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© Preliminaries

@ Formal statement of the problem

@ Existence of the solution

@ Pontryagin maximum principle

Q@ Expression of the extremals
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Informal Problem Formulation

Model of a car on a plane. Configuration is determined by its position and orientation.
Two controls: tangential u; and angular ug velocity, (u1,u2) € U. By given configurations
qo and ¢ to find a trajectory that transfers the system from ¢y to ¢; by minimal time.

U;

?
—p
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Motivation: Applications in robotics and image processing

o Motion planning problem for a car-like mobile robot that can move forward and turn.
o Extraction of salient curves in images. E.g. vessel tracking on images of human retina.
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Preliminaries

@ The group of motions of a plane SEs = M ~ IR{?W X 591 > q:

qq' = ((z,9),0) ((«',9),0) = (Ro(2,y/) + (z,y),0 + ¢') .
where Ry is a counter-clockwise planar rotation on angle 6.

The Lie algebra sey = span(X1, X2, X3), where

X1—005986 +sm088, Xy = 0y, ngsiHQaaercosG;y.

e By given a dynamics on M, an extremal trajectory is called a trajectory that satisfies
the optimality condition — Pontryagin maximum principle (PMP).
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Model of a Car on a Plane

Configuration space: g € SEq >~ R%y X S(}.
Dynamics: ¢ = u1X1(q) + u2X2(q) < {& =wujcosf, y=upsind, 0 = ug}.

U;

U
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Set of Admissible Controls
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Formal Statement of the Problem

Consider the following control system (dynamics):

T = up cosf, (x,y,0) = q € SEs = M,
Y = u18in6, U] = 1 COoS P, us = rsin @,
0 = us, 0<r<1,|¢[<a,0<a<i.

By given qo, g1 € M we aim to find the controls u;(t), ua(t) such that the corresponding
trajectory 7 : [0,7] — M transfers the system from go to ¢; by minimal time

¥(0) = qo, Y(T)=qu, T — min.

Here u; are L>°([0,T],R), and ~ is a Lipschitzian curve on M.
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Existence of the solution

Theorem. In the time minimization problem for the left-invariant control system on the
group of motions of a plane with admissible control in a circular sector with a convex
central angle, there always exists an optimal trajectory that transfers the system from an
arbitrary given initial configuration to an arbitrary given final configuration.

Proof of global controllability is based on Lie saturation method.

Let F = { X1 +wXs||w| < tana}. The vector field X1 + wXa, w # 0 has a periodic
trajectory. Thus, —(X1 +wXo) € LS(F). It implies —wXy = —(X1 + wXy) + X; € LS(F).
Consequently, £X5 € LS(F), and, thus, £X, € LS(F). Hence, LS(F) = Lie(X1, X»).
Existence of optimal trajectories is guaranteed by the Filippov theorem due to compaciness
and convezity of the set of admissible control and global controllability.

The control system is not small time controllable.
fo“l 7)cosO(7)d 7 > 0 for small ¢ > 0.
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Attainable set of the control system
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-
Pontryagin Maximum Principle (PMP)

A necessary condition of optimality is given by PMP.
o Denote (p1,p2,p3) € T, M ~ R3. The Pontryagin function is given by

H, = uj(p1 cos @ + pasinf) + uaps.

o Let (u(t),q(t)), t € [0,T] be an optimal process. Then the following conditions hold:
o A 0H, . O0H,
- Hamiltonian system p = ———, ¢ = ;
dq Ip
- Maximum condition H = max H,(p(t),q(t)) € {0,1};
ue

- Non-triviality condition p? + p3 + p3 + H? # 0.
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-
Pontryagin Maximum Principle (PMP)

Introduce left-invariant Hamiltonians h; = (A, X;), A € T*M:

hy =pi1cosf + pssinf, hg =p3, hg=pisinfd — pscosb.

The Pontryagin function reads as H, = uih + ushs.
The Hamiltonian system is given by

T = uqcosb, h1 = —ughs,
y = Uul sin 9, hg = ulhg,
9:’&2, h3:u2h1.

