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Plan of the talk

1. Sub-Riemannian geometry

2. Sub-Lorentzian geometry

3. Left-invariant sub-Lorentzian structure on the Heisenberg group

4. Previously obtained results by M. Grochowski

5. Pontryagin maximum principle, parameterization of extremal trajectories,
exponential mapping

6. Exponential mapping is a di�eomorphism, its inverse

7. Optimality of extremal trajectories, optimal synthesis

8. Sub-Lorentzian distance: explicit formula, symmetries

9. Sub-Lorentzian spheres of positive and zero radii

10. Discussion and questions
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Sub-Riemannian geometry
• Smooth manifold M,

• vector distribution ∆ = {∆q ⊂ TqM | q ∈ M}, dim∆q ≡ const,

• inner product in ∆:

g = {gq � inner product in ∆q | q ∈ M}

• sub-Riemannian structure (∆, g) on M

• horizontal curve q ∈ Lip([0, t1],M):

q̇(t) ∈ ∆q(t) a.e. t ∈ [0, t1],

• sub-Riemannian length l(q(·)) =
∫ t1
0
(g(q̇(t), q̇(t))1/2 dt,

• sub-Riemannian (Carnot-Carath�eodory) distance
d(q0, q1) = inf{l(q(·)) | q(·) horiz. curve, q(0) = q0, q(t1) = q1},
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Sub-Riemannian geometry

• sub-Riemannian minimizer q(t), t ∈ [0, t1]: horizontal curve s.t.
l(q(·)) = d(q(0), q(t1)),

• sub-Riemannian sphere SR(q0) = {q ∈ M | d(q, q0) = R},
sub-Riemannian ball BR(q0) = {q ∈ M | d(q, q0) ≤ R},

• geodesic: horizontal curve whose small arcs are minimizers,

• cut time along a geodesic q(t):

tcut(q(·)) = sup{t > 0 | q(s), s ∈ [0, t], minimizer },

• cut point q(t1), t1 = tcut(q(·)),

• cut locus Cutq0 = {q1 ∈ M | q1 cut point for some geod. q(·), q(0) = q0}
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Sub-Riemannian geometry

• q(·) is locally optimal if ∃ nbhd of {q(·)} in the subspace of curves in C ([0, t1],M)
with the same endpoints in which {q(·)} is a minimizer,

• the �rst conjugate time along a geodesic q(t):

tconj(q(·)) = sup{t > 0 | q(s), s ∈ [0, t], locally optimal },

• the �rst conjugate point along a geodesic q(t):

q(t1), t1 = tconj(q(·)),

• the �rst caustic:

Conjq0 = {q1 ∈ M | q1 the �rst conjugate pt for some geod. q(·), q(0) = q0}.
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Example: SR geometry on the Heisenberg group

• M =


 1 a c

0 1 b
0 0 1

 | (a, b, c) ∈ R3


• X1 =

∂
∂x − y

2
∂
∂z , X2 =

∂
∂y + x

2
∂
∂z , x = a, y = b, z = c − ab/2

• ∆q = span(X1(q),X2(q)), g(Xi ,Xj) = δij
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Sub-Lorentzian geometry
• Smooth manifold M,

• vector distribution ∆ = {∆q ⊂ TqM | q ∈ M}, dim∆q ≡ const,

• Lorentzian metric (nondegenerate quadratic form of index 1) in ∆:

g = {gq � Lorentzian metric in ∆q | q ∈ M}

• sub-Lorentzian (SL) structure (∆, g) on M

• horizontal vector: v ∈ ∆q,
• horizontal vector v is called:

• timelike if g(v) < 0
• spacelike if g(v) > 0 or v = 0,
• lightlike if g(v) = 0 and v ̸= 0,
• nonspacelike if g(v) ≤ 0

• Lipschitzian curve in M is called timelike if it has timelike velocity vector a.e.,

• spacelike, lightlike and nonspacelike curves are de�ned similarly.
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Lightlike cone for g = dx2 + dy 2 − dz2

Figure: Lightlike cone
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Sub-Lorentzian geometry
• A time orientation X is an arbitrary timelike vector �eld in M.
• A nonspacelike vector v ∈ ∆q is future directed if g(v ,X (q)) < 0, and past
directed if g(v ,X (q)) > 0.

