# Time minimization problem on the Heisenberg group with admissible control in a half-disk

#### Alexey Mashtakov

A.K. Ailamazyan Program Systems Institute of RAS

The International Conference on Differential Equations and Dynamical Systems Suzdal, 30 Jun 2022

#### Outline of the Talk

- Motivation
- Preliminaries
- History of the problem
- Statement of the problem
- Existence of the solution
- Open Pontryagin maximum principle
- Expression of the extremals
- Optimal synthesis

#### Motivation

- Model example of nonholonomic system.
- Nilpotent approximation for a car-like robot.
- Extraction of salient curves in images on curved surfaces.





## History of the Problem

- (B. Gaveau, 1977)
  Statement of the Dido problem (sub-Riemannian problem on the Heisenberg group).
- (R.W. Brockett, 1980) Optimal control formulation, sub-Riemannian sphere.
- (A.M. Vershik, V.Ya. Gershkovich, 1987) Compete analysis of the Dido problem.
- (A.O. Chernyshev, A.P. Mashtakov, 2021, Sirius) Extremal trajectories on the Heisenberg group with a positive control.
- (this work)
  Structure of optimal synthesis.

#### **Preliminaries**

• The Heisenberg group  $H_3 =: M \simeq \mathbb{R}^2_{x,y} \times \mathfrak{so}_2 \ni Q, M \simeq \mathbb{R}^3_{x,y,z} \ni q$ :

$$QQ' = ((x, y), Z) ((x', y'), Z') = ((x + x', y + y'), Z + Z' + (x, y) \land (x', y')).$$

where  $v \wedge w = v \otimes w^T - w \otimes v^T$ .

The Lie algebra  $\mathfrak{h}_3 = \operatorname{span}(X_1, X_2, X_3)$ , where

$$X_1 = \partial_x - \frac{y}{2} \partial_z, \quad X_2 = \partial_y + \frac{x}{2} \partial_z, \quad X_3 = \partial_z.$$

- By given a dynamics on M, an extremal trajectory is called a trajectory that satisfies the necessary optimality condition Pontryagin maximum principle (PMP).
- The <u>wavefront</u> is a set of all points in configuration space M, reachable by all the extremal trajectories in a fixed time T.
- Cut point is a point, where the extremal trajectory loses its optimality.

## The Dido Problem — Classical Sub-Riemannian Problem on H<sub>3</sub>



$$\dot{x}(t) = u_1(t), \ \dot{y}(t) = u_2(t), \ \dot{z}(t) = \frac{1}{2} \left( x(t)u_2(t) - y(t)u_1(t) \right), \ t \in [0, T]$$

$$(x, y)(0) = A, \ z(0) = 0, \ (x, y)(T) = B, \ z(T) = S, \ u_1^2 + u_2^2 \le 1, \ T \to \min.$$

## Classical Result: Solution to the Dido Problem



## Formulation of the Modified Dido Problem (New)



$$\dot{x}(t) = u_1(t), \ \dot{y}(t) = u_2(t), \ \dot{z}(t) = \frac{1}{2} \left( x(t)u_2(t) - y(t)u_1(t) \right), \ t \in [0, T]$$

$$(x, y)(0) = A, \ z(0) = 0, \ (x, y)(T) = B, \ z(T) = S, \ u_1^2 + u_2^2 \le 1, \mathbf{u}_1 \ge \mathbf{0}, \ T \to \min.$$

#### Formal Statement of the Problem

Consider the following control system (dynamics):

$$\begin{cases} \dot{x} = u_1, & (x, y, z) = q \in M, \\ \dot{y} = u_2, & u_1^2 + u_2^2 \le 1, \\ \dot{z} = \frac{1}{2} (xu_2 - yu_1), & u_1 \ge 0. \end{cases}$$

By given  $q_0 = (0, 0, 0)$ ,  $q_1 \in M$  we aim to find the controls  $u_1(t)$ ,  $u_2(t)$  such that the corresponding trajectory  $\gamma : [0, T] \to M$  transfers the system from  $q_0$  to  $q_1$  by minimal time

$$\gamma(0) = q_0, \quad \gamma(T) = q_1, \qquad T \to \min.$$

Here  $u_i$  are  $L^{\infty}([0,T],\mathbb{R})$ , and  $\gamma$  is a Lipschitzian curve on M.

