorentzian manifold

Sn1 =
{
x = (x1, . . . , xn+1) ∈ Rn+1

1 | −x21 + x22 + · · ·+ x2n+1 = r2
}

with the Lorentzian form g = gn+1
1

∣∣
Sn1
. The space Sn1 has constant curvature K = 1

r2 ( [12], Th. 2.4.4).

Consider the Lorentzian manifold

Hn1 =
{
x = (x1, . . . , xn+1) ∈ Rn+1

2 | −x21 − x22 + x23 + · · ·+ x2n+1 = −r2
}

with the Lorentzian form g = gn+1
2

∣∣
Hn

1
. The universal covering H̃n1 of Hn1 is called anti-de Sitter space. The spaces

Hn1 and H̃n1 have constant curvature K = − 1
r2 ( [12], Th. 2.4.4).

Let Mj be a Lorentzian manifold with Lorentzian distance dj , j = 1, 2. A mapping i : M1 → M2 is called an
isometry if d1(q, p) = d2(i(q), i(p)) for all q, p ∈M1.

Example 4. The group of isometries of the Minkowski plane R2
1 is generated by translations, hyperbolic rotations

etX , X = y ∂
∂ x + x ∂

∂ y , and reflections (x, y) 7→ (x,−y).

Remark 4. A recent generalization of Lorentzian geometry is the sub-Lorentzian geometry which studies vector
distributions endowed with a Lorentzian form, see e.g. [16–18].

3 Lobachevsky plane

Proper affine functions on the line are mappings of the form

a 7→ y · a+ x, a ∈ R, y > 0, x ∈ R. (3.1)

Consider the group of such functions G = Aff+(R) = {(x, y) ∈ R2 | y > 0} with the group product induced by
composition of functions (3.1):

(x2, y2) · (x1, y1) = (x2 + y2x1, y2y1), (xi, yi) ∈ G

and the identity element Id = (0, 1) ∈ G. This group is a semi-direct product Aff+(R) = R+ ⋊R.
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G is a two-dimensional Lie group, connected and simply connected. The vector fields X1 = y ∂
∂ x , X2 = y ∂

∂ y form

a left-invariant frame on G, thus the Lie algebra of G is g = span(X1, X2). In view of the Lie bracket [X2, X1] = X1,
g and G are solvable and non-Abelian. In fact, g is a unique solvable non-Abelian two-dimensional Lie algebra [7].

One-parameter subgroups in G are rays (or straight lines if u2 = 0)

u1(y − 1) = u2x, (u1, u2) ̸= (0, 0), (x, y) ∈ G,

with the parametrization

x =
u1
u2

(eu2t − 1), y = eu2t, u2 ̸= 0, (3.2)

x = u1t, y = 1, u2 = 0, (3.3)

see Fig. 2. Formulas (3.2), (3.3) for t = 1 describe the exponential mapping

exp : g → G, u1X1 + u2X2 7→ (x, y)(1). (3.4)

Notice that left translations of one-parameter subgroups in G are also rays (or straight lines if u2 = 0) since left
translations in G are compositions of homotheties with parallel translations in R2

x,y.

0.5 1.0 1.5 2.0 2.5 3.0
x

-3

-2

-1

1

2

3

y

-2 -1 1 2
x

1

2

3

y

Figure 1: 2D Minkowski space Figure 2: One-parameter subgroups in G

Remark 5. Riemannian geometry on Aff+(R) with the orthonormal frame X1, X2 is the Lobachevsky (Gauss,
Bolyai) non-Euclidean geometry (in Poincaré’s model in the upper half-plane) [8, 9].

4 Left-invariant Lorentzian problems on the Lobachevsky plane

In this work we consider left-invariant Lorentzian problems on the Lie group G = Aff+(R). Such a problem is
specified by an index 1 quadratic form g on the Lie algebra g and a timelike time orientation vector field X0 ∈ g.

A Lipschitzian curve q : [0, t1] → G is a Lorentzian length maximizer that connects the point Id to a point q1 ∈ G
iff it is a solution to the following optimal control problem:

g(q̇(t)) ≤ 0, ḡ(q̇(t), X0(q(t)) < 0, (4.1)

q(0) = Id, q(t1) = q1, (4.2)

l =

∫ t1

0

|g(q̇(t))|1/2dt→ max, (4.3)
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where ḡ is the bilinear form on g corresponding to the quadratic form g.
Let us decompose a vector g ∋ v = u1X1 + u2X2, then the Lorentzian form g and the bilinear form ḡ are

represented as g(v) = g(u1, u2), ḡ(v
1, v2) = ḡ(v11 , v

2
2 ; v

2
1 , v

2
2), where v

i = vi1X1 + vi2X2. Let X0 = v01X1 + v02X2, and
denote the linear form g0(u1, u2) = ḡ(v01 , v

0
2 ;u1, u2). Then the Lorentzian problem (4.1)–(4.3) reads as

q̇(t) = u1X1 + u2X2, q ∈ G, u = (u1, u2) ∈ U, (4.4)

U = {u ∈ R2 | g(u) ≤ 0, g0(u) < 0}, (4.5)

q(0) = Id, q(t1) = q1, (4.6)

l =

∫ t1

0

|g(u)|1/2dt→ max . (4.7)

The Lorentzian quadratic form can be decomposed as a sum of squares

g(u) = −(au1 + bu2)
2 + (cu1 + du2)

2, (4.8)

A =

(
a b
c d

)
∈ GL(2,R). (4.9)

Notice that the matrix A in (4.9) is not unique: it is determined up to the symmetries

ε1 : (a, b, c, d) 7→ (−a,−b, c, d), ε2 : (a, b, c, d) 7→ (a, b,−c,−d).

The inequality g0|U = au1 + bu2 < 0 fixes signs of a and b, thus eliminating the reflection ε1. If we further assume
that |A| > 0 in (4.9), then the signs of c and d become fixed, thus ε2 is eliminated. Summing up, we have the
following.

Lemma 1. The space of left-invariant Lorentzian problems (4.4)–(4.7) is parametrized by matrices

A =

(
a b
c d

)
∈ GL+(2,R) = {A ∈ GL(2,R) | |A| > 0}.

Given a problem (4.4)–(4.7) determined by a matrix A =

(
a b
c d

)
∈ GL+(2,R), introduce new controls

v1 = au1 + bu2, v2 = cu1 + du2,

or, equivalently,

u1 = αv1 + βv2, u2 = γv1 + δv2,

(
α β
γ δ

)
= A−1.

Introduce further the vector fields

Y1 = αX1 + γX2, Y2 = βX1 + δX2.

Then the problem (4.4)–(4.7) reads as

q̇ = v1Y1 + v2Y2, q ∈ G, (4.10)

g = −v21 + v22 ≤ 0, g0 = −v1 < 0, (4.11)

q(0) = Id, q(t1) = q1, (4.12)

l =

∫ t1

0

√
v21 − v22dt→ max . (4.13)

The Lorentzian form factorizes as

g = l1l2, l1(u1, u2) = (c− a)u1 + (d− b)u2, l2(u1, u2) = (c+ a)u1 + (d+ b)u2.

Introduce the corresponding functions on G:

λ1(x, y) = grad l1 ·
(

x
y − 1

)
= (c− a)x+ (d− b)(y − 1),

λ2(x, y) = grad l2 ·
(

x
y − 1

)
= (c+ a)x+ (d+ b)(y − 1).
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Remark 6. By virtue of the change of variables (u1, u2) 7→ (−u1,−u2), A 7→ −A, t 7→ −t, we can get

a ≥ 0 or, equivalently, δ ≥ 0, (4.14)

which we assume in the sequel.