• A future directed timelike curve q(t), t ∈ [0, t1], is called arclength parametrized if
g(q̇(t), q̇(t)) ≡ −1.

• Any future directed timelike curve can be parametrized by arclength, similarly to
the arclength parametrization of a horizontal curve in sub-Riemannian geometry.

• The length of a nonspacelike curve γ ∈ Lip([0, t1],M) is

l(γ) =

∫ t1

0

|g(γ̇, γ̇)|1/2dt.

• For points q1, q2 ∈ M denote by Ωq1q2 the set of all future directed nonspacelike
curves in M that connect q1 to q2.

• In the case Ωq1q2 ̸= ∅ denote the sub-Lorentzian distance from the point q1 to the
point q2 as

d(q1, q2) = sup{l(γ) | γ ∈ Ωq1q2}. (1)
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Sub-Lorentzian geometry

• A future directed nonspacelike curve γ is called a SL length maximizer if it realizes
the supremum in (1) between its endpoints γ(0) = q1, γ(t1) = q2.

• The causal future of a point q0 ∈ M is the set J+(q0) of points q1 ∈ M for which
there exists a future directed nonspacelike curve γ that connects q0 and q1.

• The chronological future I+(q0) of a point q0 ∈ M is de�ned similarly via future
directed timelike curves γ.

• Let q0 ∈ M, q1 ∈ J+(q0). The search for SL length maximizers that connect q0
with q1 reduces to the search for future directed nonspacelike curves γ that solve
the problem

l(γ) → max, γ(0) = q0, γ(t1) = q1. (2)
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Sub-Lorentzian geometry
• Vector �elds X1, . . . ,Xk ∈ Vec(M) form an orthonormal frame for (∆, g) if

∆q = span(X1(q), . . . ,Xk(q)), q ∈ M,

gq(X1,X1) = −1, gq(Xi ,Xi ) = 1, i = 2, . . . , k ,

gq(Xi ,Xj) = 0, i ̸= j .

• Assume that time orientation is de�ned by a timelike vector �eld X ∈ Vec(M) for
which g(X ,X1) < 0 (e.g., X = X1). Then the SL problem for the SL structure
with the orthonormal frame X1, . . . ,Xk is stated as follows:

q̇ =
k∑

i=1

uiXi (q), q ∈ M,

u ∈ U =

{
(u1, . . . , uk) ∈ Rk | u1 ≥

√
u22 + · · ·+ u2k

}
,

q(0) = q0, q(t1) = q1, l(q(·)) =
∫ t1

0

√
u21 − u22 − · · · − u2k dt → max .
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Sub-Lorentzian geometry

• The SL length is preserved under monotone Lipschitzian time reparametrizations
t(s), s ∈ [0, s1]. Thus if q(t), t ∈ [0, t1], is a sub-Lorentzian length maximizer,
then so is any its reparametrization q(t(s)), s ∈ [0, s1].

• In this talk we choose primarily the following parametrization of trajectories: the
arclength parametrization (u21 − u22 − · · · − u2k ≡ 1) for timelike trajectories, and
the parametrization with u1(t) ≡ 1 for future directed lightlike trajectories.
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Statement of the SL problem on the Heisenberg group
• The Heisenberg group is the space M ≃ R3

x ,y ,z with the product rule

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + (x1y2 − x2y1)/2).

• It is a three-dimensional nilpotent Lie group with a left-invariant frame

X1 =
∂

∂ x
− y

2

∂

∂ z
, X2 =

∂

∂ y
+

x

2

∂

∂ z
, X3 =

∂

∂ z
, (3)

with the only nonzero Lie bracket [X1,X2] = X3.
• Consider the left-invariant SL problem on the Heisenberg group M de�ned by the
orthonormal frame (X1,X2), with the time orientation X1:

q̇ = u1X1 + u2X2, q ∈ M, (4)

u ∈ U = {(u1, u2) ∈ R2 | u1 ≥ |u2|}, (5)

q(0) = q0 = Id = (0, 0, 0), q(t1) = q1, (6)

l(q(·)) =
∫ t1

0

√
u21 − u22 dt → max . (7)
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Reduced SL problem on the Heisenberg group
• Reduced sub-Lorentzian problem

q̇ = u1X1 + u2X2, q ∈ M, (8)

u ∈ intU = {(u1, u2) ∈ R2 | u1 > |u2|}, (9)

q(0) = q0 = Id = (0, 0, 0), q(t1) = q1, (10)

l(q(·)) =
∫ t1

0

√
u21 − u22 dt → max . (11)

