Sub-Lorentzian distance and spheres on the Heisenberg group

Yu.L. Sachkov, E.F. Sachkova

Program Systems Institute Russian Academy of Sciences PereslavI-Zalessky, Russia

yusachkov@gmail.com

Control Processes Research Center Seminar, Program Systems Institute

Skype, October 20, 2022

Plan of the talk

- 1. Sub-Riemannian geometry
- 2. Sub-Lorentzian geometry
- 3. Left-invariant sub-Lorentzian structure on the Heisenberg group
- 4. Previously obtained results by M. Grochowski
- 5. Pontryagin maximum principle, parameterization of extremal trajectories, exponential mapping
- 6. Exponential mapping is a diffeomorphism, its inverse
- 7. Optimality of extremal trajectories, optimal synthesis
- 8. Sub-Lorentzian distance: explicit formula, symmetries
- 9. Sub-Lorentzian spheres of positive and zero radii
- 10. Discussion and questions

Sub-Riemannian geometry

- Smooth manifold *M*,
- vector distribution $\Delta = \{\Delta_q \subset T_q M \mid q \in M\}$, dim $\Delta_q \equiv$ const,
- inner product in Δ :

$$g = \{g_q - ext{ inner product in } \Delta_q \mid q \in M\}$$

• sub-Riemannian structure (Δ,g) on M

• horizontal curve
$$q \in \mathsf{Lip}([0, t_1], M)$$
:

$$\dot{q}(t)\in\Delta_{q(t)}$$
 a.e. $t\in[0,t_1],$

- sub-Riemannian length $I(q(\cdot)) = \int_0^{t_1} (g(\dot{q}(t),\dot{q}(t))^{1/2} dt)$
- sub-Riemannian (Carnot-Carathéodory) distance
 d(q₀, q₁) = inf{l(q(·)) | q(·) horiz. curve, q(0) = q₀, q(t₁) = q₁},

Sub-Riemannian geometry

- sub-Riemannian minimizer q(t), $t \in [0, t_1]$: horizontal curve s.t. $I(q(\cdot)) = d(q(0), q(t_1))$,
- sub-Riemannian sphere $S_R(q_0) = \{q \in M \mid d(q, q_0) = R\}$, sub-Riemannian ball $B_R(q_0) = \{q \in M \mid d(q, q_0) \le R\}$,
- geodesic: horizontal curve whose small arcs are minimizers,
- cut time along a geodesic q(t):

$$t_{\operatorname{cut}}(q(\cdot)) = \sup\{t > 0 \mid q(s), \ s \in [0, t], \ \operatorname{minimizer} \},$$

- cut point $q(t_1)$, $t_1 = t_{\mathsf{cut}}(q(\cdot))$,
- cut locus $\operatorname{Cut}_{q_0}=\{q_1\in M\mid q_1 ext{ cut point for some geod. } q(\cdot), \quad q(0)=q_0\}$

Sub-Riemannian geometry

- $q(\cdot)$ is locally optimal if \exists nbhd of $\{q(\cdot)\}$ in the subspace of curves in $C([0, t_1], M)$ with the same endpoints in which $\{q(\cdot)\}$ is a minimizer,
- the first conjugate time along a geodesic q(t):

 $t_{\operatorname{conj}}(q(\cdot)) = \sup\{t > 0 \mid q(s), \ s \in [0, t], \ \operatorname{locally optimal} \},$

• the first conjugate point along a geodesic q(t):

$$q(t_1), \qquad t_1 = t_{\operatorname{conj}}(q(\cdot)),$$

the first caustic:

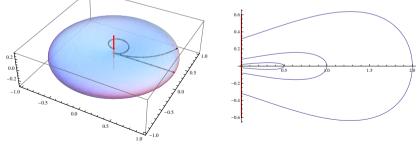
 $\operatorname{Conj}_{q_0} = \{q_1 \in M \mid q_1 ext{ the first conjugate pt for some geod. } q(\cdot), \ q(0) = q_0\}.$

Example: SR geometry on the Heisenberg group

•
$$M = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid (a, b, c) \in \mathbb{R}^3 \right\}$$

•
$$X_1 = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z}, \quad X_2 = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z}, \quad x = a, \ y = b, \ z = c - ab/2$$

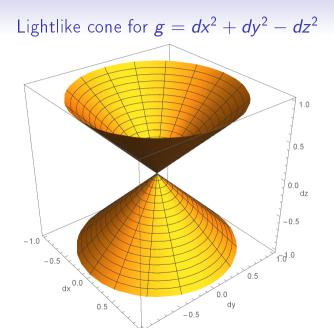
•
$$\Delta_q = \operatorname{span}(X_1(q), X_2(q)), \quad g(X_i, X_j) = \delta_{ij}$$



- Smooth manifold *M*,
- vector distribution $\Delta = \{\Delta_q \subset T_q M \mid q \in M\}$, dim $\Delta_q \equiv$ const,
- Lorentzian metric (nondegenerate quadratic form of index 1) in Δ :

$$g = \{g_q - ext{Lorentzian metric in } \Delta_q \mid q \in M\}$$

- sub-Lorentzian (SL) structure (Δ,g) on M
- horizontal vector: $v \in \Delta_q$,
- horizontal vector v is called:
 - timelike if g(v) < 0
 - spacelike if g(v) > 0 or v = 0,
 - lightlike if g(v) = 0 and $v \neq 0$,
 - nonspacelike if $g(v) \leq 0$
- Lipschitzian curve in M is called timelike if it has timelike velocity vector a.e.,
- spacelike, lightlike and nonspacelike curves are defined similarly.