Example 5. As typical examples of Lorentzian problems (4.10)–(4.13), we consider in Sec. 12 the following model
problems Pi, i = 1, 2, 3:

P1: A =

(
1 0
0 1

)
, U = {u = (u1, u2) ∈ R2 | −u21 + u22 ≤ 0, −u1 ≤ 0}, g = −u21 + u22, g0 = −u1,

P2: A =

(
0 1
−1 0

)
, U = {u = (u1, u2) ∈ R2 | −u22 + u21 ≤ 0, −u2 ≤ 0}, g = −u22 + u21, g0 = −u2,

P3: A =

(
1/2 1/2
−1/2 1/2

)
, U = {u = (u1, u2) ∈ R2 | u1 ≥ 0, u2 ≥ 0}, g = −u1u2, g0 = −(u1 + u2)/2.

See the sets of control parameters U for these problems resp. in Figs. 3–5.

0.2 0.4 0.6 0.8 1.0
u1

-1.0

-0.5

0.0

0.5

1.0
u2

-1.0 -0.5 0.0 0.5 1.0
u1

0.2

0.4

0.6

0.8

1.0
u2

Figure 3: The set U for the problem P1 Figure 4: The set U for the problem P2

We denote J+ = J+(Id) and d(q) = d(Id, q), q ∈ G.

5 Curvature

In this section we show that each left-invariant Lorentzian structure on the group G = Aff+(R) has constant sectional
curvature K, thus it is locally isometric to the 2D Minkowski space (if K = 0), to a 2D de Sitter space (if K > 0),
or to a 2D anti-de Sitter space (if K < 0).

5.1 Levi-Civita connection and sectional curvature of Lorentzian manifolds

Here we recall some standard facts of Lorentzian (in fact, pseudo-Riemannian) geometry, following [4, 12,13].
A connection D on a smooth manifold M is a mapping D : (Vec(M))2 → Vec(M) such that
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Figure 5: The set U for the problem P3

(1) DVW is C∞(M)-linear in V ,

(2) DVW is R-linear in W ,

(3) DV (fW ) = (V f)W + fDVW for f ∈ C∞(M).

The vector field DVW is called the covariant derivative of W w.r.t. V for the connection D.

Theorem 1 ( [13], Th. 11). On a Lorentzian manifold (M, g) there is a unique connection D such that

(4) [V,W ] = DVW −DWV , and

(5) Xg(V,W ) = g(DXV,W ) + g(V,DXW ),

for all X,V,W ∈ Vec(M). D is called the Levi-Civita connection on M , and is characterized by the Koszul formula

2g(DVW,X) = V g(W,X) +Wg(X,V )−Xg(V,W )− g(V, [W,X]) + g(W, [X,V ]) + g(X, [V,W ]).

Let (M, g) be a Lorentzian manifold with Levi-Civita connection D. The mapping R : (C∞(M))3 → C∞(M)
given by RXY Z = D[X,Y ]Z − [DX , DY ]Z is called the Riemannian curvature tensor of (M, g).

Let q ∈M , and let P be a 2D plane in TqM . For vectors v, w ∈ TqM , define Q(v, w) = g(v, v)g(w,w)−(g(v, w))2.
A plane P is called nondegenerate if Q(v, w) ̸= 0 for some (hence every) basis v, w for P .

Lemma 2 ( [13], Lemma 39). Let P ⊂ TqM be a nondegenerate plane. The number

K(q, P ) =
g(Rvwv, w)

Q(v, w)
(5.1)

is independent of the choice of basis v, w in P , and is called the sectional curvature of the plane section P .

A Lorentzian manifold which has the same sectional curvature on all nondegenerate sections is said to have
constant curvature.

Theorem 2 ( [12], Theorem 2.4.1). Let (M, g) be a Lorentzian manifold of dimension n ≥ 2, and let K ∈ R. Then
the following conditions are equivalent:

(1) M has constant curvature K,

(2) for any q ∈ M there exists a neighbourhood of q isometric to an open subset of de Sitter space Sn1 for K > 0,

Minkowski space Rn1 for K = 0, anti-de Sitter space H̃n1 for K < 0.
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5.2 Sectional curvature of Aff+(R)
In this subsection we compute Levi-Civita connection and sectional curvature of left-invariant Lorentzian structures
on the group G = Aff+(R).

Theorem 3. Levi-Civita connection D of a left-invariant Lorentzian structure g on the group G = Aff+(R) is given
as follows:

DXiXj = µijX1 + νijX2, i, j = 1, 2,

(µ11, ν11) = − 1

|A|2
(−g12g11, g211), (µ12, ν12) = − 1

|A|2
(−g22g11, g12g11),

(µ21, ν21) = − 1

|A|2
(−g212, g11g12), (µ22, ν22) = − 1

|A|2
(−g22g12, g212),

g11 = g(X1) = c2 − a2, g12 = g(X1, X2) = cd− ab, g22 = g(X2) = d2 − b2.

Proof. Immediate computation via Koszul formula.

Theorem 4. A left-invariant Lorentzian structure g on the group G = Aff+(R) has constant curvature K =
g(X1)

|A|2
.

Proof. Immediate computation via formula (5.1) for P = TqG, v = X1(q), w = X2(q), q ∈ G.

Corollary 1. A left-invariant Lorentzian structure g on the group G = Aff+(R) is locally isomorphic to the 2D

Minkowski space R2
1 (for K = 0), de Sitter space S21 (for K > 0), or anti-de Sitter space H̃2

1 (for K < 0).

Remark 7. For the case K = 0 we construct an explicit isometry of the group G to a half-plane of R2
1 in Th. 20.

6 Attainable sets (causal futures and pasts)

Denote the set of admissible velocities U = {u1X1 + u2X2 | (u1, u2) ∈ U} ⊂ g.

Theorem 5. Let q0 ∈ G, then

J+(q0) = q0 exp(U) = {q ∈ G | λ1(q) ≤ λ1(q0), λ2(q) ≥ λ2(q0)}, (6.1)

J−(q0) = q0 exp(−U) = {q ∈ G | λ1(q) ≥ λ1(q0), λ2(q) ≤ λ2(q0)}, (6.2)

where exp : g → G is the exponential mapping (3.4) of the Lie group G.
Moreover, I+(q0) = {q0} ∪ int J+(q0) and I

−(q0) = {q0} ∪ int J−(q0).

Proof. By left-invariance of the problem, we need to prove equalities (6.1), (6.2) in the case q0 = Id only.
Let us show that

J+ = exp(U) = {q ∈ G | λ1(q) ≤ 0 ≤ λ2(q)}. (6.3)

Future oriented nonspacelike one-parameter semigroups

{exp(t(u1, u2)) | t ≥ 0} = {(x, y) ∈ G | u1(y − 1) = u2x}, l1(u1, u2) ≤ 0 ≤ l2(u1, u2),

fill the set exp(U), thus J+ ⊃ exp(U). On the other hand, admissible trajectories of the system (4.10), (4.11) at
the boundary of exp(U) are tangent to ∂ exp(U) or are future directed inside exp(U). Thus J+ ⊂ exp(U), and
equality (6.3) follows.