• In the full problem (4)�(7) admissible trajectories q(·) are future directed
nonspacelike ones, while in the reduced problem (8)�(11) admissible trajectories
q(·) are only future directed timelike ones.

• Passing to arclength-parametrized future directed timelike trajectories:

q̇ = u1X1 + u2X2, q ∈ M, u21 − u22 = 1, u1 > 0, (12)

q(0) = q0 = Id = (0, 0, 0), q(t1) = q1, (13)

t1 → max . (14)
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Previously obtained results by M. Grochowski
(1) Sub-Lorentzian extremal trajectories were parametrized by hyperbolic and linear

functions: were obtained formulas equivalent to our formulas (17), (18).
(2) It was proved that there exists a domain in M containing q0 = Id in its boundary

at which the sub-Lorentzian distance d(q0, q) is smooth.
(3) The attainable sets of the sub-Lorentzian structure from the point q0 = Id were

computed: the chronological future of the point q0

I+(q0) = {(x , y , z) ∈ M | −x2 + y2 + 4|z | < 0, x > 0},
and the causal future of the point q0

J+(q0) = {(x , y , z) ∈ M | −x2 + y2 + 4|z | ≤ 0, x ≥ 0}. (15)

In the standard language of control theory, I+(q0) is the attainable set of the
reduced system (8), (9) from the point q0 for arbitrary positive time. Thus the
attainable set of the reduced system (8), (9) from the point q0 for arbitrary
nonnegative time is

A = I+(q0) ∪ {q0}.
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Previously obtained results by M. Grochowski
(3) The attainable set of the full system (4), (5) from the point q0 for arbitrary

nonnegative time is cl(A) = J+(q0).
(4) The attainable set A was also computed by H. Abels and E.B. Vinberg, they called

its boundary as the Heisenberg beak. See the set ∂A below, and its views from the
y - and z-axes in the next slide.

Figure: The Heisenberg beak ∂A
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Views of the Heisenberg beak

Figure: View of ∂A along y -axis Figure: View of ∂A along z-axis
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Previously obtained results by M. Grochowski

(5) The lower bound of the sub-Lorentzian distance√
x2 − y2 − 4|z | ≤ d(q0, q), q = (x , y , z) ∈ J+(q0),

was proved. It was also noted that an upper bound

d(q0, q) ≤ C
√
x2 − y2 − 4|z |

does not hold for any constant C ∈ R.
(6) It was proved that there exist non-Hamiltonian maximizers, i.e., maximizers that

are not projections of the Hamiltonian vector �eld H⃗, H = 1
2(h

2
2 − h21), related to

the problem.
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Pontryagin maximum principle

• Denote points of the cotangent bundle T ∗M as λ. Introduce linear on �bers of
T ∗M Hamiltonians hi (λ) = ⟨λ,Xi ⟩, i = 1, 2, 3.

• De�ne the Hamiltonian of the Pontryagin maximum principle (PMP) for the
sub-Lorentzian problem (4)�(7)

hνu(λ) = u1h1(λ) + u2h2(λ)− ν
√
u21 − u22 , λ ∈ T ∗M, u ∈ U, ν ∈ R.