8/55

- A time orientation X is an arbitrary timelike vector field in M.
- A nonspacelike vector v ∈ Δ_q is future directed if g(v, X(q)) < 0, and past directed if g(v, X(q)) > 0.
- A future directed timelike curve q(t), $t \in [0, t_1]$, is called arclength parametrized if $g(\dot{q}(t), \dot{q}(t)) \equiv -1$.
- Any future directed timelike curve can be parametrized by arclength, similarly to the arclength parametrization of a horizontal curve in sub-Riemannian geometry.
- The length of a nonspacelike curve $\gamma \in \mathsf{Lip}([0, t_1], M)$ is

$$\mathcal{U}(\gamma) = \int_0^{t_1} |g(\dot{\gamma},\dot{\gamma})|^{1/2} dt.$$

- For points $q_1, q_2 \in M$ denote by $\Omega_{q_1q_2}$ the set of all future directed nonspacelike curves in M that connect q_1 to q_2 .
- In the case $\Omega_{q_1q_2}
 eq \emptyset$ denote the sub-Lorentzian distance from the point q_1 to the point q_2 as

$$d(q_1, q_2) = \sup\{l(\gamma) \mid \gamma \in \Omega_{q_1 q_2}\}.$$
(1)

- A future directed nonspacelike curve γ is called a SL length maximizer if it realizes the supremum in (1) between its endpoints $\gamma(0) = q_1$, $\gamma(t_1) = q_2$.
- The causal future of a point $q_0 \in M$ is the set $J^+(q_0)$ of points $q_1 \in M$ for which there exists a future directed nonspacelike curve γ that connects q_0 and q_1 .
- The chronological future $I^+(q_0)$ of a point $q_0 \in M$ is defined similarly via future directed timelike curves γ .
- Let q₀ ∈ M, q₁ ∈ J⁺(q₀). The search for SL length maximizers that connect q₀ with q₁ reduces to the search for future directed nonspacelike curves γ that solve the problem

$$I(\gamma) \rightarrow \max, \qquad \gamma(0) = q_0, \quad \gamma(t_1) = q_1.$$
 (2)

• Vector fields $X_1,\ldots,X_k\in {
m Vec}(M)$ form an orthonormal frame for (Δ,g) if

$$egin{aligned} &\Delta_q = \mathrm{span}(X_1(q), \dots, X_k(q)), & q \in M, \ &g_q(X_1, X_1) = -1, & g_q(X_i, X_i) = 1, & i = 2, \dots, k, \ &g_q(X_i, X_j) = 0, & i
eq j. \end{aligned}$$

• Assume that time orientation is defined by a timelike vector field $X \in \text{Vec}(M)$ for which $g(X, X_1) < 0$ (e.g., $X = X_1$). Then the SL problem for the SL structure with the orthonormal frame X_1, \ldots, X_k is stated as follows:

$$\begin{split} \dot{q} &= \sum_{i=1}^{k} u_i X_i(q), \qquad q \in M, \\ u &\in U = \left\{ (u_1, \dots, u_k) \in \mathbb{R}^k \mid u_1 \ge \sqrt{u_2^2 + \dots + u_k^2} \right\}, \\ q(0) &= q_0, \quad q(t_1) = q_1, \qquad l(q(\cdot)) = \int_0^{t_1} \sqrt{u_1^2 - u_2^2 - \dots - u_k^2} \, dt \to \max. \end{split}$$

- The SL length is preserved under monotone Lipschitzian time reparametrizations t(s), $s \in [0, s_1]$. Thus if q(t), $t \in [0, t_1]$, is a sub-Lorentzian length maximizer, then so is any its reparametrization q(t(s)), $s \in [0, s_1]$.
- In this talk we choose primarily the following parametrization of trajectories: the arclength parametrization $(u_1^2 u_2^2 \cdots u_k^2 \equiv 1)$ for timelike trajectories, and the parametrization with $u_1(t) \equiv 1$ for future directed lightlike trajectories.

Statement of the SL problem on the Heisenberg group

• The Heisenberg group is the space $M\simeq \mathbb{R}^3_{x,y,z}$ with the product rule

$$(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + (x_1y_2 - x_2y_1)/2).$$

• It is a three-dimensional nilpotent Lie group with a left-invariant frame

$$X_1 = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z}, \qquad X_2 = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z}, \qquad X_3 = \frac{\partial}{\partial z},$$
 (3)

with the only nonzero Lie bracket $[X_1, X_2] = X_3$.

• Consider the left-invariant SL problem on the Heisenberg group M defined by the orthonormal frame (X_1, X_2) , with the time orientation X_1 :

$$\dot{q} = u_1 X_1 + u_2 X_2, \qquad q \in M, \tag{4}$$

$$u \in U = \{(u_1, u_2) \in \mathbb{R}^2 \mid u_1 \ge |u_2|\},$$
 (5)

$$q(0) = q_0 = \mathsf{Id} = (0, 0, 0), \quad q(t_1) = q_1,$$
 (6)

$$I(q(\cdot)) = \int_0^{t_1} \sqrt{u_1^2 - u_2^2} \, dt \to \max. \tag{7}$$

Reduced SL problem on the Heisenberg group

• Reduced sub-Lorentzian problem

$$\dot{q}=u_1X_1+u_2X_2, \qquad q\in M, \tag{8}$$

$$u \in \text{int } U = \{(u_1, u_2) \in \mathbb{R}^2 \mid u_1 > |u_2|\},$$
 (9)

$$q(0) = q_0 = \mathsf{Id} = (0, 0, 0), \quad q(t_1) = q_1,$$
 (10)

$$U(q(\cdot)) = \int_0^{t_1} \sqrt{u_1^2 - u_2^2} \, dt \to \max .$$
 (11)