A similar equality for J−(Id) is proved analogously. The expressions for I±(q0) are straightforward.

See the set J+ for the problems P1, P2, P3 in Figs. 8, 14, 19 respectively.
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7 Existence of Lorentzian length maximizers

7.1 Existence of length maximizers for globally hyperbolic Lorentzian structures

In order to study existence of Lorentzian length maximizers we need some facts from Lorentzian geometry [4].
Let M be a Lorentzian manifold. An open subset O ⊂ M is called causally convex if the intersection of each

nonspacelike curve with O is connected. M is called strongly causally convex in any point in M has arbitrarily
small causally convex neighbourhoods. Finally, a strongly causally convex Lorentzian manifold M is called globally
hyperbolic if

J+(p) ∩ J−(q) is compact for any p, q ∈M. (7.1)

Theorem 6 (Th. 6.1 [4]). If a Lorentzian manifold M is globally hyperbolic, then any points q0 ∈ M , q1 ∈ J+(q0)
can be connected by a Lorentzian length maximizer.

Theorem 7. A Lorentzian structure (g,X0) on Aff+(R) is globally hyperbolic iff K ≥ 0.

Proof. First, all left-invariant Lorentzian structures on Aff+(R) are strongly causally convex. Indeed, ẋ = u1y or
ẏ = u2y preserves sign and is separated from zero for (x, y) ∈ O, u21 + u22 ≥ C > 0, g(u) ≤ 0, g0(u) < 0.

So we need to check condition (7.1) only. It follows from Th. 5 that for K ≥ 0 the intersection in (7.1) is compact
(it is either a parallelogram, a segment, or the empty set). The same theorem implies that for K < 0 there exist
points q ∈ G such that the intersection J+∩J−(q) contains points from the absolute {y = 0} in its closure, thus this
intersection is not compact.

Theorem 8. Let K ≥ 0. Then for any points q0 ∈ G, q1 ∈ J+(q0) there exists a Lorentzian length maximizer
from q0 to q1.

Proof. Follows from Theorems 6, 7.

7.2 Existence of length maximizers in the case K < 0

In this subsection we consider the remaining case K < 0. Introduce the decomposition

J+ = D ⊔ F ⊔ E, (7.2)

D = {q ∈ G | λ1(q) ≤ 0 ≤ λ2(q), λ3(q) > 0}, F = {q ∈ G | λ3(q) = 0}, E = {q ∈ G | λ3(q) < 0},

λ3(q) = λ1(q)− λ1(B), B =

(
d+ b

c+ a
, 0

)
∈ R2,

so that the lines {q ∈ R2 | λ2(q) = 0} and the absolute {y = 0} intersect at the point B ∈ R2
x,y \ G, see Fig. 6 for

the problem P1.

0.5 1.0 1.5 2.0 2.5 3.0
x

0.5

1.0

1.5

2.0

2.5

y

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0.5

1.0

1.5

2.0

y

Figure 6: Case (2.2): q1 ∈ A \ cl(M) Figure 7: Case (2.3): q1 ∈ A ∩ ∂M
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Lemma 3. The restriction of a negative curvature Lorentzian structure (g,X0) on Aff+(R) to D is globally hyperbolic.

Proof. We need to check only condition (7.1).
Let q0, q1 ∈ D. By virtue of Th. 5, the intersection J+(q0) ∩ J−(q1) is either a parallelogram (if q1 ∈ int J+(q0))

or a segment (if q1 ∈ ∂J+(q0)) or the empty set (if q1 /∈ J+(q0)), thus it is compact.

Theorem 9. Let K < 0, and let q0 = Id, q1 ∈ J+.

(1) If q1 ∈ D, then there exists a Lorentzian length maximizer from q0 to q1.

(2) If q1 ∈ E, then there exist arbitrarily long trajectories from q0 to q1. Thus d(q1) = +∞ and there are no
Lorentzian length maximizers from q0 to q1.

Proof. Item (1) follows from Th. 6 and Lemma 3.
Item (2). Take any point q1 = (x1, y1) ∈ E. Denote by C ∈ R2

x,y \ G, C ̸= B, the intersection point of the
lines {y = 0} and {q ∈ R2 | λ1(q) = λ1(q1)}, see Fig. 6 for the problem P1. Notice that x(C) > x(B). Take any
ε ∈ (0, 1). Denote by Bε ∈ G the intersection point of the lines {y = ε} and {q ∈ R2 | λ2(q) = 0}, and by Cε ∈ G the
intersection point of the lines {y = ε} and {q ∈ R2 | λ1(q) = λ1(q1)}. The broken line qε = q0BεCεq1 is an admissible

trajectory of system (4.4), (4.5) with the cost given by the segment BεCε only: J(qε) =

∫ t(Cε)

t(Bε)

√
|g(u1, 0)|dt. For

u1 = 1 we get g(1, 0) = c2 − a2 < 0, x(t) = x0 + εt,

t(Cε)− t(Bε) =
x(Cε)− x(Bε)

ε
=
x(C)− x(B) + o(1)

ε
→ +∞ as ε→ +0,

thus J(qε) =
√
c2 − a2

x(C)− x(B) + o(1)

ε
→ +∞ as ε→ +0. So d(q1) = +∞.

Remark 8. We prove below in Th. 13 that for any point q1 ∈ F there is no Lorentzian length maximizer connecting Id
to q1.

8 Geodesics

8.1 Pontryagin maximum principle

We apply Pontryagin maximum principle (PMP) [1–3] to optimal control problem (4.4)–(4.7).
The Hamiltonian of PMP reads

hνv(λ) = v1h1(λ) + v2h2(λ)− ν
√
v21 − v22 , λ ∈ T ∗G, ν ∈ R,

hi(λ) = ⟨λ, Yi⟩, i = 1, 2.

Since [Y1, Y2] = −δY1 + γY2, then the Hamiltonian system with the Hamiltonian hνv reads

ḣ1 = −v2(−δh1 + γh2), (8.1)

ḣ2 = v1(−δh1 + γh2), (8.2)

q̇ = v1Y1 + v2Y2.

8.1.1 Abnormal case

Obvious computations in the abnormal case ν = 0 give the following.

Proposition 1. Abnormal extremal trajectories are Lipschitzian reparametrizations of lightlike trajectories:

v1 = ±v2 = 1, u1 = α± β, u2 = γ ± δ,

q(t) = exp(t(Y1 ± Y2)) = exp(t(u1X1 + u2X2)),

these are one-parameter subgroups (3.2), (3.3).
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8.1.2 Normal case

Now consider the normal case ν = −1. The maximality condition of PMP

h = v1h1 + v2h2 +
√
v21 − v22 → max

v1≥|v2|
(8.3)

yields h21 − h22 = v21 − v22 ≡ 1. Introduce the hyperbolic coordinates

v1 = coshφ, v2 = sinhφ, φ ∈ R,
h1 = − coshψ, h2 = sinhψ, ψ ∈ R.

Then the maximality condition (8.3) reads h = − cosh(φ − ψ) + 1 → max, whence φ = ψ. Thus the maximized

Hamiltonian of PMP reads H =
−h2

1+h
2
2

2 . Then the vertical subsystem (8.1), (8.2) of the Hamiltonian system of PMP

reduces to the ODE ψ̇ = δ sinhψ+γ coshψ. Summing up, we have the following description of arclength-parametrized
(g = −v21 + v22 ≡ 1) normal extremals.