• It follows from PMP that if u(t), t ∈ [0, t1], is an optimal control in problem
(4)�(7), and q(t), t ∈ [0, t1], is the corresponding optimal trajectory, then there
exists a curve λ· ∈ Lip([0, t1],T

∗M), π(λt) = q(t), and a number ν ∈ {0,−1} for
which there hold the conditions for a.e. t ∈ [0, t1]:

1. the Hamiltonian system λ̇t = h⃗νu(t)(λt),

2. the maximality condition hνu(t)(λt) = maxv∈U hνv (λt) ≡ 0,

3. the nontriviality condition (ν, λt) ̸= (0, 0).
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Abnormal case
Theorem
In the abnormal case ν = 0 there exist τ1, τ2 ≥ 0 such that:

(1) h3(λt) ≡ const > 0:

t ∈ (0, τ1) ⇒ h1(λt) = h2(λt) < 0, u1(t) = −u2(t),

t ∈ (τ1, τ1 + τ2) ⇒ h1(λt) = −h2(λt) < 0, u1(t) = u2(t).

(2) h3(λt) ≡ const < 0:

t ∈ (0, τ1) ⇒ h1(λt) = −h2(λt) < 0, u1(t) = u2(t),

t ∈ (τ1, τ1 + τ2) ⇒ h1(λt) = h2(λt) < 0, u1(t) = −u2(t).

(3) h3(λt) ≡ 0:

(h1, h2)(λt) ≡ const ̸= (0, 0), h1(λt) ≡ −|h2(λt)|,
u(t) ≡ const, u1(t) ≡ ±u2(t), ± = − sgn(h1h2(λt)).

20 / 55



Normal case
• In the normal case (ν = −1) extremals exist only for h1 ≤ −|h2|.
• In the case h1 = −|h2| normal controls and extremal trajectories coincide with the
abnormal ones.

• And in the domain {λ ∈ T ∗M | h1 < −|h2|} extremals are reparametrizations of
trajectories of the Hamiltonian vector �eld H⃗ with the Hamiltonian
H = 1

2(h
2
2 − h21).

• In the arclength parametrization, the extremal controls are

(u1, u2)(t) = (−h1(λt), h2(λt)), (16)

and the extremals satisfy the Hamiltonian ODE λ̇ = H⃗(λ) and belong to the level
surface {H(λ) = 1

2}, in coordinates:

ḣ1 = −h2h3, ḣ2 = −h1h3, ḣ3 = 0,

q̇ = coshψ X1 + sinhψ X2,

h1 = − coshψ, h2 = sinhψ, ψ ∈ R.
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Parametrization of normal trajectories

• If h3 = 0, then
x = t coshψ, y = t sinhψ, z = 0. (17)

• If c := h3 ̸= 0, then

x =
sinh(ψ + ct)− sinhψ

c
, y =

cosh(ψ + ct)− coshψ

c
, z =

sinh(ct)− ct

2c2
.

(18)

Theorem
Normal controls and trajectories either coincide with abnormal ones (in the case

h1(λt) = −|h2(λt)|), or can be arclength parametrized to get controls (16) and future

directed timelike trajectories (17) if c = 0, or (18) if c ̸= 0.
In particular, each normal extremal can be parameterized so that

H(λt) ≡ const ∈
{
0, 12

}
.
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Exponential mapping

• Normal trajectories are either nonstrictly normal (i.e., simultaneously normal and
abnormal) in the case H = 0, or strictly normal (i.e., normal but not abnormal) in
the case H = 1

2 .

• Strictly normal arclength-parametrized trajectories are described by the exponential
mapping

Exp : N → Ã, (λ, t) 7→ q(t) = π ◦ etH⃗(λ), (19)

N = C × R+, R+ = (0,+∞), C = T ∗
IdM ∩ H−1

(
1

2

)
≃ R2

ψ,c ,

Ã = intA = I+(q0)

given explicitly by formulas (17), (18).
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Projections of strictly normal trajectories
• Projections of strictly normal (future directed timelike) trajectories to the plane
(x , y) are:

• either rays y = kx , x ≥ 0, k ∈ (−1, 1) (for c = 0),
• or arcs of hyperbolas with asymptotes x = ±y > 0 (for c ̸= 0).

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0

y

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0

y

Figure: Strictly normal (x(t), y(t)),
c = 0

Figure: Strictly normal (x(t), y(t)),
c ̸= 0
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Projections of nonstrictly normal trajectories
• Projections of nonstrictly normal trajectories to the plane (x , y) are broken lines
with one or two edges parallel to the rays x = ±y > 0.

