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Abstract—We consider a left-invariant sub-Riemannian prob-
lem of Engel type on the central extension of the special linear
group. Interest in this problem comes from the fact that it
has strictly abnormal trajectories, and the normal geodesic flow
is Liouville integrable. An extremal trajectory is called strictly
abnormal if it is not present among normal geodesics. It is known
that the most complicated singularities of the sub-Riemannian
metric arise near abnormal trajectories. The presence of a strictly
abnormal trajectory in combination with the integrability of the
normal geodesic flow makes the problem under consideration
a model example for studying the singularities of the sub-
Riemannian metric. We apply to the problem the invariant
formulation of Pontryagin maximum principle (PMP), in which
the vertical subsystem (for adjoint variables) of the Hamiltonian
system of PMP is independent of the state variables. We show
that the vertical subsystem is reduced to the equation of a skewed
pendulum. The first integrals of the system are found and an
explicit solution is obtained in a special case. In the general
case, we carry out a qualitative analysis of the phase flow of the
Hamiltonian system.

Index Terms—sub-Riemannian geometry, Engel type sub-
Riemannian structure, strict abnormal geodesic, Pontryagin max-
imum principle

I. INTRODUCTION

This paper makes a small step in the study of singu-
larities for sub-Riemannian metrics. Strong interest in the
investigation of sub-Riemannian structures is due not only
to mathematical reasons but also to applications for non-
holonomic mechanics and modelling of the human vision. For
general introduction to sub-Riemannian geometry we refer
to the recent book [1]. Below we recall some necessary
definitions and give a motivation for this work.

A sub-Riemannian manifold is a triple (M,∆, g), where M
is a connected smooth manifold, ∆ ⊂ TM is a subbundle
of the tangent bundle (called a distribution) and g is a scalar
product on ∆. A Lipschitzian curve γ : [0, T ] → M is called
an admissible curve if it is tangent to the distribution ∆ a.e.
A sub-Riemannian length of an admissible curve γ( · ) is

l(γ) =

T∫
0

√
gγ(t)(γ̇(t), γ̇(t)) dt. (1)
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We assume that the distribution ∆ satisfies the Hörmander
condition, i.e., the Lie brackets of the vector fields tangent
to ∆ span the whole tangent bundle TM . In this case any
two points can be connected by an admissible curve due
to the Rashevskii-Chow theorem. Define the sub-Riemannian
distance between points x, y ∈ M as the infimum for the
lengths of the admissible curves connecting the point x and
y. Thus, the manifold M becomes a metric space. Despite
the fact that the corresponding topology is equivalent to
the topology defined by a Riemannian structure, the sub-
Riemannian metric is quite different from the Riemannian one.
In particular, sub-Riemannian spheres even of small radius
have singularities. One of the reasons for this phenomenon is
the existence of so called abnormal geodesics. These geodesics
do not depend on the scalar product on the sub-Riemannian
distribution, but depend on the distribution itself. Notice that
an admissible curve can be simultaneously a normal and an
abnormal geodesic. So, we are interested in strict abnormal
geodesics for the study of singularities.

Let us introduce a kind of a complexity measure for a sub-
Riemannian structure. Define recursively ∆1 = ∆, ∆i+1 =
∆i + [∆,∆i]. Since the distribution satisfies the Hörmander
condition, there exists s ∈ N such that ∆s = TM . The tuple
of numbers (dim∆i)si=1 is called the growth vector of the
distribution ∆. Important particular cases of sub-Riemannian
structures are left-invariant sub-Riemannian structures on Lie
groups. Obviously, in the left-invariant case the growth vector
does not depend on the point of a sub-Riemannian manifold.

A left-invariant sub-Riemannian structure with the growth
vector (2, 3, 4) is called an Engel type sub-Riemannian struc-
ture. Such structures were classified by D. Almeida [2] . Then
I. Beschastnyi and A. Medvedev [3] found an Engel type sub-
Riemannian structure such that the corresponding geodesic
flow is Liouville integrable and there exists a strict abnormal
geodesic. This is the simplest sub-Riemannian structure having
these properties. This allows us to study singularities of
the geodesic flow near the strict abnormal geodesic in this
particular case. Hopefully, this will help to shed some light
on one of the most important problems in sub-Riemannian
geometry: the study of possible singularities of the geodesic
flow, the sub-Riemannian metric and the spheres.

The paper has the following structure. In Section II we
introduce the sub-Riemannian structure under consideration
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and formulate the corresponding optimal control problem.
Next, we use the Hamiltonian approach to describe geodesics.
Namely, we apply the Pontryagin maximum principle and
derive the Hamiltonian system of ODEs for geodesics in
Section III. We analyze the adjoint subsystem of the Pon-
tryagin Hamiltonian system in Section IV. Then we obtain an
explicit solution of the adjoint subsystem in a special case in
Section V.