Proposition 2. Arclength-parametrized normal extremals satisfy the normal Hamiltonian system

λ̇ = H⃗(λ), λ ∈ T ∗G,

H(λ) =
−h21(λ) + h22(λ)

2
≡ 1

2
, h1(λ) < 0,

in coordinates:

ψ̇ = δ coshψ + γ sinhψ, (8.4)

q̇ = coshψ Y1 + sinhψ Y2. (8.5)

Normal extremals are parametrized by covectors λ0 ∈ C = T ∗
IdG ∩ {H(λ) = 1/2, h1(λ) < 0}. They are given by

the Lorentzian exponential mapping

Exp : C × R+ → G, (λ0, t) 7→ q(t) = π ◦ etH⃗(λ0), (8.6)

where H⃗ is the Hamiltonian vector field on T ∗G with the Hamiltonian H, etH⃗ : G → G is the flow of this vector
field, and π : T ∗G→ G, T ∗

qG ∋ λ 7→ q ∈ G, is the canonical projection of the cotangent bundle.

8.2 Parametrization of geodesics

We integrate ODEs (8.4), (8.5) in the case δ ≥ 0, see (4.14). First we integrate the vertical subsystem (8.4):

ψ̇ = δ coshψ + γ sinhψ, ψ(0) = ψ0, δ ≥ 0. (8.7)

Proposition 3. Cauchy problem (8.7) has the following solutions.

(1) If K < 0, then

ψ(t) = µ(t)− θ, (8.8)

δ = ∆cosh θ, γ = ∆sinh θ, ∆ =
√
δ2 − γ2, (8.9)

µ(t) = arsinh tan τ, τ = σ + ρ, (8.10)

ρ = arctan sinh(ψ0 + θ) ∈
(
−π
2
,
π

2

)
, (8.11)

σ = ∆t ∈
(
−π
2
− ρ,

π

2
− ρ
)
. (8.12)

(2) If K > 0, then

ψ(t) = µ(t)− θ,

γ = s1∆cosh θ, δ = s1∆sinh θ, ∆ =
√
γ2 − δ2, s1 = sgn γ. (8.13)
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(2.1) If ψ0 + θ = 0, then µ(t) ≡ 0.

(2.2) If ψ0 + θ ̸= 0, then

µ(t) = arcosh coth τ, τ = ρ− σ > 0, (8.14)

σ = s1∆t < ρ, (8.15)

ρ = artanh cosh(ψ0 + θ). (8.16)

(3) If K = 0, then

ψ(t) = s1µ(t),

µ(t) = − ln τ, τ = ρ− γt > 0,

s1 = sgn γ, ρ = e−s1ψ0 .

Proof. (1) Let K < 0, δ > 0. Introduce variables ∆, θ according to (8.9), µ according to (8.8), and σ according to
(8.12). Then Cauchy problem (8.7) transforms to

dµ

d σ
= coshµ, µ(0) = µ0 = ψ0 + θ,

which has solution (8.10) by separation of variables.
Cases (2), (3) are considered similarly.

Now we integrate the horizontal ODE (8.5) of the Hamiltonian system for normal extremals:

ẋ = yk(ψ), k(ψ) = α coshψ + β sinhψ, x(0) = 0, (8.17)

ẏ = yl(ψ), l(ψ) = γ coshψ + δ sinhψ, y(0) = 1. (8.18)

Proposition 4. Cauchy problem (8.17), (8.18) has the following solution.

(1) If K < 0, then

x(t) = cos ρ

(
λ(tan τ − tan ρ) + ν

(
1

cos τ
− 1

cos ρ

))
, (8.19)

y(t) =
cos ρ

cos τ
, (8.20)

λ =
αδ − βγ

∆2
, ν =

βδ − αγ

∆2
, (8.21)

where ρ, τ , ∆ are defined by (8.9)–(8.11). The curve (x(t), y(t)) is an arc of a hyperbola y2−(w+sin ρ)2 = cos2 ρ,

where w = x−ν(y−1)
λ .

(2) Let K > 0.

(2.1) If ψ0 + θ = 0, then

x(t) = −ν(eσ − 1),

y(t) = eσ,

σ = s1∆t, s1 = sgn γ, ∆ =
√
γ2 − δ2.

The curve (x(t), y(t)) is a line x+ ν(y − 1) = 0.

(2.2) If ψ0 + θ ̸= 0, then

x(t) = sinh ρ

(
ν

(
1

sinh ρ
− 1

sinh τ

)
+ s2λ(coth τ − coth ρ)

)
,

y(t) =
sinh ρ

sinh τ
,

s2 = sgnµ0,

where ρ, τ , ∆ are defined by (8.13)–(8.16). The curve (x(t), y(t)) is an arc of a hyperbola (s2w+cosh ρ)2−
y2 = sinh2 ρ, where w = x+ν(y−1)

λ .
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(3) If K = 0, then

x(t) = ρ

(
f(τ − ρ) + g

(
1

ρ
− 1

τ

))
,

y(t) =
ρ

τ
,

f = −α− s1β

2γ
, g = −α+ s1β

2γ
, s1 = sgn γ,

τ = ρ− γt, ρ = e−s1ψ0 .

The curve (x(t), y(t)) is an arc of a hyperbola w = ρ2
(

1
y − 1

)
, where w = x+g(y−1)

f .

Proof. Cauchy problem (8.17), (8.18) integrates as

x(t) = K(t) =

∫ t

0

k(s)eL(s)ds, (8.22)

y(t) = eL(t), L(t) =

∫ t

0

l(s)ds. (8.23)

(1) Let K < 0, δ > 0. By item (1) of Propos. 3,

coshψ =
1

∆

(
δ

cos τ
− γ tan τ

)
, sinhψ =

1

∆

(
δ tan τ − γ

cos τ

)
,

k = ∆tan τ, l = ∆

(
λ

cos τ
+ ν tan τ

)
, (8.24)

and formulas (8.19), (8.20) follow from (8.22)–(8.24).
(2), (3) The cases K ≥ 0 are treated similarly.

8.3 Geodesic completeness

Denote the maximal domain of a solution λt to a Cauchy problem λ̇ = H⃗(λ), λ(0) = λ0 ∈ C as (tmin(λ0), tmax(λ0)) ∋
0. We obtain the following explicit description of this domain from Propositions 3 and 4.

Corollary 2. (1) If K < 0, then tmin = −π/2 + ρ

∆
, tmax =

π/2− ρ

∆
.

(2) If K > 0, then:

(2.1) if ψ0 + θ = 0, then tmin = −∞, tmax = +∞,

(2.2) if ψ0 + θ ̸= 0, then

tmin = −∞, tmax =
ρ

∆
for γ > 0,

tmin = − ρ

∆
, tmax = +∞ for γ < 0.

(3) If K = 0, then

tmin = −∞, tmax =
ρ

γ
for γ > 0,

tmin =
ρ

γ
, tmax = +∞ for γ < 0.

We recall standard definitions of Lorentzian geometry related to geodesic completeness [4].
A timelike arclength-parametrized geodesic q(t) in a Lorentzian manifold is called complete if it can be extended

to be defined for −∞ < t < +∞, otherwise it is called incomplete. Future and past complete (incomplete) geodesics
are defined similarly.

A Lorentzian manifold M is called timelike geodesically complete if all timelike arclength-parametrized geodesics
are complete, otherwise M is called timelike geodesically incomplete. Future and past timelike geodesically complete
(incomplete) Lorentzian manifolds are defined similarly.