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0

y

Figure: Nonstrictly normal (x(t), y(t))

• Projections of all extremal trajectories (as well as of all admissible trajectories) to
the plane (x , y) are contained in the angle {(x , y) ∈ R2 | x ≥ |y |}, which is the
projection of the attainable set J+(q0) to this plane.
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Symplectic foliation

• The Hamiltonian H = 1
2(h

2
2 − h21) is preserved on each extremal.

• On the other hand, since the problem is left-invariant, the extremals respect the
symplectic foliation on the dual of the Heisenberg Lie algebra
T ∗
IdM = {(h1, h2, h3)} consisting of 2-dimensional symplectic leaves

{h3 = const ̸= 0} and 0-dimensional leaves {h3 = 0, (h1, h2) = const}.
• Thus projections of extremals to T ∗

IdM = {(h1, h2, h3)} belong to intersections of

the level surfaces
{
H = const ∈

{
0, 12

}}
with the symplectic leaves:

• branches of hyperbolas h2
1
− h2

2
= 1, h1 < 0, h3 ̸= 0,

• points (h1, h2) = const, H ∈
{
0, 1

2

}
, h1 ≤ −|h2|, h3 = 0,

• angles h1 = −|h2|, h3 ̸= 0.

See �gs in the next slide.
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Vertical part of the geodesic �ow on T ∗
IdM = {(h1, h2, h3)}

Figure: Strictly normal
(h1(t), h2(t), h3(t))

Figure: Nonstrictly normal
(h1(t), h2(t), h3(t)) 27 / 55



Hamiltonian and non-Hamiltonian extremal trajectories
• In the terminology of M.Grochowski, strictly normal extremal trajectories

q(t) = π ◦ etH⃗(λ), λ ∈ C , are Hamiltonian since they are projections of
trajectories of the Hamiltonian vector �eld H⃗.

• Nonstrictly normal extremal trajectories given by items (1), (2) of Th. 1 are
non-Hamiltonian, e.g., the broken curves{

et(X1+X2), t ∈ [0, τ1],

e(t−τ1)(X1−X2) ◦ eτ1(X1+X2), t ∈ [τ1, τ2],
(20)

and {
et(X1−X2), t ∈ [0, τ1],

e(t−τ1)(X1+X2) ◦ eτ1(X1−X2), t ∈ [τ1, τ2],
(21)

for 0 < τ1 < τ2.
• Although, each smooth arc of the broken trajectories (20), (21) is a
reparametrization of projection of a trajectory of the Hamiltonian vector �eld H⃗
contained in a face of the angle {(h1, h2, h3) ∈ T ∗

IdM | h1 = −|h2|}.
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Inversion of the exponential mapping

Theorem
The exponential mapping Exp : N → Ã is a real-analytic di�eomorphism. The inverse

mapping Exp−1 : Ã → N, (x , y , z) 7→ (ψ, c , t), is given by the following formulas:

z = 0 ⇒ ψ = artanh
y

x
, c = 0, t =

√
x2 − y2, (22)

z ̸= 0 ⇒ ψ = artanh
y

x
− p, c = (sgn z)

√
sinh 2p − 2p

2z
, t =

2p

c
, (23)

where p = β
(

z
x2−y2

)
, and β :

(
−1

4 ,
1
4

)
→ R is the inverse function to the

di�eomorphism

α : R →
(
−1

4
,
1

4

)
, α(p) =

sinh 2p − 2p

8 sinh2 p
.

See plots of the functions α(p) and β(z) in the next slide.
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Plots of the functions α(p) and β(z)

p

-0.25

0.25

α

-0.25 0.25
z

β

Figure: Plot of α(p) Figure: Plot of β(z)
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Lagrangian manifolds
• Let M be a smooth manifold, then the cotangent bundle T ∗M bears the Liouville
1-form s = pdq ∈ Λ1(T ∗M) and the symplectic 2-form
σ = ds = dp ∧ dq ∈ Λ2(T ∗M).

• A submanifold L ⊂ T ∗M is called a Lagrangian manifold if dimL = dimM and
σ|L = 0.

• Consider an optimal control problem

q̇ = f (q, u), q ∈ M, u ∈ U,

q(t0) = q0, q(t1) = q1,

J[q(·)] =
∫ t1

t0

φ(q, u) dt → min, t0 is �xed, t1 is free.