The nontriviality condition implies that if Ay = ho = 0 then the extremal is trivial.
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Pontryagin Maximum Principle (PMP)

Let hy = pcost, hg = psiny, ¢ € (—m, 7], p > 0.

The maximum condition implies the following:

o For | € [§ + a, 7| we have H = 0, u; = ug = 0.
o For £¢ € (o, § + ) we have H = hyjcosa + hpsina, u; = cosa, ug = £sina.

o For || < a we have H = \/h? + h3, uj = cos v, ug = sinp.

We see that H = 0 iff [1| € [§ + o, 7]. Thus, the abnormal extremals are trivial

o A (0,0) = (urm) | N
P (h1, hs) \\ v
(1, dg)=Kha, ha) !
k N (i) g

PN
7

(hy, ho )Y
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First Integrals of the Hamiltonian System

| 1 |
\ Lo
\ | \
\ o
| o
‘? |
| |
P
“\\ T
NPt
hicosa + |ho|sina, for >«
Hamiltonian H = s oz vl ’ Casimir E = h? + h3.
V hi+ h3, for || < a.
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Reduction of the Hamiltonian System via Convex Trigonometry
The polar set to U is U = {(hy, ha) € RQ*‘ urhy + ughe <1 VY(uj,ug) € U):

—h —h )
! 2 for || < a:pel0,1], .
U® = q (pcostp, psinep) | for a < <a+ 75 : hicosa+ hysina <1,
for —a—§ <Y <—a: hicosa—hysina>1

The corresponding functions of convex trigonometry are

for |¢°] < a1 cospo ¢ = cos ¢, singo ¢p° = singo ¢°;
for |¢°| > a: cosyo ¢° = cos a — sin a(¢° — ), singo ¢° = sign(¢?) (sin o + cos a(¢® — a))

Along the extremal traJectorles U] = COS P, Uy = sm <Z>, h1 = cosge ¢°, ho = singo ¢°.

2
Denote K (¢°) = 3 cos?, ¢°. The Casimir E = 1 42 3 = 3 + K(¢°) can be seen as a total
energy integral of conservative system with one degree of freedom

¢° = h3, hy=K'(¢°).
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Phase Portrait on the Level Surface of the Hamiltonian

o £E=0= (¢° h3) = ((a+ cot a),0) is stable equilibrium;
o E€(0,1)U(3,+00) = the trajectory (¢°, hs)(t) is periodic;
o E =} = either (¢°, h3) = (0,0) is unstable equilibrium or (¢°, hg)(t) is a separatrix.
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The Hamiltonian System in s—parameterization

Since u; > 0 the trajectories can be parametrized by the arc-length on the plane Oxy:

s(t):/O \/¢2(7)+y2(7)d72/0 w(r)dr.

The Hamiltonian in s-parameterization is given by

' = cos, hy = —uhs, J
U2
. /
Yy =sinf, hly = ha, where ' = —, u = —=.
/ / § u1
0 = u, 3 = Uhla
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Explicit Expression for the Extremals

Denote M = 1+ p3 — p3,, P(s) = psosinh(s) — p2 cosh(s), f(s) = pso cosh s — pa sinh s — p3p.

Case |¢°| > a. The extremal control is u = +sin «, and the corresponding extremal
trajectories are circular arcs on the plane Oxy:

x(s) = %sin(us), y(s)

u

(cos(us) — 1), 0O(s) = us.

Case |¢°| < a. The extremal trajectories are the arcs of sub-Riemannian geodesics in SEs:
1 1 . P(s PO
w(s) = 37 (pr9(s) =p2 f(5)), y(s) = 77 (p1 /() +p29(s)), O(s) ) v

= arcsin ——= — arcsin ——=

vM VM’
where g(s) = [ /M — P?(0)d o is expressed in Jacobi elliptic functions.
0
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Examples of the Extremal Trajectories
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Conclusion

Summary:

o Left-invariant time minimization problem in SEs with admissible controls in a sector.

Applications in robotics and image processing.

@ Proof of existence of optimal control.

Necessary optimality condition — PMP.

Qualitative analysis of dynamics.

e Explicit formulas for extremal controls and trajectories.

Plans:

e Optimality of extremals.

e Optimal synthesis.
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Thank you for your attention!
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