#### Existence of the solution

Theorem 1. In the time minimization problem for the left-invariant control system on the Heisenberg group with admissible control in a half-disk, there exists an optimal trajectory that transfers the system from the identity to any configuration of the admissible set

$$\mathcal{A} = \{ q \in \mathbb{R}^3 \, | \, x > 0 \} \cup \{ q \in \mathbb{R}^3 \, | \, x = 0, \, z = 0 \}.$$

Proof by construction. Let  $(x_0, y_0, z_0) \in A$ . Control in two steps:

- 1)  $u_1 \ge 0, u_2 \in \mathbb{R}$  s.t.,  $(0,0,0) \to (x_0, y', 0)$ ,
- 2)  $u_1 = 0$ ,  $u_2 = f(t)$  s.t.,  $y_0 = \int_0^{t_1} f(t)dt + y'$ ,  $z_0 = \frac{x_0}{2} \int_0^{t_1} f(t)dt$ , where  $y' = y_0 \frac{2z_0}{x_0}$ .

Existence of optimal trajectories is guaranteed by the Filippov theorem due to compactness and convexity of the set of admissible control.

The control system is not globally controllable  $\mathcal{A} \neq H_3$ .  $x(t) = \int_0^t u_1(\tau) d\tau \geq 0$  for t > 0.

## Pontryagin Maximum Principle (PMP)

A necessary condition of optimality is given by PMP.

• Denote  $(p_1, p_2, p_3) \in T_q^* M \simeq \mathbb{R}^3$ . The Pontryagin function is given by

$$H_u = u_1(p_1 - p_3\frac{y}{2}) + u_2(p_2 + p_3\frac{x}{2}).$$

- Let  $(u(t), q(t)), t \in [0, T]$  be an optimal process. Then the following conditions hold:
  - Hamiltonian system  $\dot{p} = -\frac{\partial H_u}{\partial q}, \ \dot{q} = \frac{\partial H_u}{\partial p};$
  - Maximum condition  $H:=\max_{\bar{u}\in U}H_{\bar{u}}(p(t),q(t))=H_{u(t)}(p(t),q(t))\in\{0,1\};$
  - Non-triviality condition  $p_1^2 + p_2^2 + p_3^2 + H^2 \neq 0$ .

## Pontryagin Maximum Principle (PMP)

Introduce left-invariant Hamiltonians  $h_i = \langle \lambda, X_i \rangle, \ \lambda \in T^*M$ :

$$h_1 = p_1 - p_3 \frac{y}{2}, \quad h_2 = p_2 + p_3 \frac{x}{2}, \quad h_3 = p_3.$$

The Pontryagin function reads as  $H_u = u_1h_1 + u_2h_2$ .

The Hamiltonian system is given by

$$\begin{cases} \dot{x} = u_1, \\ \dot{y} = u_2, \\ \dot{z} = \frac{1}{2} (xu_2 - yu_1), \end{cases} \begin{cases} \dot{h}_1 = -u_2 h_3, \\ \dot{h}_2 = u_1 h_3, \\ \dot{h}_3 = 0. \end{cases}$$

The nontriviality condition implies that if  $h_1 = h_2 = 0$  then the extremal is trivial.

## Pontryagin Maximum Principle (PMP)

Let  $h_1 = \rho \cos \psi$ ,  $h_2 = \rho \sin \psi$ ,  $\psi \in (-\pi, \pi]$ ,  $\rho > 0$ .