Now Corollary 2 implies the following.
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Corollary 3. If K < 0, then Aff+(R) is both future and past timelike geodesically incomplete.
Let K ≥ 0. If γ > 0, then Aff+(R) is past timelike geodesically complete and future timelike geodesically incom-

plete. If γ < 0, then Aff+(R) is past timelike geodesically incomplete and future timelike geodesically complete.
Thus in all cases Aff+(R) is timelike geodesically incomplete.

9 Lorentzian length maximizers

We prove that all extremal trajectories described in Sec. 8 are optimal, i.e., are Lorentzian length maximizers. The
main tool is the following Hadamard’s global diffeomorphism theorem.

Theorem 10 (Th. 6.2.8 [10]). Let X, Y be smooth manifolds and let F : X → Y be a smooth mapping such that:

1. dimX = dimY ,

2. X and Y are arcwise connected,

3. Y is simply connected,

4. F is nondegenerate (i.e., for any q ∈ X the differential F∗q : TqX → TF (q)Y is bijective),

5. F is proper (i.e., preimage of a compact is a compact).

Then F is a diffeomorphism.

9.1 Diffeomorphic properties of the exponential mapping

Denote the following open subset M ⊂ G:

K < 0 ⇒ M = intD,

K ≥ 0 ⇒ M = int J+.

The set M ∼= R2 will serve as the domain of the exponential mapping Exp : N → G, in view of the following
theorem.

Theorem 11. (1) Exp(N) ⊂M .

(2) Exp : N →M is a diffeomorphism.

(3) For any λ0 ∈ N and any t1 ∈ (0, tmax(λ0)) the extremal trajectory Exp(λ0, t), t ∈ [0, t1], is optimal.

Proof. We consider only the case K < 0 since the case K ≥ 0 is more simple and are treated similarly. So let K < 0,
then

M = intD = {q ∈ G | λ1(q) < 0 < λ2(q), λ3(q) > 0}, (9.1)

N =
{
(ρ, τ) ∈ R2 | ρ ∈

(
−π
2
,
π

2

)
, τ ∈

(
ρ,
π

2

)}
. (9.2)

Since δ > 0 by virtue of (4.14) and δ2 − γ2 > 0 by virtue of K < 0, then δ > |γ|. Further, we have factorizations
along arclength-parametrized timelike geodesics (x(t), y(t)) given by item (1) of Propos. 4:

λ1(x(t), y(t)) =
2

δ − γ

sin
(
π
4 − ρ

2

)
sin
(
ρ−τ
2

)
sin
(
π
4 + τ

2

) , (9.3)

λ2(x(t), y(t)) = − 2

δ + γ

sin
(
π
4 + ρ

2

)
sin
(
ρ−τ
2

)
sin
(
π
4 − τ

2

) , (9.4)

λ3(x(t), y(t)) =
2

δ − γ

sin
(
π
4 + ρ

2

)
cos
(
ρ−τ
2

)
sin
(
π
4 + τ

2

) . (9.5)
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(1) Factorizations (9.3)–(9.5) and equalities (9.1), (9.2) imply immediately that Exp(N) ⊂M .
(2) We apply Th. 10 to the mapping Exp : N → M . Both N and M are diffeomorphic to R2. The Jacobian of

the exponential mapping is
∂ (x, y)

∂ (τ, ρ)
= −λcos ρ sin(ρ− τ)

cos2 τ
< 0 on N, thus Exp : N → M is nondegenerate. Finally,

factorizations (9.3)–(9.5) imply that if (ρ, τ) → ∂N , then (x, y) = Exp(ρ, τ) → ∂M , thus Exp : N → M is proper.
Consequently, Exp : N →M is a diffeomorphism.

(3) Let λ0 ∈ N , and let t1 ∈ (0, tmax(λ0)). Let us prove that the trajectory q(t) = Exp(λ0, t), t ∈ [0, t1], is optimal.
We have q1 = q(t1) = Exp(λ, t1) ∈ M . Moreover, by item (2) of this theorem q(t), t ∈ [0, t1], is a unique arclength-
parametrized geodesic connecting Id to q1. By item (1) of Th. 9 there exists an optimal trajectory connecting these
points, so it coincides with q(t), t ∈ [0, t1].

9.2 Inverse of the exponential mapping and optimal synthesis

Theorem 12. The inverse of the exponential mapping Exp−1 : M → N , (x1, y1) 7→ (ψ0, t1) is given as follows.

(1) If K < 0, then

t1 =
τ − ρ

∆
, ψ0 = arsinh tan ρ− θ, (9.6)

τ = arcsin

(
y21 + w2 − 1

2y1w

)
, ρ = arcsin

(
y21 − w2 − 1

2w

)
, w =

x1 − ν(y1 − 1)

λ
. (9.7)

(2) Let K > 0, and let

w =
x1 + ν(y1 − 1)

λ
, s1 = sgn γ. (9.8)

(2.1) If w = 0, then t1 = s1
ln y1
∆

, ψ0 = −θ.

(2.2) If w ̸= 0, then

t1 = s1
ρ− τ

∆
, ψ0 = arcosh coth ρ− θ,

τ = arcosh

(
s2

1− y21 − w2

2y1w

)
, ρ = arcosh

(
s2

1− y21 + w2

2w

)
, s2 = sgn(λw). (9.9)

(3) If K = 0, then

t1 =
ρ− τ

γ
, ψ0 = −s1 ln ρ,

τ =

√
w

y1 − y21
, ρ =

√
wy1
1− y1

, (9.10)

w =
x1 − g(1− y1)

f
, f = −α− s1β

2γ
, g = −α+ s1β

2γ
, s1 = sgn γ.

For any (x1, y1) ∈ M , there is a unique arclength-parametrized optimal trajectory connecting Id to (x1, y1), and
it is q(t) = Exp(ψ0, t), t ∈ [0, t1].

Proof. We consider only the case K < 0. Then the parametrization of Lorentzian geodesics given by item (1) of
Propos. 4 yields

sin ρ = y1 sin τ − w, cos ρ = y1 cos τ,

1 = sin2 ρ+ cos2 ρ = y21 − 2y1w sin τ,

sin τ =
y21 + w2 − 1

2y1w
, sin ρ =

y21 − w2 − 1

2w
,

and formulas of item (1) of this theorem follow since τ, ρ ∈
(
−π

2 ,
π
2

)
.
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Theorem 13. Let K < 0. If q1 ∈ F , then there is no Lorentzian length maximizer connecting q0 to q1.

Proof. Lightlike extremal trajectories starting at q0 fill the set ∂J+ = {q ∈ G | λ1(q)λ2(q) = 0}. By item (1) of
Th. 11, timelike extremal trajectories starting at q0 fill the domain intD = {q ∈ G | λ1(q) < 0 < λ2(q), λ3(q) > 0}.
Thus extremal trajectories starting at q0 do not intersect the set F = {q ∈ G | λ3(q) = 0}. By PMP, there is no
optimal trajectory connecting q0 to a point q1 ∈ F .

Remark 9. The reasoning of the preceding theorem applied to the set E = {q ∈ G | λ3(q) > 0} proves once more
that there are no Lorentzian length maximizers connecting q0 to points in E, in addition to item (2) of Th. 9.