• Let gu(λ) = ⟨λ, f (q, u)⟩ − φ(q, u), λ ∈ T ∗M, q = π(λ), u ∈ U, be the normal
Hamiltonian of PMP.

• Suppose that the maximized normal Hamiltonian G (λ) = maxu∈U gu(λ) is smooth
in an open domain O ⊂ T ∗M, and let the v. �eld G⃗ ∈ Vec(O) be complete.
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Su�cient optimality condition

Theorem

• Let L ⊂ G−1(0)∩O be a Lagrangian submanifold such that the form s|L is exact.

• Let the projection π : L → π(L) be a di�eomorphism on a domain in M.

• Consider an extremal λ̃t = etG⃗ (λ0), t ∈ [t0, t1], contained in L, and the

corresponding extremal trajectory q̃(t) = π(λ̃t).

• Consider also any trajectory q(t) ∈ π(L), t ∈ [t0, τ ], such that q(t0) = q̃(t0),
q(τ) = q̃(t1).

• Then J[q̃(·)] < J[q(·)].
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Optimality in the reduced SL problem
• For the reduced SL problem the maximized Hamiltonian G = 1−

√
h21 − h22 is

smooth on the domain O = {λ ∈ T ∗M | h1 < −|h2|}, and the Hamiltonian vector
�eld G⃗ ∈ Vec(O) is complete

• In the domain O the Hamiltonian vector �elds G⃗ and H⃗ have the same trajectories
up to a monotone time reparametrization; moreover, on the level surface{
H = 1

2

}
= {G = 0} they just coincide between themselves.

• De�ne the set
L =

{
etG⃗ (λ0) | λ0 ∈ C , t > 0

}
. (24)

Lemma
L ⊂ T ∗M is a Lagrangian manifold such that s|L is exact.

Theorem
For any point q1 ∈ intA = I+(q0) the strictly normal trajectory q(t) = Exp(λ, t),
t ∈ [0, t1], is the unique optimal trajectory of the reduced SL problem connecting q0
with q1, where (λ, t1) = Exp−1(q1) ∈ N.
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The cost function for the equivalent reduced SL problem

Denote

d̃(q1) = sup{l(q(·)) | traj. q(·) of (8)�(11), q(0) = q0, q(t1) = q1}
= sup{t1 > 0 | ∃ traj. q(·) of (12)�(14) s.t. q(0) = q0, q(t1) = q1},

where q1 ∈ intA = I+(q0).

Theorem
Let q = (x , y , z) ∈ I+(q0). Then

d̃(q) =
√
x2 − y2 · p

sinh p
, p = β

(
z

x2 − y2

)
. (25)

The function d̃ : I+(q0) → R+ is real-analytic.
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Optimality in the full SL problem

Theorem
Let q1 ∈ intA = I+(q0). Then the SL length maximizers for the full problem are

reparametrizations of the corresponding SL length maximizers for the reduced problem

described above.

In particular, d |I+(q0) = d̃ .

Theorem
Let q1 = (x1, y1, z1) ∈ ∂A = J+(q0) \ I+(q0), q1 ̸= q0. Then an optimal trajectory in

the full SL problem is a future directed lightlike piecewise smooth trajectory with one or

two subarcs generated by the vector �elds X1 ± X2.
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Length maximizers in the full SL problem

Corollary

For any q1 ∈ J+(q0), q1 ̸= q0, there is a unique, up to reparametrization, SL length

minimizer in the full problem that connects q0 and q1:

• if q1 ∈ intA = I+(q0), then q(·) is a future directed timelike strictly normal

trajectory.

• if q1 ∈ ∂A = J+(q) \ I+(q0), then q(·) is a future directed lightlike nonstrictly

normal trajectory.

Corollary

Any SL length maximizer of the full problem problem of positive length is timelike and

strictly normal.

• The broken trajectories described above are optimal in the SL problem, while in SR
problems trajectories with angle points cannot be optimal.

• Moreover, these broken trajectories are normal and nonsmooth, which is also
impossible in SR geometry. 36 / 55



Sub-Lorentzian distance
Denote d(q) := d(q0, q), q ∈ J+(q0).