- In the full problem (4)-(7) admissible trajectories q(·) are future directed nonspacelike ones, while in the reduced problem (8)-(11) admissible trajectories q(·) are only future directed timelike ones.
- Passing to arclength-parametrized future directed timelike trajectories:

$$\dot{q} = u_1 X_1 + u_2 X_2, \qquad q \in M, \qquad u_1^2 - u_2^2 = 1, \qquad u_1 > 0,$$
 (12)

$$q(0) = q_0 = \mathsf{Id} = (0, 0, 0), \quad q(t_1) = q_1,$$
 (13)

$$t_1 \rightarrow \max$$
. (14)

Previously obtained results by M. Grochowski

- (1) Sub-Lorentzian extremal trajectories were parametrized by hyperbolic and linear functions: were obtained formulas equivalent to our formulas (17), (18).
- (2) It was proved that there exists a domain in M containing $q_0 = Id$ in its boundary at which the sub-Lorentzian distance $d(q_0, q)$ is smooth.
- (3) The attainable sets of the sub-Lorentzian structure from the point $q_0 = Id$ were computed: the chronological future of the point q_0

$$I^+(q_0) = \{(x, y, z) \in M \mid -x^2 + y^2 + 4|z| < 0, \ x > 0\},\$$

and the causal future of the point q_0

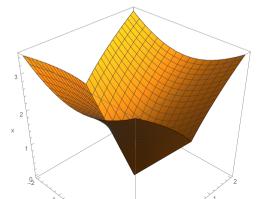
$$J^{+}(q_{0}) = \{(x, y, z) \in M \mid -x^{2} + y^{2} + 4|z| \leq 0, \ x \geq 0\}.$$
 (15)

In the standard language of control theory, $I^+(q_0)$ is the attainable set of the reduced system (8), (9) from the point q_0 for arbitrary positive time. Thus the attainable set of the reduced system (8), (9) from the point q_0 for arbitrary nonnegative time is

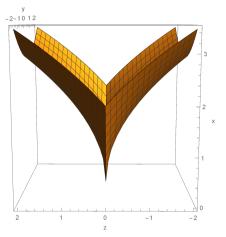
$$\mathcal{A} = I^+(q_0) \cup \{q_0\}.$$

Previously obtained results by M. Grochowski

- (3) The attainable set of the full system (4), (5) from the point q_0 for arbitrary nonnegative time is $cl(A) = J^+(q_0)$.
- (4) The attainable set A was also computed by H. Abels and E.B. Vinberg, they called its boundary as the Heisenberg beak. See the set ∂A below, and its views from the y- and z-axes in the next slide.



Views of the Heisenberg beak



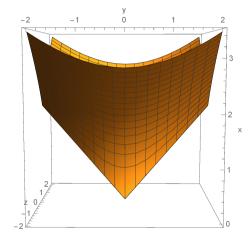


Figure: View of ∂A along y-axis

Figure: View of ∂A along *z*-axis

Previously obtained results by M. Grochowski

(5) The lower bound of the sub-Lorentzian distance

$$\sqrt{x^2-y^2-4|z|} \leq d(q_0,q), \qquad q=(x,y,z)\in J^+(q_0),$$

was proved. It was also noted that an upper bound

$$d(q_0,q) \leq C \sqrt{x^2-y^2-4|z|}$$

does not hold for any constant $C \in \mathbb{R}$.

(6) It was proved that there exist non-Hamiltonian maximizers, i.e., maximizers that are not projections of the Hamiltonian vector field \vec{H} , $H = \frac{1}{2}(h_2^2 - h_1^2)$, related to the problem.

Pontryagin maximum principle

- Denote points of the cotangent bundle T*M as λ. Introduce linear on fibers of T*M Hamiltonians h_i(λ) = (λ, X_i), i = 1, 2, 3.
- Define the Hamiltonian of the Pontryagin maximum principle (PMP) for the sub-Lorentzian problem (4)-(7)

$$h_u^
u(\lambda)=u_1h_1(\lambda)+u_2h_2(\lambda)-
u\sqrt{u_1^2-u_2^2},\qquad\lambda\in T^*M,\quad u\in U,\quad
u\in\mathbb{R}.$$

- It follows from PMP that if u(t), $t \in [0, t_1]$, is an optimal control in problem (4)-(7), and q(t), $t \in [0, t_1]$, is the corresponding optimal trajectory, then there exists a curve λ . $\in \text{Lip}([0, t_1], T^*M)$, $\pi(\lambda_t) = q(t)$, and a number $\nu \in \{0, -1\}$ for which there hold the conditions for a.e. $t \in [0, t_1]$:
 - 1. the Hamiltonian system $\dot{\lambda}_t = \vec{h}_{u(t)}^{\nu}(\lambda_t)$,
 - 2. the maximality condition $h_{u(t)}^{\nu}(\lambda_t) = \max_{v \in U} h_v^{\nu}(\lambda_t) \equiv 0$,
 - 3. the nontriviality condition $(\nu, \lambda_t) \neq (0, 0)$.

Abnormal case

Theorem

In the abnormal case $\nu = 0$ there exist $\tau_1, \tau_2 \ge 0$ such that: (1) $h_3(\lambda_t) \equiv \text{const} > 0$:

$$egin{array}{lll} t\in(0, au_1)&\Rightarrow&h_1(\lambda_t)=h_2(\lambda_t)<0, &u_1(t)=-u_2(t),\ t\in(au_1, au_1+ au_2)&\Rightarrow&h_1(\lambda_t)=-h_2(\lambda_t)<0, &u_1(t)=u_2(t). \end{array}$$

(2) $h_3(\lambda_t) \equiv \text{const} < 0$:

$$t \in (0, au_1) \Rightarrow h_1(\lambda_t) = -h_2(\lambda_t) < 0, \qquad u_1(t) = u_2(t),$$

 $t \in (au_1, au_1 + au_2) \Rightarrow h_1(\lambda_t) = h_2(\lambda_t) < 0, \qquad u_1(t) = -u_2(t).$