II. PROBLEM FORMULATION

Let G be a connected Lie group, and L be the Lie algebra
of left-invariant vector fields on G. A left-invariant sub-
Riemannian (SR) structure can be defined via an orthonormal
frame X1, X2 ∈ L as

∆q = span(X1(q), X2(q)), ⟨Xi, Xj⟩ = δij , i, j = 1, 2,

where q ∈ G and δij is the Kronecker delta.
A length minimizer can be found as a solution to the

following optimal control problem [4]:

γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)),
γ(0) = q0, γ(T ) = q1, l(γ) → min,

(2)

where X1, X2 are basis left-invariant vector fields tangent to
the distribution ∆ that are orthonormal w.r.t. the scalar product
g( · , · ), the controls u1, u2 are real-valued L∞-functions. and
the length l(γ) defined by (1) is equal to

l(γ) =

T∫
0

√
u2
1(t) + u2

2(t) dt.

Remark 1: Since problem (2) is left–invariant, without loss
of generality one can chose q0 as identity of the group. The
solution for arbitrary q0 is obtained by a left shift.

Remark 2: Due to the Cauchy-Schwarz inequality [4],
minimization of l(γ) is equivalent to minimization of the
action

E(γ) =
1

2

T∫
0

(u2
1(t) + u2

2(t)) dt.

In this work, we study the problem of finding length
minimizers on the Lie group SL2 that is the central extension
of the special linear group SL2 over real numbers R:

q ∈ SL2 =


 x y 0

z w 0
0 0 C

∣∣∣∣∣∣ x, y, z, w,C ∈ R,
xw − yz = 1

 .

We consider the following basis left-invariant vector fields:

X1(q) = (Lq)∗

(
∂y −

1

2
∂C

)∣∣∣∣
e

, X2(q) = (Lq)∗

(
T4

2
∂z

)∣∣∣∣
e

,

where (Lq)∗ is push–forward under left translation Lqh = qh,
e is identity of the group, and T4 > 0 is a constant parameter.

In coordinates (x, y, z, w,C) ∈ R5 we have

X1(q) = x∂y + z∂w +
C

2
∂C , X2(q) =

T4

2
y∂x +

T4

2
w∂z.

Thus, we study the following optimal control problem:

ẋ = T4

2 yu2,

ẏ = xu1,

ż = T4

2 wu2,

ẇ = zu1,

Ċ = 1
2Cu1,

x(0) = w(0) = C(0) = 1,
y(0) = z(0) = 0,
x(T ) = x1, y(T ) = y1, z(T ) = z1,
w(T ) = w1, C(T ) = C1,

1
2

T∫
0

(u2
1(t) + u2

2(t)) dt → min .

(3)

Proposition 1: The control system (3) is completely con-
trollable: for any point q1 = (x1, y1, z1, w1, C1), satisfying
x1w1 − y1z1 = 1, there exists controls u1(t), u2(t), such that
the corresponding trajectory arrives to q1 for the time T > 0.

Proof: Complete controllability of the system is guaran-
teed by the Rashevskii–Chow theorem [4]. Indeed, the vector
fields X1, X2, X3 = [X1, X2], X4 = [X1, X3] + T4X1 form
a basis of the Lie algebra L of SL2.

Further, a question of existence of optimal trajectories
arises: does there always exist an admissible trajectory sat-
isfying the boundary conditions, on which the minimizing
functional reaches its minimum value? For our problem (3)
the answer is positive. Existence of optimal trajectories is
guaranteed by the Filippov theorem [4].

III. PONTRYAGIN MAXIMUM PRINCIPLE

Introduce the following family of functions on the cotangent
bundle T ∗G depending on the parameters u = (u1, u2) and ν:

Hν
u(λ) = u1h1(λ) + u2h2(λ)−

ν

2
(u2

1 + u2
2), λ ∈ T ∗G,

where hi = ⟨ · , Xi⟩ for i = 1, . . . , 4 are linear on the fibers
of the cotangent bundle functions. The Pontryagin maximum
principle [4], [5] gives necessary conditions of optimality.

Theorem 1: If q̃( · ) and ũ( · ) are an optimal process for
problem (3), then there exist a curve λ ∈ Lip ([0, T ], T ∗G),
π(λ(t)) = q̃(t) and a number ν ∈ {0, 1} such that for a.e.
t ∈ [0, T ] we have

λ̇(t) = H⃗ũ(t)(λ(t)),
Hν

ũ(t)(λ(t)) = max
u∈R2

Hν
u(λ(t)),

(λ(t), ν) ̸= 0,

where π : T ∗G → G is the natural projection and H⃗ is the
Hamiltonian vector field corresponding to a Hamiltonian H .

The curve λ( · ) is called an extremal and its projection
π(λ( · )) is called an extremal trajectory. If sufficient small
arcs of an extremal trajectory are optimal, then this trajectory
is called a geodesic. In the case ν = 0, the corresponding
extremal and the corresponding geodesic are called abnormal.
In the case ν = 1, the corresponding extremal and geodesic are
called normal. An abnormal geodesic that is not equal to the
projection of any normal extremal is called a strict abnormal
geodesic.