Theorem
Let q = (x , y , z) ∈ J+(q0). Then

d(q) =
√

x2 − y2 · p

sinh p
, p = β

(
z

x2 − y2

)
. (26)

In particular:

(1) z = 0 ⇐⇒ d(q) =
√
x2 − y2,

(2) q ∈ J+(q0) \ I+(q0) ⇐⇒ d(q) = 0.

-2 -1 1 2-3 3
p

0.5

1

p/sinh(p)

Figure: Plot of p
sinh p
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Plot of d |z=0 =
√

x2 − y 2

Figure: Plot of d |z=0

38 / 55



Plot of d |y=0

Figure: Plot of d |y=0
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Plot of d |x=1

Figure: Plot of d |x=1
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Regularity of the sub-Lorentzian distance

Theorem

(1) The function d(·) is continuous on J+(q0) and real-analytic on I+(q0).

(2) The function d(·) is not Lipschitz near points q = (x , y , z) with x = |y | > 0,
z = 0.

Remark
The sub-Lorentzian distance d : J+(q0) → [0,+∞) is not uniformly continuous since

the same holds for its restriction d |z=0 =
√
x2 − y2 on the angle {x ≥ |y |}.

41 / 55



Bounds of the sub-Lorentzian distance

Theorem

(1) The ratio

√
x2 − y2 − 4|z |

d(q)
takes any values in the segment [0, 1] for

q = (x , y , z) ∈ J+(q0).

(2) For any q = (x , y , z) ∈ J+(q0) there holds the bound d(q) ≤
√
x2 − y2,

moreover, the ratio
d(q)√
x2 − y2

takes any values in the segment [0, 1].
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Bounds of the sub-Lorentzian distance
The two-sided bound√

x2 − y2 − 4|z | ≤ d(q) ≤
√
x2 − y2, q ∈ J+(q0), (27)

is visualized in �gure below, which shows plots of the surfaces (from below to top):√
x2 − y2 = 1, d(q) = 1,

√
x2 − y2 − 4|z | = 1, q ∈ J+(q0).

Figure: Bound (27)

43 / 55



Symmetries

Theorem

(1) The hyperbolic rotations X0 = y ∂
∂ x + x ∂

∂ y and re�ections

ε1 : (x , y , z) 7→ (x ,−y , z), ε2 : (x , y , z) 7→ (x , y ,−z) preserve d(·).
(2) The dilations Y = x ∂

∂ x + y ∂
∂ y + 2z ∂

∂ z stretch d(·):

d(esY (q)) = esd(q), s ∈ R, q ∈ J+(q0).
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The unit sub-Lorentzian sphere

S = {Exp(λ, 1) | λ ∈ C}

Theorem

(1) The unit SL sphere S is a regular real-analytic manifold di�eomorphic to R2.

(2) Let q = Exp(ψ, c , 1) ∈ S , (ψ, c) ∈ C , then the tangent space

TqS =

{
v =

3∑
i=1

viXi (q) | −v1 cosh(ψ + c) + v2 sinh(ψ + c) + v3c = 0

}
. (28)

(3) S is the graph of the function x =
√

y2 + f (z), where f (z) = e ◦ k(z),
e(w) = sinh2 w

w2 , k(z) = b(z)/2, b = a−1, a(c) = sinh c−c
2c2

.

(4) The function f (z) is real-analytic, even, strictly convex, unboundedly and strictly

increasing for z ≥ 0. This function has a Taylor decomposition

f (z) = 1+ 12z2 + O(z4) as z → 0 and an asymptote 4|z | as z → ∞.
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The unit sub-Lorentzian sphere

(5) The function f (z) satis�es the bounds

4|z | < f (z) < 4|z |+ 1, z ̸= 0. (29)

(6) A section of the sphere S by a plane {z = const} is a branch of the hyperbola
x2 − y2 = f (z), x > 0. A section of the sphere S by a plane {x = const > 1} is a
strictly convex curve y2 + f (z) = x2 di�eomorphic to S1.

(7) The sub-Lorentzian distance from the point q0 to a point q = (x , y , z) ∈ Ã may
be expressed as d(q) = R , where x2 − y2 = R2f (z/R2).