(3) $h_3(\lambda_t) \equiv 0$:

$$(h_1, h_2)(\lambda_t) \equiv \operatorname{const} \neq (0, 0), \qquad h_1(\lambda_t) \equiv -|h_2(\lambda_t)|,$$

 $u(t) \equiv \operatorname{const}, \qquad u_1(t) \equiv \pm u_2(t), \quad \pm = -\operatorname{sgn}(h_1h_2(\lambda_t)).$

Normal case

- In the normal case (
 u=-1) extremals exist only for $h_1\leq -|h_2|.$
- In the case $h_1 = -|h_2|$ normal controls and extremal trajectories coincide with the abnormal ones.
- And in the domain {λ ∈ T*M | h₁ < −|h₂|} extremals are reparametrizations of trajectories of the Hamiltonian vector field H with the Hamiltonian H = ½(h₂² − h₁²).
- In the arclength parametrization, the extremal controls are

$$(u_1, u_2)(t) = (-h_1(\lambda_t), h_2(\lambda_t)),$$
 (16)

and the extremals satisfy the Hamiltonian ODE $\dot{\lambda} = \vec{H}(\lambda)$ and belong to the level surface $\{H(\lambda) = \frac{1}{2}\}$, in coordinates:

$$\begin{split} \dot{h}_1 &= -h_2 h_3, \qquad \dot{h}_2 &= -h_1 h_3, \qquad \dot{h}_3 &= 0, \\ \dot{q} &= \cosh \psi X_1 + \sinh \psi X_2, \\ h_1 &= -\cosh \psi, \qquad h_2 &= \sinh \psi, \qquad \psi \in \mathbb{R}. \end{split}$$

Parametrization of normal trajectories

• If
$$h_3 = 0$$
, then
 $x = t \cosh \psi$, $y = t \sinh \psi$, $z = 0$. (17)
• If $c := h_3 \neq 0$, then
 $x = \frac{\sinh(\psi + ct) - \sinh \psi}{c}$, $y = \frac{\cosh(\psi + ct) - \cosh \psi}{c}$, $z = \frac{\sinh(ct) - ct}{2c^2}$. (18)

Theorem

Normal controls and trajectories either coincide with abnormal ones (in the case $h_1(\lambda_t) = -|h_2(\lambda_t)|$), or can be arclength parametrized to get controls (16) and future directed timelike trajectories (17) if c = 0, or (18) if $c \neq 0$. In particular, each normal extremal can be parameterized so that $H(\lambda_t) \equiv \text{const} \in \{0, \frac{1}{2}\}$.

Exponential mapping

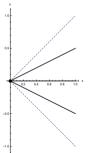
- Normal trajectories are either nonstrictly normal (i.e., simultaneously normal and abnormal) in the case H = 0, or strictly normal (i.e., normal but not abnormal) in the case $H = \frac{1}{2}$.
- Strictly normal arclength-parametrized trajectories are described by the exponential mapping

$$\begin{aligned} \mathsf{Exp} &: N \to \widetilde{\mathcal{A}}, \qquad (\lambda, t) \mapsto q(t) = \pi \circ e^{t\vec{H}}(\lambda), \end{aligned} \tag{19} \\ & \mathcal{N} = \mathcal{C} \times \mathbb{R}_+, \qquad \mathbb{R}_+ = (0, +\infty), \qquad \mathcal{C} = \mathcal{T}^*_{\mathsf{Id}} \mathcal{M} \cap \mathcal{H}^{-1}\left(\frac{1}{2}\right) \simeq \mathbb{R}^2_{\psi, c}, \end{aligned} \\ & \widetilde{\mathcal{A}} = \mathsf{int} \, \mathcal{A} = I^+(q_0) \end{aligned}$$

given explicitly by formulas (17), (18).

Projections of strictly normal trajectories

- Projections of strictly normal (future directed timelike) trajectories to the plane (x, y) are:
 - either rays y = kx, $x \ge 0$, $k \in (-1, 1)$ (for c = 0),
 - or arcs of hyperbolas with asymptotes $x = \pm y > 0$ (for $c \neq 0$).



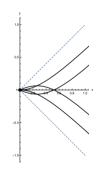


Figure: Strictly normal (x(t), y(t)), c = 0

Figure: Strictly normal (x(t), y(t)), $c \neq 0$

Projections of nonstrictly normal trajectories

• Projections of nonstrictly normal trajectories to the plane (x, y) are broken lines with one or two edges parallel to the rays $x = \pm y > 0$.

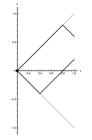


Figure: Nonstrictly normal (x(t), y(t))

• Projections of all extremal trajectories (as well as of all admissible trajectories) to the plane (x, y) are contained in the angle $\{(x, y) \in \mathbb{R}^2 \mid x \ge |y|\}$, which is the projection of the attainable set $J^+(q_0)$ to this plane.

Symplectic foliation

- The Hamiltonian $H = \frac{1}{2}(h_2^2 h_1^2)$ is preserved on each extremal.
- On the other hand, since the problem is left-invariant, the extremals respect the symplectic foliation on the dual of the Heisenberg Lie algebra $T_{ld}^*M = \{(h_1, h_2, h_3)\}$ consisting of 2-dimensional symplectic leaves $\{h_3 = \text{const} \neq 0\}$ and 0-dimensional leaves $\{h_3 = 0, (h_1, h_2) = \text{const}\}$.
- Thus projections of extremals to T^{*}_{ld}M = {(h₁, h₂, h₃)} belong to intersections of the level surfaces {H = const ∈ {0, ¹/₂}} with the symplectic leaves:
 - branches of hyperbolas $h_1^2 h_2^2 = 1$, $h_1 < 0$, $h_3 \neq 0$,
 - points $(h_1, h_2) = \text{const}, \ \hat{H} \in \{\bar{0}, \frac{1}{2}\}, \ h_1 \leq -|h_2|, \ h_3 = 0,$
 - angles $h_1 = -|h_2|$, $h_3 \neq 0$.