Remark 10. A Lorentzian metric on a manifold M is called geodesically connected [14,15] if any two points in M
can be connected by a future directed nonspacelike geodesic. For any left-invariant Lorentzian metric on Aff+(R) we
have J+(Id) ̸= Aff+(R), so such a metric is not geodesically connected. On the other hand, in the case K ≥ 0 any
point in J+(Id) can be connected with Id by a (length-maximizing) geodesic; in the case K < 0 the same holds for
any point in intD ⊊ J+(Id).

10 Lorentzian distance and spheres

We describe explicitly the Lorentzian distance d(q) = d(Id, q) and spheres S(R) = {q ∈ G | d(q) = R}, R ∈ [0,+∞].

10.1 The case K < 0

Theorem 14. Let K < 0 and let q1 = (x1, y1) ∈ G.

(1) If q1 /∈ J+, then d(q1) = 0.

(2) If q1 ∈ ∂J+, then d(q1) = 0.

(3) If q1 ∈ intD, then d(q1) =
τ − ρ

∆
, where τ , ρ are given by (9.7). In particular,

d(intD) =
(
0,
π

∆

)
. (10.1)

(4) If q1 ∈ F , then d(q1) =
π

∆
.

(5) If q1 ∈ E, then d(q1) = +∞.

Proof. (1) follows from the definition of Lorentzian distance d.
(2) follows since the only trajectories connecting Id to q1 ∈ ∂J+ are lightlike by item (1) of Th. 11.
(3) follows from item (1) of Th. 11.

(4) Let q1 ∈ F . Take any sequence (τn, ρn) ∈ N such that τn → π
2 − 0, ρn → −π

2 + 0, τn+π/2
ρn+π/2 → +∞. Then

the parametrization of the exponential mapping (8.19), (8.20) implies that the point qn = Exp(τn, ρn) ∈ intD and

qn → B = {y = λ3(q) = 0}. By item (3) of this theorem, d(qn) = τn−ρn
∆ → π

∆ .

Considering a trajectory of the field X1 = y ∂
∂ x starting at qn and terminating at the ray F , we get the bound

d|F ≥ π
∆ .

Now we show that in fact d|F = π
∆ . To this end we cite the following statement of lower semicontinuity of

Lorentzian distance.

Lemma 4 (Lemma 4.4 [4]). For Lorentzian distance d on a Lorentzian manifold, if d(p, q) < ∞, pn → p, and
qn → q, then d(p, q) ≤ lim infn→∞ d(pn, qn).

Also, if d(p, q) = ∞, pn → p, and qn → q, then limn→∞ d(pn, qn) = ∞.

Take any point q̄ ∈ F . Choose any sequence intD ∋ qn → q̄. If d(q̄) = ∞, then Lemma 4 implies limn→∞ d(q0, q
n) =

∞, which contradicts the bound (10.1). Thus d(q̄) <∞. Then by Lemma 4 d(q0, q̄) ≤ lim infn→∞ d(q0, q
n) ≤ π

∆ . So
d(q0, q̄) =

π
∆ .

(5) follows from item (2) of Th. 9.
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The explicit description of Lorentzian length maximizers given by Th. 12 implies, via transformations of elemen-
tary functions, the following characterization of Lorentzian spheres centred at Id.

Corollary 4. Let K < 0.

(1) S(0) = {q ∈ G | λ1(q) ≥ 0 or λ2(q) ≤ 0}.

(2) If R ∈ (0, π∆ ), then

S(R) = {(x, y) ∈ G | w2 − (y − cosσ)2 = sin2 σ}, w =
x− ν(y − 1)

λ
, σ = ∆R,

it is an arc of a hyperbola noncompact in both directions.

(3) S( π∆ ) = F .

(4) If R ∈ ( π∆ ,+∞), then S(R) = ∅.

(5) S(+∞) = E.

10.2 The case K > 0

Theorem 15. Let K > 0 and let q1 = (x1, y1) ∈ G.

(1) If q1 /∈ J+, then d(q1) = 0.

(2) If q1 ∈ ∂J+, then d(q1) = 0.

(3) If q1 ∈ int J+ ∩ {w ̸= 0}, then d(q1) = s1
ρ− τ

∆
, where s1, w, τ , ρ are given by (9.8), (9.9). In particular,

d(int J+ ∩ {w ̸= 0}) = (0,+∞) .

(4) If q1 ∈ int J+ ∩{w = 0}, then d(q1) = s1
ln y1
∆

, where s1 is given by (9.8). In particular, d(int J+ ∩{w = 0}) =
(0,+∞) .

Proof. Similarly to the proof of Th. 14.

Corollary 5. Let K > 0.

(1) S(0) = {q ∈ G | λ1(q) ≥ 0 or λ2(q) ≤ 0}.

(2) If R ∈ (0,+∞), then

S(R) = {(x, y) ∈ G | (y − coshσ)2 − w2 = sinh2 σ}, w =
x+ ν(y − 1)

λ
, σ = s1∆R, s1 = sgn δ,

it is an arc of a hyperbola noncompact in both directions.

(3) S(+∞) = ∅.

Proof. Similarly to the proof of Cor. 4.

10.3 The case K = 0

Theorem 16. Let K = 0 and let q1 ∈ G.

(1) If q1 /∈ J+, then d(q1) = 0.

(2) If q1 ∈ ∂J+, then d(q1) = 0.

(3) If q1 ∈ int J+, then d(q1) =
ρ− τ

γ
, where τ , ρ are given by (9.10). In particular, d(int J+) = (0,+∞) .
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Proof. Similarly to the proof of Th. 14.

Corollary 6. Let K = 0.

(1) S(0) = {q ∈ G | λ1(q) ≥ 0 or λ2(q) ≤ 0}.

(2) If R ∈ (0,+∞), then

S(R) = {(x, y) ∈ G | (w + σ2)y = w}, w =
x+ g(y − 1)

f
, σ = γR,

it is an arc of a hyperbola noncompact in both directions.

(3) S(+∞) = ∅.

Proof. Similarly to the proof of Cor. 4.

10.4 Regularity of Lorentzian distance

Corollary 7. We have d ∈ Cω(M) ∩ C(clD).

Proof. We consider only the case K < 0. If q1 ∈ M = intD, then item (3) of Th. 14 gives d(q1) =
τ1−ρ1

∆ , and the

functions τ1, ρ1 are real-analytic since Exp−1 : intD → N is real-analytic by virtue of the inverse function theorem
for real-analytic mappings.

In order to show the inclusion d ∈ C(clD), it remains to prove continuity of d on the boundary ∂D = ∂J+ ∪ F .
If intD ∋ qn → q1 ∈ ∂J+, then by virtue of items (2), (3) of Th. 14 we have d(qn) → 0 = d(q1). And if
intD ∋ qn → q1 ∈ F , then similarly d(qn) → π

∆ = d(q1).

Now we study asymptotics of the Lorentzian distance d(q) near the boundary of the domain M . For a point
q ∈ M , denote by dM (q) the Euclidean distance from q to ∂M . The explicit expression for the Lorentzian distance
in the domain M given by Theorems 14–16 implies that near smoothness points of ∂M the distance d(q) is Hölder
with exponent 1

2 of the distance dM (q), similarly to the Minkowski plane.

Corollary 8. Let q̄ ∈ ∂M be a point of smoothness of the curve ∂M . Then

d(q) = d(q̄) + f(q̄)
√
dM (q) +O(dM (q))3/2,

M ∋ q → q̄, f(q̄) ̸= 0.

