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Abstract

The left-invariant sub-Lorentzian problem on the Heisenberg group is considered. An
optimal synthesis is constructed, the sub-Lorentzian distance and spheres are described.
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1 Introduction

A sub-Riemannian structure on a smooth manifold M is a vector distribution ∆ ⊂ TM endowed
with a Riemannian metric g (a positive definite quadratic form). Sub-Riemannian geometry is a
rich theory and an active domain of research during the last decades [1–7].

A sub-Lorentzian structure is a variation of a sub-Riemannian one for which the quadratic form
g in a distribution ∆ is a Lorentzian metric (a nondegenerate quadratic form of index 1). Sub-Lo-
rentzian geometry tries to develop a theory similar to the sub-Riemannian geometry, and it is still
in its childhood. For example, the left-invariant sub-Riemannian structure on the Heisenberg group
is a classic subject covered in almost every textbook or survey on sub-Riemannian geometry. On
the other hand, the left-invariant sub-Lorentzian structure on the Heisenberg group is not studied
in detail. This paper aims to fill this gap.

The paper has the following structure. In Sec. 2 we recall the basic notions of the sub-Lorent-
zian geometry. In Sec. 3 we state the left-invariant sub-Lorentzian structure on the Heisenberg
group studied in this paper. Results obtained previously for this problem by M. Grochowski are
recalled in Sec. 4. In Sec. 5 we apply the Pontryagin maximum principle and compute extremal
trajectories; as a consequence, almost all extremal trajectories (timelike ones) are parametrized by
the exponential mapping. In Sec. 6 we show that the exponential mapping is a diffeomorphism
and find explicitly its inverse. On this basis in Sec. 7 we study optimality of extremal trajectories
and construct an optimal synthesis. In Sec. 8 we describe explicitly the sub-Lorentzian distance,
in Sec. 9 we find its symmetries, and in Sec. 10 we study in detail the sub-Lorentzian spheres of
positive and zero radii. Finally, in Sec. 11 we discuss the results obtained and pose some questions
for further research.

2 Sub-Lorentzian geometry

A sub-Lorentzian structure on a smooth manifold M is a pair (∆, g) consisting of a vector distri-
bution ∆ ⊂ TM and a Lorentzian metric g on ∆, i.e., a nondegenerate quadratic form g of index
1. Sub-Lorentzian geometry attempts to transfer the rich theory of sub-Riemannian geometry (in
which the quadratic form g is positive definite) to the case of Lorentzian metric g. Research in
sub-Lorentzian geometry was started by M. Grochowski [8–13], see also [14–17].

Let us recall some basic definitions of sub-Lorentzian geometry. A vector v ∈ TqM , q ∈ M , is
called horizontal if v ∈ ∆q. A horizontal vector v is called:

� timelike if g(v) < 0,

� spacelike if g(v) > 0 or v = 0,

� lightlike if g(v) = 0 and v ̸= 0,
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� nonspacelike if g(v) ≤ 0.

A Lipschitzian curve inM is called timelike if it has timelike velocity vector a.e.; spacelike, lightlike
and nonspacelike curves are defined similarly.

A time orientation X is an arbitrary timelike vector field in M . A nonspacelike vector v ∈ ∆q

is future directed if g(v,X(q)) < 0, and past directed if g(v,X(q)) > 0.
A future directed timelike curve q(t), t ∈ [0, t1], is called arclength parametrized if g(q̇(t), q̇(t)) ≡

−1. Any future directed timelike curve can be parametrized by arclength, similarly to the arclength
parametrization of a horizontal curve in sub-Riemannian geometry.

The length of a nonspacelike curve γ ∈ Lip([0, t1],M) is

l(γ) =

∫ t1

0

|g(γ̇, γ̇)|1/2dt.

For points q1, q2 ∈ M denote by Ωq1q2 the set of all future directed nonspacelike curves in M
that connect q1 to q2. In the case Ωq1q2 ̸= ∅ denote the sub-Lorentzian distance from the point q1
to the point q2 as

d(q1, q2) = sup{l(γ) | γ ∈ Ωq1q2}. (2.1)

Notice that in papers [12, 13] in the case Ωq1q2 = ∅ it is set d(q1, q2) = 0. It seems to us more
reasonable not to define d(q1, q2) in this case.

A future directed nonspacelike curve γ is called a sub-Lorentzian length maximizer if it realizes
the supremum in (2.1) between its endpoints γ(0) = q1, γ(t1) = q2.

The causal future of a point q0 ∈M is the set J+(q0) of points q1 ∈M for which there exists a
future directed nonspacelike curve γ that connects q0 and q1. The chronological future I+(q0) of a
point q0 ∈M is defined similarly via future directed timelike curves γ.

Let q0 ∈M , q1 ∈ J+(q0). The search for sub-Lorentzian length maximizers that connect q0 with
q1 reduces to the search for future directed nonspacelike curves γ that solve the problem

l(γ) → max, γ(0) = q0, γ(t1) = q1. (2.2)

A set of vector fields X1, . . . , Xk ∈ Vec(M) is an orthonormal frame for a sub-Lorentzian struc-
ture (∆, g) if for all q ∈M

∆q = span(X1(q), . . . , Xk(q)),

gq(X1, X1) = −1, gq(Xi, Xi) = 1, i = 2, . . . , k,

gq(Xi, Xj) = 0, i ̸= j.