See figs in the next slide.

Vertical part of the geodesic flow on $T_{ld}^*M = \{(h_1, h_2, h_3)\}$

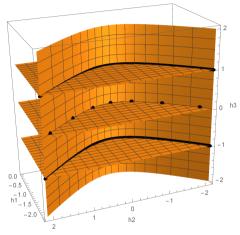


Figure: Strictly normal $(h_1(t), h_2(t), h_3(t))$

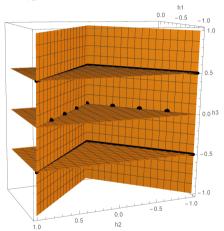


Figure: Nonstrictly normal $(h_1(t), h_2(t), h_3(t))$

Hamiltonian and non-Hamiltonian extremal trajectories

- In the terminology of M.Grochowski, strictly normal extremal trajectories $q(t) = \pi \circ e^{t\vec{H}}(\lambda), \ \lambda \in C$, are Hamiltonian since they are projections of trajectories of the Hamiltonian vector field \vec{H} .
- Nonstrictly normal extremal trajectories given by items (1), (2) of Th. 1 are non-Hamiltonian, e.g., the broken curves

$$\begin{cases} e^{t(X_1+X_2)}, & t \in [0,\tau_1], \\ e^{(t-\tau_1)(X_1-X_2)} \circ e^{\tau_1(X_1+X_2)}, & t \in [\tau_1,\tau_2], \end{cases}$$
(20)

and

$$\begin{cases} e^{t(X_1-X_2)}, & t \in [0,\tau_1], \\ e^{(t-\tau_1)(X_1+X_2)} \circ e^{\tau_1(X_1-X_2)}, & t \in [\tau_1,\tau_2], \end{cases}$$
(21)

for $0 < \tau_1 < \tau_2$.

• Although, each smooth arc of the broken trajectories (20), (21) is a reparametrization of projection of a trajectory of the Hamiltonian vector field \vec{H} contained in a face of the angle $\{(h_1, h_2, h_3) \in T_{ld}^*M \mid h_1 = -|h_2|\}$.

Inversion of the exponential mapping

Theorem

The exponential mapping $\text{Exp} : N \to \widetilde{\mathcal{A}}$ is a real-analytic diffeomorphism. The inverse mapping $\text{Exp}^{-1} : \widetilde{\mathcal{A}} \to N$, $(x, y, z) \mapsto (\psi, c, t)$, is given by the following formulas:

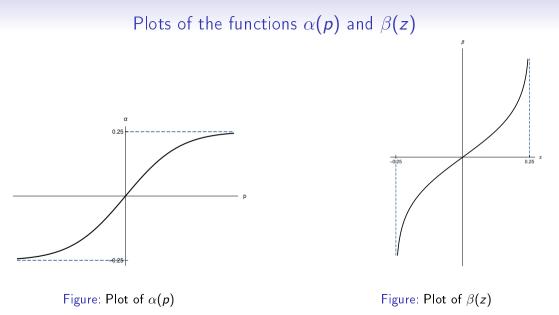
$$z = 0 \quad \Rightarrow \quad \psi = \operatorname{artanh} \frac{y}{x}, \quad c = 0, \quad t = \sqrt{x^2 - y^2},$$
 (22)

$$z \neq 0 \quad \Rightarrow \quad \psi = \operatorname{artanh} \frac{y}{x} - p, \quad c = (\operatorname{sgn} z) \sqrt{\frac{\sinh 2p - 2p}{2z}}, \quad t = \frac{2p}{c},$$
 (23)

where $p = \beta\left(\frac{z}{x^2-y^2}\right)$, and β : $\left(-\frac{1}{4}, \frac{1}{4}\right) \to \mathbb{R}$ is the inverse function to the diffeomorphism

$$\alpha : \mathbb{R} \to \left(-\frac{1}{4}, \frac{1}{4}\right), \qquad \alpha(p) = \frac{\sinh 2p - 2p}{8\sinh^2 p}$$

See plots of the functions $\alpha(p)$ and $\beta(z)$ in the next slide.



30/55

Lagrangian manifolds

- Let M be a smooth manifold, then the cotangent bundle T^*M bears the Liouville 1-form $s = pdq \in \Lambda^1(T^*M)$ and the symplectic 2-form $\sigma = ds = dp \wedge dq \in \Lambda^2(T^*M)$.
- A submanifold $\mathcal{L} \subset T^*M$ is called a Lagrangian manifold if dim $\mathcal{L} = \dim M$ and $\sigma|_{\mathcal{L}} = 0$.
- Consider an optimal control problem

$$\dot{q} = f(q, u), \qquad q \in M, \quad u \in U,$$

 $q(t_0) = q_0, \qquad q(t_1) = q_1,$
 $J[q(\cdot)] = \int_{t_0}^{t_1} \varphi(q, u) dt \to \min, \qquad t_0 \text{ is fixed}, \quad t_1 \text{ is free.}$

- Let $g_u(\lambda) = \langle \lambda, f(q, u) \rangle \varphi(q, u), \ \lambda \in T^*M, \ q = \pi(\lambda), \ u \in U$, be the normal Hamiltonian of PMP.
- Suppose that the maximized normal Hamiltonian $G(\lambda) = \max_{u \in U} g_u(\lambda)$ is smooth in an open domain $O \subset T^*M$, and let the v. field $\vec{G} \in \text{Vec}(O)$ be complete.