Remark 11. Alternative proofs of Corollaries 7, 8 follow by local isometry of Aff+(R) with standard constant

curvature Lorentzian manifolds R2
1, S21, H̃2

1.

11 Isometries

11.1 Infinitesimal isometries of Lorentzian manifolds

We recall some necessary facts of Lorentzian (in fact, pseudo-Riemannian geometry) [13].
A vector field X on a Lorentzian manifold (M, g) is called a Killing vector field (or an infinitesimal isometry) if

LXg = 0.

Proposition 5 ( [13], Propos. 23). A vector field X is Killing iff the mappings ψt of its local flow satisfy ψ∗
t g = g,

where ψt : M →M is the shift of M along X by time t.

Corollary 9. A vector field X is Killing iff d(q1, q2) = d(ψt(q1), ψt(q2)) for all q1, q2 ∈ M and all t for which the
right-hand side is defined.

Proposition 6 ( [13], Propos. 25). A vector field X is Killing iff

Xg(V,W ) = g([X,V ],W ) + g(V, [X,W ]), V,W ∈ Vec(M). (11.1)
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Denote by i(M) the set of Killing vector fields on a Lorentzian manifold M . The set i(M) is a Lie algebra over R
w.r.t. Lie bracket of vector fields.

Lemma 5 ( [13], Lemma 28). The Lie algebra i(M) on a connected Lorentzian manifold M , dimM = n, has

dimension at most n(n+1)
2 .

Remark 12. LetM be a connected Lorentzian manifold of dimension n. Then dim i(M) = n(n+1)
2 iffM has constant

curvature (Exercises 14, 15 [13]).

Denote by I(M) the set of all isometries of a Lorentzian manifold M .

Theorem 17 ( [13], Theorem 32). I(M) is a Lie group.

Denote by ci(M) the set of all complete Killing vector fields on M .

Proposition 7 ( [13], Propos. 33). (1) ci(M) is a Lie subalgebra of i(M).

(2) There is a Lie anti-isomorphism between the Lie algebra of the Lie group I(M) and the Lie algebra ci(M).

Denote by I0(M) the connected component of the identity in the Lie group I(M).

11.2 Killing vector fields and isometries of Aff+(R)
We compute the Lie algebra of Killing vector fields for left-invariant Lorentzian structures on G = Aff+(R).

By Th. 4, such Lorentzian structures have constant curvature. By Remark 12,

dim i(G) = 3. (11.2)

Left translations on the Lie group G are obvious isometries. They are generated by right-invariant vector fields on G:

X̃1(q) = Rq∗X1(Id) =
∂

∂ x
, X̃2(q) = Rq∗X2(Id) = x

∂

∂ x
+ y

∂

∂ y
,

where Rq : q̄ 7→ q̄q is the right translation on G. Since [X̃i, Xj ] = 0, Propos. 11.1 implies that X̃1, X̃2 are Killing
vector fields. By virtue of (11.2), in order to describe the 3D Lie algebra i(G) it remains to find just one Killing

vector field linearly independent on X̃1, X̃2.

Lemma 6. If X ∈ Vec(G) is a Killing vector field such that X(Id) = 0, then X is tangent to Lorentzian spheres
S(R), R ∈ [0,+∞].

Proof. Local flow of X preserves the Lorentzian distance d(Id, q), thus the Lorentzian spheres as well.

Lemma 7. The following vector field is tangent to Lorentzian spheres S(R), R ∈ (0,+∞):

(1) K < 0 ⇒ X− =
(
y2 + w2

)
∂
∂ w + 2wy ∂

∂ y =
(
λ(y2 + w2 − 1) + 2νwy

)
∂
∂ x + 2wy ∂

∂ y , w = x−ν(y−1)
λ ,

(2) K > 0 ⇒ X+ =
(
y2 + w2

)
∂
∂ w + 2wy ∂

∂ y =
(
λ(y2 + w2 − 1)− 2νwy

)
∂
∂ x + 2wy ∂

∂ y , w = x+ν(y−1)
λ ,

(3) K = 0 ⇒ X0 = w ∂
∂ w + y(1− y) ∂∂ y =

(
x+ g(y2 − 1)

)
∂
∂ x + y(1− y) ∂∂ y , w = x+g(y−1)

f .

Proof. Follows from the explicit parametrization of the spheres S(R), R ∈ (0,+∞), see Corollaries 4, 5, 6 respectively.

Theorem 18. Let K ̸= 0. Then i(G) = span(X̃1, X̃2, X±), where ± = sgnK, and X± is given by items (1),

(2) of Lemma 7. The table of Lie brackets in this Lie algebra is [X̃1, X̃2] = X̃1, [X̃1, X±] = ∓ 2ν
λ X̃1 + 2

λX̃2,

[X̃2, X±] =
2(λ2−ν2)

λ X̃1 ± 2ν
λ X̃2 +X±. The Lie algebra i(G) is isomorphic to the Lie algebra sl(2) of the Lie group

SL(2) of unimodular 2× 2 matrices.
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Proof. The vector field X± satisfies identity (11.1), thus it is Killing. Since X± is linearly independent of X̃1, X̃2

and dim i(G) = 3, it follows that i(G) = span(X̃1, X̃2, X±). The table of Lie brackets in this Lie algebra is verified
immediately. Moreover, these Lie brackets imply that the Lie algebra i(G) is simple, thus it is isomorphic to sl(2)

or so(3), see the classification of 3D Lie algebras in [7]. But i(G) contains a 2D Lie subalgebra spanned by X̃1, X̃2,
which is impossible in so(3). Thus i(G) ∼= sl(2).

Theorem 19. Let K = 0. Then i(G) = span(X̃1, X̃2, X0), where X0 is given by item (3) of Lemma 7. The table of

Lie brackets in this Lie algebra is [X̃1, X̃2] = X̃1, [X̃1, X0] = X̃1, [X̃2, X0] = 2gX̃1 − X̃2 +X0. The Lie algebra i(G)
is isomorphic to the Lie algebra sh(2) of the Lie group SH(2) of hyperbolic motions of the plane.

Proof. Similarly to the proof of Th. 18.

Proposition 8. (1) ci(G) = span(X̃1, X̃2).

(2) I0(Aff+(R)) = {Lq | q ∈ Aff+(R)} ∼= Aff+(R).

Proof. Item (1). The vector fields X̃1, X̃2 are complete. Although, each vector field X0, X± is not complete.
Item (2). By virtue of Propos. 7 and item (1) of this proposition, the Lie algebra of the Lie group I0(Aff+(R))

is anti-isomorphic to ci(G) = span(X̃1, X̃2).

11.3 Isometric embedding of Aff+(R) into R2
1 in the case K = 0

Theorem 20. Let K = 0. The mapping i : Aff+(R) → Π ⊂ R2
1, Π =

{
(x̃, ỹ) ∈ R2

1 | s1ỹ + x̃ < 1/γ
}
,

i(x, y) = (x̃, ỹ) =

(
1

2

(
y − 1

y
− w

γ

)
,
s1
2

(
y − 1

y
+
w

γ

))
, (11.3)

is an isometry.