(8) The sub-Lorentzian ball B = {q ∈ M | d(q) ≤ 1} has in�nite volume in the
coordinates x , y , z .
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The unit sub-Lorentzian sphere

Figure: The sphere S and the
Heisenberg beak ∂A

Figure: Maximizers connecting q0 and
S 47 / 55



The unit sub-Lorentzian sphere
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Figure: Plot of f (z) and bound (29) Figure: Sections of S by the planes
{x = 1, 2, 3}
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Sub-Lorentzian sphere of zero radius

S(0) = {q ∈ M | d(q) = 0}.

Theorem

(1) S(0) = J+(q0) \ I+(q0) = ∂J+(q0) = ∂I+(q0) = ∂A.

(2) S(0) is the graph of a continuous function x = Φ(y , z) :=
√
y2 + 4|z |, thus a

2-dimensional topological manifold.

(3) The function Φ(y , z) is even in y and z , real-analytic for z ̸= 0, Lipschitz near

z = 0, y ̸= 0, and H�older with constant 1
2 , non-Lipschitz near (y , z) = (0, 0).

(4) S(0) is �lled by broken lightlike trajectories with one or two edges, and is

parametrized by them as follows:

S(0) =
{
eτ2(X1−X2)eτ1(X1+X2) = (τ1 + τ2, τ1 − τ2,−τ1τ2) | τi ≥ 0

}
∪
{
eτ2(X1+X2)eτ1(X1−X2) = (τ1 + τ2, τ2 − τ1, τ1τ2) | τi ≥ 0

}
.
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Sub-Lorentzian sphere of zero radius
(5) The �ows of the vector �elds Y ,X0 preserve S(0). Moreover, the symmetries Y ,

X0 provide a regular parametrization of

S(0) ∩ {sgn z = ±1} =
{
esY ◦ erX0(q±) | r , s > 0

}
, (30)

where q± = (x±, y±, z±) is any point in S(0) ∩ {sgn z = ±1}.
(6) S(0) =

{
16z2 = (x2 − y2)2, x2 − y2 ≥ 0, x ≥ 0

}
is a semi-algebraic set.

(7) The zero-radius sphere is a Whitney strati�ed set with the strati�cation

S(0) =
(
S(0) ∩ {z > 0}

)
∪
(
S(0) ∩ {z < 0}

)
∪
(
S(0) ∩ {z = 0, y > 0}

)
∪
(
S(0) ∩ {z = 0, y < 0}

)
∪ {q0}.

(8) Intersection of the sphere S(0) with a plane {z = const ̸= 0} is a branch of a
hyperbola {x2 − y2 = 4|z |, x > 0, z = const}, intersection with a plane {z = 0} is
an angle {x = |y |, z = 0}, intersection with a plane {y = kx}, k ∈ (−1, 1), is a
union of two half-parabolas {4z = ±(1− k2)x2, x ≥ 0, y = kx}, and intersection
with a plane {y = ±x} is a ray {y = ±x , z = 0}.
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The Heisenberg beak S(0) = ∂A

Figure: The Heisenberg beak ∂A
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Lightlike maximizers �lling S(0)

Figure: Lightlike maximizers �lling S(0)
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Sub-Lorentzian spheres or radii 0, 1, 2, 3

Figure: Sub-Lorentzian spheres or radii 0, 1, 2, 3
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Conclusion

The results obtained in this talk for the SL problem on the Heisenberg group di�er
drastically from the known results for the SR problem on the same group:

1. The SL problem is not completely controllable.

2. Filippov's existence theorem for optimal controls cannot be immediately applied to
the SL problem.

3. In the SL problem all extremal trajectories are in�nitely optimal, thus the cut locus
and the conjugate locus for them are empty.

4. The SL length maximizers coming to the zero-radius sphere are nonsmooth
(concatenations of two smooth arcs forming a corner, nonstrictly normal extremal
trajectories).

5. SL spheres and SL distance are real-analytic if d > 0.

It would be interesting to understand which of these properties persist for more general
SL problems (e.g., for left-invariant problems on Carnot groups).
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