Sufficient optimality condition

Theorem

- Let $\mathcal{L} \subset G^{-1}(0) \cap O$ be a Lagrangian submanifold such that the form $s|_{\mathcal{L}}$ is exact.
- Let the projection $\pi : \mathcal{L} o \pi(\mathcal{L})$ be a diffeomorphism on a domain in M.
- Consider an extremal $\tilde{\lambda}_t = e^{t\vec{G}}(\lambda_0)$, $t \in [t_0, t_1]$, contained in \mathcal{L} , and the corresponding extremal trajectory $\tilde{q}(t) = \pi(\tilde{\lambda}_t)$.
- Consider also any trajectory $q(t) \in \pi(\mathcal{L})$, $t \in [t_0, \tau]$, such that $q(t_0) = \widetilde{q}(t_0)$, $q(\tau) = \widetilde{q}(t_1)$.
- Then $J[\widetilde{q}(\cdot)] < J[q(\cdot)].$

Optimality in the reduced SL problem

- For the reduced SL problem the maximized Hamiltonian $G = 1 \sqrt{h_1^2 h_2^2}$ is smooth on the domain $O = \{\lambda \in T^*M \mid h_1 < -|h_2|\}$, and the Hamiltonian vector field $\vec{G} \in \text{Vec}(O)$ is complete
- In the domain O the Hamiltonian vector fields \vec{G} and \vec{H} have the same trajectories up to a monotone time reparametrization; moreover, on the level surface $\{H = \frac{1}{2}\} = \{G = 0\}$ they just coincide between themselves.
- Define the set

$$\mathcal{L} = \left\{ e^{t\vec{G}}(\lambda_0) \mid \lambda_0 \in C, \ t > 0 \right\}.$$
(24)

Lemma

 $\mathcal{L} \subset T^*M$ is a Lagrangian manifold such that $s|_{\mathcal{L}}$ is exact.

Theorem

For any point $q_1 \in \text{int } \mathcal{A} = I^+(q_0)$ the strictly normal trajectory $q(t) = \text{Exp}(\lambda, t)$, $t \in [0, t_1]$, is the unique optimal trajectory of the reduced SL problem connecting q_0 with q_1 , where $(\lambda, t_1) = \text{Exp}^{-1}(q_1) \in N$.

The cost function for the equivalent reduced SL problem

Denote

$$\begin{split} \widetilde{d}(q_1) &= \sup\{l(q(\cdot)) \mid \text{ traj. } q(\cdot) \text{ of } (8)-(11), \ q(0) &= q_0, \ q(t_1) = q_1\} \\ &= \sup\{t_1 > 0 \mid \exists \text{ traj. } q(\cdot) \text{ of } (12)-(14) \text{ s.t. } q(0) = q_0, \ q(t_1) = q_1\}, \end{split}$$

where $q_1 \in \operatorname{int} \mathcal{A} = I^+(q_0).$

Theorem

Let $q = (x, y, z) \in I^+(q_0)$. Then

$$\widetilde{d}(q) = \sqrt{x^2 - y^2} \cdot \frac{p}{\sinh p}, \qquad p = \beta \left(\frac{z}{x^2 - y^2}\right).$$
 (25)

The function \widetilde{d} : $I^+(q_0) \to \mathbb{R}_+$ is real-analytic.

Optimality in the full SL problem

Theorem

Let $q_1 \in \text{int } A = I^+(q_0)$. Then the SL length maximizers for the full problem are reparametrizations of the corresponding SL length maximizers for the reduced problem described above.

In particular, $d|_{I^+(q_0)} = \widetilde{d}$.

Theorem

Let $q_1 = (x_1, y_1, z_1) \in \partial A = J^+(q_0) \setminus I^+(q_0)$, $q_1 \neq q_0$. Then an optimal trajectory in the full SL problem is a future directed lightlike piecewise smooth trajectory with one or two subarcs generated by the vector fields $X_1 \pm X_2$.

Length maximizers in the full SL problem

Corollary

For any $q_1 \in J^+(q_0)$, $q_1 \neq q_0$, there is a unique, up to reparametrization, SL length minimizer in the full problem that connects q_0 and q_1 :

- if $q_1 \in \text{int } \mathcal{A} = l^+(q_0)$, then $q(\cdot)$ is a future directed timelike strictly normal trajectory.
- if $q_1 \in \partial A = J^+(q) \setminus I^+(q_0)$, then $q(\cdot)$ is a future directed lightlike nonstrictly normal trajectory.

Corollary

Any SL length maximizer of the full problem problem of positive length is timelike and strictly normal.

- The broken trajectories described above are optimal in the SL problem, while in SR problems trajectories with angle points cannot be optimal.
- Moreover, these broken trajectories are normal and nonsmooth, which is also impossible in SR geometry.

Sub-Lorentzian distance

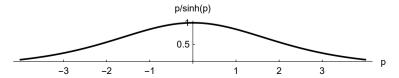
Denote $d(q):=d(q_0,q)$, $q\in J^+(q_0).$

Theorem

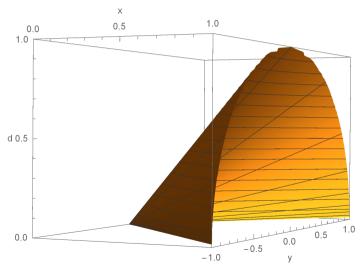
Let $q = (x, y, z) \in J^+(q_0)$. Then

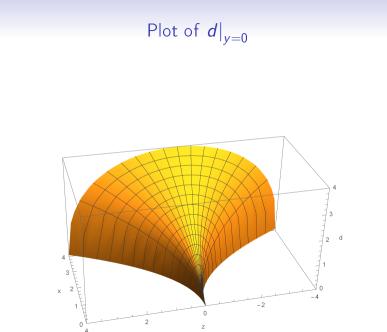
$$d(q) = \sqrt{x^2 - y^2} \cdot \frac{p}{\sinh p}, \qquad p = \beta \left(\frac{z}{x^2 - y^2}\right). \tag{26}$$