Proof. We give a proof for the problem P3, in the general case K = 0 the proof is similar.
For the problem P3 we have Π =

{
(x̃, ỹ) ∈ R2

1 | ỹ + x̃ < 1
}
,

i(x, y) = (x̃, ỹ) =

(
1

2

(
1− 1

y
+ x

)
,
s1
2

(
1− 1

y
+ x

))
. (11.4)

Let qj = (xj , yj) ∈ Aff+(R), q̃j = i(qj) = (x̃j , ỹj) ∈ R2
1, j = 1, 2. Immediate computation on the basis of (11.4)

shows that q̃j ∈ Π, j = 1, 2. We prove that

d̃(q̃1, q̃2) = d(q1, q2), (11.5)

where d and d̃ are the Lorentzian distances in Aff+(R) and R2
1 respectively.

First we show that
d(q1, q2) ̸= 0 ⇐⇒ d̃(q̃1, q̃2) ̸= 0. (11.6)

Denote q̄ = q−1
1 q = (x̄, ȳ) = ((x2 − x1)/y1, y2/y1). Then

d(q1, q2) ̸= 0 ⇐⇒ d(Id, q̄) ̸= 0 ⇐⇒ x̄ > 0, ȳ > 1 ⇐⇒ x2 > x1, y2 > y1.

On the other hand,

d̃(q̃1, q̃2) ̸= 0 ⇐⇒ x̃2 − x̃1 > |ỹ2 − ỹ1| ⇐⇒

{
x̃2 − x̃1 > ỹ2 − ỹ1,

x̃2 − x̃1 > ỹ1 − ỹ2

⇐⇒

{
x2 − 1

y2
− x1 +

1
y1
> −x1 + x2 − 1

y1
+ 1

y2
,

x2 − 1
y2

− x1 +
1
y1
> x1 − x2 +

1
y1

− 1
y2

⇐⇒

{
1
y1
> 1

y2
,

x1 − x2 < 0,

and (11.6) follows.
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Now let d(q1, q2) ̸= 0, d̃(q̃1, q̃2) ̸= 0, and we prove equality (11.5). We have

d2(q1, q2) = d2(Id, q̄) =

(√
x̄ȳ

ȳ − 1
−
√

x̄

ȳ(ȳ − 1

)2

=
x̄(ȳ − 1)

ȳ
=

(x2 − x1)(y2 − y1)

y1y2
,

d̃2(q̃1, q̃2) = (x̃2 − x̃1)
2 − (ỹ2 − ỹ1)

2 =
1

4

(
− 1

y2
+ x2 +

1

y1
− x1

)2

− 1

4

(
− 1

y2
− x2 +

1

y1
+ x1

)2

=
(x2 − x1)(y2 − y1)

y1y2
,

and equality (11.5) follows.

Remark 13. The explicit formulas (11.3) for the isometry i : Aff+(R) → Π were discovered as follows. The
exponential mappings for Aff+(R) in the case K = 0 and for the Minkowski plane R2

1 have respectively the form:

Exp :

(
ψ
t

)
7→
(
x
y

)
=

(
ρ(f(τ − ρ) + g

(
1
ρ −

1
τ

)
ρ
τ

)
, Ẽxp :

(
ψ̃

t̃

)
7→
(
x̃
ỹ

)
=

(
t̃ cosh ψ̃

t̃ sinh ψ̃

)
. (11.7)

We set in these formulas t = t̃, ψ = ψ̃, and obtain (11.4).

Remark 14. In the case K = 0 the group Aff+(R) cannot be isometric to the whole Minkowski space R2
1 since the

first is not geodesically complete (see Cor. 3), while the second is.

It would be interesting to construct isometric embeddings of Aff+(R) to S21 (H̃2
1) in the case K > 0 (resp. K < 0).

This is more complicated since in this case the formulas analogous to (11.7) are more involved.

12 Examples

In this section we present detailed results for the problems P1–P3 defined in Example 5.

12.1 Problem P1

In this case K < 0. The causal future of the point Id is J+ = exp(U) = {(x, y) ∈ G | x ≥ |y − 1|}, see Fig. 8.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x0.0

0.5
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2.0

2.5

y

Figure 8: J+ for the problem P1

The group G is not globally hyperbolic since for q1 = (x1, y1) ∈ G with x1 > y1+1 the intersection J+(Id)∩J−(q1)
is not compact, see Fig. 9. Although, the domain intD = {(x, y) ∈ G | x > |y−1|, x < y+1} is globally hyperbolic,
see Fig. 10.

Theorem 21. Let q1 = (x1, y1) ∈M \ {Id} for the problem P1.
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Figure 9: Problem P1: G is not globally hyper-
bolic

Figure 10: Problem P1: D is globally hyper-
bolic

(1) If x1 = |y1 − 1|, then x(t) = ±(e±t − 1), y(t) = e±t, ± = sgn(y1 − 1), t1 = ± ln y1, d(q1) = 0.

(2) If x1 > |y1 − 1|, then

x(t) = cos ρ(tan τ − tan ρ), y(t) =
cos ρ

cos τ
, τ = ρ+ t, t1 = τ − ρ = d(q1),

τ = arcsin
x21 + y21 − 1

2x1y1
, ρ = arcsin

y21 − x21 − 1

2x1
,

the curve (x(t), y(t)) is an arc of the hyperbola y2 − (x− sin ρ)2 = cos2 ρ.
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Figure 11: Lorentzian length maximizers in P1 Figure 12: Lorentzian spheres in P1

12.2 Problem P2

In this case K > 0.

Theorem 22. Let q1 = (x1, y1) ∈ J+ \ {q0} for the problem P2.

(1) If y1 − 1 = |x1|, then x(t) = ±(et − 1), y(t) = et, ± = sgnx1, t1 = ln y1, d(q1) = 0.

(2) If x1 = 0, then x(t) ≡ 0, y(t) = et, t1 = ln y1 = d(q1).

(3) If 0 < |x1| < y1 − 1, then

x(t) = ±(sinh ρ coth τ − cosh ρ), y(t) =
sinh ρ

sinh τ
, ± = sgnx1, τ = ρ− t,

ρ = arcosh
1 + x21 − y21

2|x1|
, τ = arcosh

1− x21 − y21
2|x1|y1

, t1 = ρ− τ = d(q1),
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Figure 13: Plot of Lorentzian distance in P1
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Figure 14: J+ for the problem P2 Figure 15: Problem P2: G is globally hyper-
bolic
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is the arc of the hyperbola (±x+ cosh ρ)2 − y2 = sinh2 ρ.
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Figure 16: Lorentzian length maximizers in P2 Figure 17: Lorentzian spheres in P2

Figure 18: Plot of Lorentzian distance in P2

12.3 Problem P3

In this case K = 0.

Theorem 23. Let q1 = (x1, y1) ∈ J+ \ {q0} for the problem P3.

(1) If x1 = 0, then x(t) ≡ 0, y(t) = et, t1 = ln y1, d(q1) = 0.

(2) If y1 = 1, then x(t) = t, y(t) ≡ 1, t1 = x1, d(q1) = 0.

(3) If x1 > 0 and y1 > 1, then x(t) = ρ(ρ− τ), y(t) = ρ
τ ,

τ = ρ− t, ρ =

√
x1y1
y1 − 1

, τ =

√
x1

y1(y1 − 1)
, t1 = ρ− τ = d(q1),
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Figure 19: J+ for the problem P3 Figure 20: Problem P3: G is globally hyper-
bolic

is the arc of the hyperbola x = ρ2
(
1− 1

y

)
.
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Figure 21: Lorentzian length maximizers in P3 Figure 22: Lorentzian spheres in P3
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