The vertical (adjoint) subsystem of the Hamiltonian system
of the Pontryagin maximum principle reads as ḣi = {Hν

u , hi}
for i = 1, . . . , 4, where { · , · } is the canonical Poisson bracket
on T ∗G. Computation of the Poisson brackets gives

ḣ1 = −u2h3, ḣ3 = u1h4 − T4(u1h1 − u2h2),

ḣ2 = u1h3, ḣ4 = 0.
(4)



From the results of paper [3] it follows that the abnormal
extremal trajectory with u1 = 0 and u2 = 1 is strict abnormal
geodesic. Thus, from (3) we get its parametrization:

x = 1, y = 0, z = e
T4
2 t − 1, w = 1, C = 1. (5)

IV. QUALITATIVE ANALYSIS OF THE HAMILTONIAN
SYSTEM IN THE GENERAL CASE

It follows from the maximum condition that in the normal
case u1 = h1, u2 = h2. So, using (4) we obtain that the
vertical subsystem of the normal Hamiltonian system reads as

ḣ1 = −h2h3, ḣ3 = h1h4 − T4(h
2
1 − h2

2),

ḣ2 = h1h3, ḣ4 = 0.
(6)

This system has two obvious first integrals: h4 = const
and the Hamiltonian H = 1

2 (h
2
1 + h2

2). Trajectories with unit
velocities correspond to the level surface of the Hamiltonian
H = 1

2 . Introduce the polar angle θ ∈ S1 as h1 = cos θ,
h2 = sin θ. System (6) reduces to the system of a skewed
pendulum{

θ̇ = h3, θ(0) = θ0

ḣ3 = h4 cos θ − T4 cos 2θ, h3(0) = h0
3.

(7)

System (7) is a conservative system of one degree of free-
dom [6]. Such systems have the first integral – the total energy

G =
1

2
h2
3 − (h4 − T4 cos θ) sin θ =

1

2
h2
3 − h4h2 + T4h1h2.

Proposition 2: The trajectories of (6) are the curves of
intersection of the cylinder H = 1

2 and the surface G = const,
which is a two-sheeted hyperboloid for G > 0, a one-sheeted
hyperboloid for G < 0 and a cone for G = 0. The apex of the
cone is at the point h1 = h4

T4
, h2 = h3 = 0 and the generatrix

is parallel to the axis h2.
Proof: The quadratic form 1

2h
2
3 − h4h2 + T4h1h2 is re-

duced to canonical form 1
2h

2
3+T4(h

′
1− h4

2T4
)2−T4(h

′
2− h4

2T4
)2,

where h′
1 = 1

2 (h1 + h2) and h′
2 = 1

2 (h1 − h2).
Fixed points of system (7) are determined by the condition

ḣ3 = θ̇ = 0. By solving the equation h4 cos θ−T4 cos 2θ = 0,
we see that the fixed points have the form

h3 = 0, θ = arctan

(
s1
√
B

h4 + s2A

)
, (8)

where A =
√
h2
4 + 8T 2

4 > 0, B = 8T 2
4+2s1h4(A−s1h4) ≥ 0

and s1, s2 take values ±1.
Note that B = 0 iff |h4| = T4. By analyzing the condition

B ≥ 0 and the type of extremum of G at the fixed point we
obtain the following proposition.

Proposition 3: System (6) has the following fixed points
(see. Fig. 1):
(1) Two centers and two saddles for |h4| < T4.
(2) Center, saddle and cusp for |h4| = T4.
(3) A center and a saddle for |h4| > T4.

Fig. 1. Phase portrait of a skewed pendulum. From left to right: four (|h4| <
T4), three (|h4| = T4) and two (|h4| > T4) fixed points.

V. SPECIAL CASE h4 = 0

In this section we provide an explicit formula for extremal
controls in the special case h4 = 0. Note, that in this case
system (6) is reduced to the system of mathematical pendulum{

θ̇ = h3, θ(0) = θ0 = arg(h0
1 + ih0

2)

ḣ3 = −T4 cos 2θ, h3(0) = h0
3.

(9)

This system is integrated in Jacobi elliptic functions. Explicit
solution in terms of rectified coordinates can be found in [7].

Alternatively, one can derive explicit expression for h3(t)
as a solution to the polynomial ODE and then obtain θ(t) as
integral of h3(t). By virtue of (9), we have

ḧ3 − 2Gh3 + h3
3 = 0,

with initial conditions h3(0) = h0
3, ḣ3(0) = −T4 cos 2θ

0.
An explicit solution of this Cauchy problem in general case,

see [9, App. A], is given by h3(t) = A cn(Ω(t−t0), k), where
the constant parameters A, Ω, t0 and k are determined by the
initial conditions and the constant T4.

The polar angle θ(t) is obtained by

θ(t) = θ0 +

∫ t

0

h3(τ)dτ.

The last integral admits expression in Jacobi elliptic functions.
The extremal controls are given by u1(t) = cos θ(t),

u2(t) = sin θ(t).
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