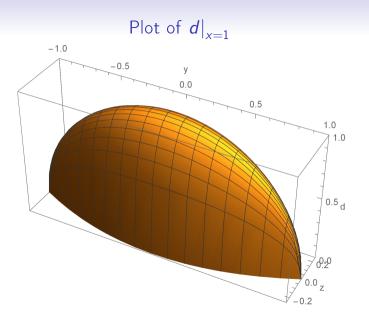
In particular:



Plot of $d|_{z=0} = \sqrt{x^2 - y^2}$







Regularity of the sub-Lorentzian distance

Theorem

- (1) The function $d(\cdot)$ is continuous on $J^+(q_0)$ and real-analytic on $I^+(q_0)$.
- (2) The function $d(\cdot)$ is not Lipschitz near points q = (x, y, z) with x = |y| > 0, z = 0.

Remark

The sub-Lorentzian distance $d : J^+(q_0) \to [0, +\infty)$ is not uniformly continuous since the same holds for its restriction $d|_{z=0} = \sqrt{x^2 - y^2}$ on the angle $\{x \ge |y|\}$.

Bounds of the sub-Lorentzian distance

Theorem

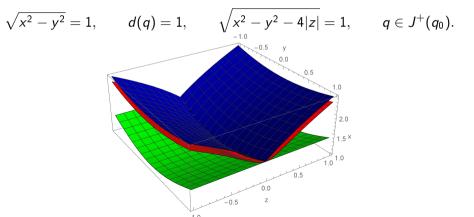
(1) The ratio
$$\frac{\sqrt{x^2 - y^2 - 4|z|}}{d(q)}$$
 takes any values in the segment [0, 1] for $q = (x, y, z) \in J^+(q_0)$.
(2) For any $q = (x, y, z) \in J^+(q_0)$ there holds the bound $d(q) \le \sqrt{x^2 - y^2}$, moreover, the ratio $\frac{d(q)}{\sqrt{x^2 - y^2}}$ takes any values in the segment [0, 1].

Bounds of the sub-Lorentzian distance

The two-sided bound

$$\sqrt{x^2 - y^2 - 4|z|} \le d(q) \le \sqrt{x^2 - y^2}, \qquad q \in J^+(q_0),$$
 (27)

is visualized in figure below, which shows plots of the surfaces (from below to top):



Symmetries

Theorem

The hyperbolic rotations X₀ = y ∂/∂x + x ∂/∂y and reflections ε¹ : (x, y, z) ↦ (x, -y, z), ε² : (x, y, z) ↦ (x, y, -z) preserve d(·). The dilations Y = x ∂/∂x + y ∂/∂y + 2z ∂/∂z stretch d(·):

$$d(e^{sY}(q))=e^sd(q),\qquad s\in\mathbb{R},\quad q\in J^+(q_0).$$

The unit sub-Lorentzian sphere

 $S = { \mathsf{Exp}(\lambda, 1) \mid \lambda \in C }$

Theorem

The unit SL sphere S is a regular real-analytic manifold diffeomorphic to ℝ².
 Let q = Exp(ψ, c, 1) ∈ S, (ψ, c) ∈ C, then the tangent space

$$T_q S = \left\{ v = \sum_{i=1}^3 v_i X_i(q) \mid -v_1 \cosh(\psi + c) + v_2 \sinh(\psi + c) + v_3 c = 0 \right\}.$$
 (28)

(3) S is the graph of the function $x = \sqrt{y^2 + f(z)}$, where $f(z) = e \circ k(z)$, $e(w) = \frac{\sinh^2 w}{w^2}$, k(z) = b(z)/2, $b = a^{-1}$, $a(c) = \frac{\sinh c - c}{2c^2}$.

(4) The function f(z) is real-analytic, even, strictly convex, unboundedly and strictly increasing for $z \ge 0$. This function has a Taylor decomposition $f(z) = 1 + 12z^2 + O(z^4)$ as $z \to 0$ and an asymptote 4|z| as $z \to \infty$.

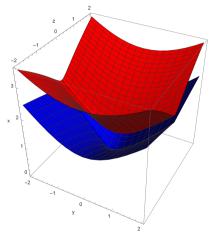
The unit sub-Lorentzian sphere

(5) The function f(z) satisfies the bounds

$$4|z| < f(z) < 4|z| + 1, \qquad z \neq 0.$$
⁽²⁹⁾

- (6) A section of the sphere S by a plane $\{z = \text{const}\}\$ is a branch of the hyperbola $x^2 y^2 = f(z), x > 0$. A section of the sphere S by a plane $\{x = \text{const} > 1\}\$ is a strictly convex curve $y^2 + f(z) = x^2$ diffeomorphic to S^1 .
- (7) The sub-Lorentzian distance from the point q_0 to a point $q = (x, y, z) \in \widetilde{\mathcal{A}}$ may be expressed as d(q) = R, where $x^2 y^2 = R^2 f(z/R^2)$.
- (8) The sub-Lorentzian ball $B = \{q \in M \mid d(q) \le 1\}$ has infinite volume in the coordinates x, y, z.