The maximum condition implies the following:

- For  $\psi = \pi$  we have H = 0,  $u_1 = 0$ ,  $u_2 \in [-1, 1]$ .
- For  $|\psi| \in (\frac{\pi}{2}, \pi)$  we have  $H = |h_2|, u_1 = 0, u_2 = \text{sign } h_2$ .
- For  $|\psi| \leq \frac{\pi}{2}$  we have  $H = \sqrt{h_1^2 + h_2^2}$ ,  $u_1 = \cos \psi$ ,  $u_2 = \sin \psi$ .

Note, H = 0 iff  $\psi = \pi$ . Thus, the abnormal extremals satisfy  $u_1 = 0$ ,  $u_2 \in [-1, 1]$ .







#### Abnormal extremals

**Theorem 2.** Abnormal extremal control exists when  $h_1 < 0, h_2 = 0$  and has a form  $u_1(t) = 0, u_2(t) \in I = [-1, 1]$  — arbitrary  $L_{\infty}([0, T], I)$  function that satisfies the condition

$$h_{10} - h_{30} U_2(t) < 0$$
, where  $U_2(t) = \int_0^t u_2(\tau) d\tau$ ,  $t \in [0, T]$ .

**Theorem 3.** Abnormal extremal trajectories have a form

$$x(t) = 0$$
,  $y(t) = U_2(t)$ ,  $z(t) = 0$ .

**Theorem 4.** Abnormal optimal trajectories have a form

$$x(t) = 0$$
,  $y(t) = \pm t$ ,  $z(t) = 0$ .

## First Integrals of the Normal Hamiltonian System



Hamiltonian 
$$H = \begin{cases} |h_2|, & \text{for } |\psi| \in (\frac{\pi}{2}, \pi), \\ \sqrt{h_1^2 + h_2^2}, & \text{for } |\psi| \le \frac{\pi}{2}. \end{cases}$$

Casimir  $E = h_3$ .

### Phase Portrait on the Level Surface of the Hamiltonian



## Normal Hamiltonian System

For  $h_{10} < 0$ :

$$\begin{cases} \dot{x} = 0, & x(t_0) = x_0, \\ \dot{y} = h_2, & y(t_0) = y_0, \\ \dot{z} = \frac{x_0 h_2}{2}, & z(t_0) = z_0, \end{cases} \begin{cases} \dot{h}_1 = -h_2 h_3, & h_1(t_0) = h_{10}, \\ \dot{h}_2 = 0, & h_2(t_0) = h_2^0 = \pm 1, \\ \dot{h}_3 = 0, & h_3(t_0) = h_{30}. \end{cases}$$

For  $h_{10} \ge 0$ :

$$\begin{cases} \dot{x} = h_1, & x(t_0) = 0, \\ \dot{y} = h_2, & y(t_0) = y_0, \\ \dot{z} = \frac{1}{2}(xh_2 - yh_1), & z(t_0) = 0, \end{cases} \begin{cases} \dot{h}_1 = -h_2h_3, & h_1(t_0) = h_{10}, \\ \dot{h}_2 = h_1h_3, & h_2(t_0) = h_{20}, \\ \dot{h}_3 = 0, & h_3(t_0) = h_{30}. \end{cases}$$

## Structure of Optimal Synthesis

**Theorem.** For any  $q \in \mathcal{A}$ , there exists a unique optimal trajectory, arriving at q. The optimal trajectory (x, y) consists of three segments (possibly zero length):
1) segment of a line parallel to  $O_y$ ; 2) arc of a circle; 3) segment of a line parallel to  $O_y$ .

Proof relies on monotonicity of the function z.





## Picture of the Wavefront



#### Conclusion

#### Summary:

- Left-invariant time minimization problem in H<sub>3</sub> with admissible controls in a half-disk.
- Applications in robotics and image processing.
- Proof of existence of optimal control.
- Necessary optimality condition PMP.
- Qualitative analysis of dynamics.
- Explicit formulas for optimal controls and trajectories.
- Structure of optimal synthesis.

#### Plans:

- Explicit optimal synthesis.
- Similar problems in  $SO_3$  and  $SL_2$ .

Thank you for your attention!