The unit sub-Lorentzian sphere



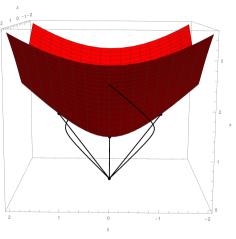


Figure: The sphere S and the Heisenberg beak ∂A

Figure: Maximizers connecting q_0 and S

The unit sub-Lorentzian sphere

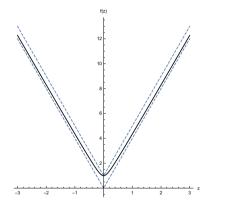


Figure: Plot of f(z) and bound (29)

٧ -2 -1 2

Figure: Sections of S by the planes $\{x = 1, 2, 3\}$

Sub-Lorentzian sphere of zero radius

$$S(0) = \{q \in M \mid d(q) = 0\}.$$

Theorem

- (1) $S(0) = J^+(q_0) \setminus I^+(q_0) = \partial J^+(q_0) = \partial I^+(q_0) = \partial \mathcal{A}.$
- (2) S(0) is the graph of a continuous function $x = \Phi(y, z) := \sqrt{y^2 + 4|z|}$, thus a 2-dimensional topological manifold.
- (3) The function $\Phi(y, z)$ is even in y and z, real-analytic for $z \neq 0$, Lipschitz near $z = 0, y \neq 0$, and Hölder with constant $\frac{1}{2}$, non-Lipschitz near (y, z) = (0, 0).
- (4) S(0) is filled by broken lightlike trajectories with one or two edges, and is parametrized by them as follows:

$$S(0) = \left\{ e^{\tau_2(X_1 - X_2)} e^{\tau_1(X_1 + X_2)} = (\tau_1 + \tau_2, \tau_1 - \tau_2, -\tau_1\tau_2) \mid \tau_i \ge 0 \right\}$$
$$\cup \left\{ e^{\tau_2(X_1 + X_2)} e^{\tau_1(X_1 - X_2)} = (\tau_1 + \tau_2, \tau_2 - \tau_1, \tau_1\tau_2) \mid \tau_i \ge 0 \right\}.$$

Sub-Lorentzian sphere of zero radius

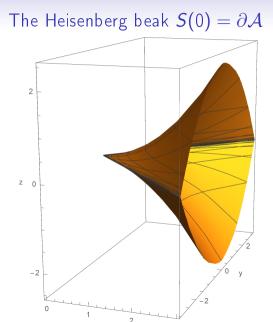
(5) The flows of the vector fields Y, X_0 preserve S(0). Moreover, the symmetries Y, X_0 provide a regular parametrization of

$$S(0) \cap \{ \operatorname{sgn} z = \pm 1 \} = \left\{ e^{sY} \circ e^{rX_0}(q_{\pm}) \mid r, s > 0 \right\},$$
(30)

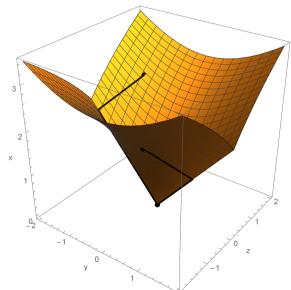
where $q_{\pm} = (x_{\pm}, y_{\pm}, z_{\pm})$ is any point in $S(0) \cap \{ \text{sgn } z = \pm 1 \}$. (6) $S(0) = \{ 16z^2 = (x^2 - y^2)^2, x^2 - y^2 \ge 0, x \ge 0 \}$ is a semi-algebraic set. (7) The zero-radius sphere is a Whitney stratified set with the stratification

$$\begin{split} S(0) &= \big(S(0) \cap \{z > 0\}\big) \cup \big(S(0) \cap \{z < 0\}\big) \\ &\cup \big(S(0) \cap \{z = 0, \ y > 0\}\big) \cup \big(S(0) \cap \{z = 0, \ y < 0\}\big) \cup \{q_0\}. \end{split}$$

(8) Intersection of the sphere S(0) with a plane $\{z = \text{const} \neq 0\}$ is a branch of a hyperbola $\{x^2 - y^2 = 4|z|, x > 0, z = \text{const}\}$, intersection with a plane $\{z = 0\}$ is an angle $\{x = |y|, z = 0\}$, intersection with a plane $\{y = kx\}$, $k \in (-1, 1)$, is a union of two half-parabolas $\{4z = \pm(1 - k^2)x^2, x \ge 0, y = kx\}$, and intersection with a plane $\{y = \pm x\}$ is a ray $\{y = \pm x, z = 0\}$.

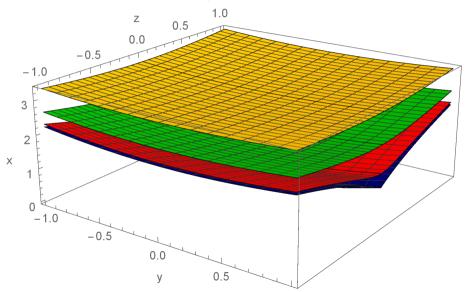


Lightlike maximizers filling S(0)



52/55

Sub-Lorentzian spheres or radii 0, 1, 2, 3



Conclusion

The results obtained in this talk for the SL problem on the Heisenberg group differ drastically from the known results for the SR problem on the same group:

- 1. The SL problem is not completely controllable.
- 2. Filippov's existence theorem for optimal controls cannot be immediately applied to the SL problem.
- 3. In the SL problem all extremal trajectories are infinitely optimal, thus the cut locus and the conjugate locus for them are empty.
- 4. The SL length maximizers coming to the zero-radius sphere are nonsmooth (concatenations of two smooth arcs forming a corner, nonstrictly normal extremal trajectories).
- 5. SL spheres and SL distance are real-analytic if d > 0.

It would be interesting to understand which of these properties persist for more general SL problems (e.g., for left-invariant problems on Carnot groups).

Publications

[1] M. Grochowski, Reachable sets for the Heisenberg sub-Lorentzian structure on \mathbb{R}^3 . An estimate for the distance function. *Journal of Dynamical and Control Systems*, vol. 12, 2006, 2, 145–160.

[2] Yu. L. Sachkov, E.F. Sachkova, Sub-Lorentzian distance and spheres on the Heisenberg group, *submitted* (arXiv:2208.04073)

[3] Yu. L. Sachkov, E.F. Sachkova, Sub-Lorentzian problem on the Heisenberg group, *Math. notes*, accepted. (http://control.botik.ru/)