Assume that time orientation is defined by a timelike vector field X ∈ Vec(M) for which g(X,X1) <
0 (e.g., X = X1). Then the sub-Lorentzian problem for the sub-Lorentzian structure with the
orthonormal frame X1, . . . , Xk is stated as the following optimal control problem:

q̇ =
k∑
i=1

uiXi(q), q ∈M,

u ∈ U =

{
(u1, . . . , uk) ∈ Rk | u1 ≥

√
u22 + · · ·+ u2k

}
,

q(0) = q0, q(t1) = q1,

l(q(·)) =
∫ t1

0

√
u21 − u22 − · · · − u2k dt→ max .
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Remark 1. The sub-Lorentzian length is preserved under monotone Lipschitzian time reparametriza-
tions t(s), s ∈ [0, s1]. Thus if q(t), t ∈ [0, t1], is a sub-Lorentzian length maximizer, then so is any
its reparametrization q(t(s)), s ∈ [0, s1].

In this paper we choose primarily the following parametrization of trajectories: the arclength
parametrization (u21 − u22 − · · · − u2k ≡ 1) for timelike trajectories, and the parametrization with
u1(t) ≡ 1 for future directed lightlike trajectories. Another reasonable choice is to set u1(t) ≡ 1 for
all future directed nonspacelike trajectories.

3 Statement of the sub-Lorentzian problem

on the Heisenberg group

The Heisenberg group is the space M ≃ R3
x,y,z with the product rule

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + (x1y2 − x2y1)/2).

It is a three-dimensional nilpotent Lie group with a left-invariant frame

X1 =
∂

∂ x
− y

2

∂

∂ z
, X2 =

∂

∂ y
+
x

2

∂

∂ z
, X3 =

∂

∂ z
, (3.1)

with the only nonzero Lie bracket [X1, X2] = X3.
Consider the left-invariant sub-Lorentzian structure on the Heisenberg group M defined by the

orthonormal frame (X1, X2), with the time orientation X1. Sub-Lorentzian length maximizers for
this sub-Lorentzian structure are solutions to the optimal control problem

q̇ = u1X1 + u2X2, q ∈M, (3.2)

u ∈ U = {(u1, u2) ∈ R2 | u1 ≥ |u2|}, (3.3)

q(0) = q0 = Id = (0, 0, 0), q(t1) = q1, (3.4)

l(q(·)) =
∫ t1

0

√
u21 − u22 dt→ max . (3.5)

Along with this (full) sub-Lorentzian problem, we will also consider a reduced sub-Lorentzian
problem

q̇ = u1X1 + u2X2, q ∈M, (3.6)

u ∈ intU = {(u1, u2) ∈ R2 | u1 > |u2|}, (3.7)

q(0) = q0 = Id = (0, 0, 0), q(t1) = q1, (3.8)

l(q(·)) =
∫ t1

0

√
u21 − u22 dt→ max . (3.9)

In the full problem (3.2)–(3.5) admissible trajectories q(·) are future directed nonspacelike ones,
while in the reduced problem (3.6)–(3.9) admissible trajectories q(·) are only future directed timelike
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ones. Passing to arclength-parametrized future directed timelike trajectories, we obtain a time-
maximal problem equivalent to the reduced sub-Lorentzian problem (3.6)–(3.9):

q̇ = u1X1 + u2X2, q ∈M, (3.10)

u21 − u22 = 1, u1 > 0, (3.11)

q(0) = q0 = Id = (0, 0, 0), q(t1) = q1, (3.12)

t1 → max . (3.13)

4 Previously obtained results

The sub-Lorentzian problem on the Heisenberg group (3.2)–(3.5) was studied by M. Grochowski
[12,13]. In this section we present results of these works related to our results.

(1) Sub-Lorentzian extremal trajectories were parametrized by hyperbolic and linear functions:
were obtained formulas equivalent to our formulas (5.2), (5.3).

(2) It was proved that there exists a domain in M containing q0 = Id in its boundary at which
the sub-Lorentzian distance d(q0, q) is smooth.

(3) The attainable sets of the sub-Lorentzian structure from the point q0 = Id were computed:
the chronological future of the point q0

I+(q0) = {(x, y, z) ∈M | −x2 + y2 + 4|z| < 0, x > 0},
and the causal future of the point q0

J+(q0) = {(x, y, z) ∈M | −x2 + y2 + 4|z| ≤ 0, x ≥ 0}. (4.1)

In the standard language of control theory [4], I+(q0) is the attainable set of the reduced
system (3.6), (3.7) from the point q0 for arbitrary positive time. Thus the attainable set of
the reduced system (3.6), (3.7) from the point q0 for arbitrary nonnegative time is

A = I+(q0) ∪ {q0}.
The attainable set of the full system (3.2), (3.3) from the point q0 for arbitrary nonnegative
time is

cl(A) = J+(q0).

The attainable set A was also computed in paper [18], where its boundary was called the
Heisenberg beak. See the set ∂A in Figs. 1, 20, and its views from the y- and z-axes in Figs. 2
and 3 respectively.

(4) The lower bound of the sub-Lorentzian distance√
x2 − y2 − 4|z| ≤ d(q0, q), q = (x, y, z) ∈ J+(q0),

was proved. It was also noted that an upper bound

d(q0, q) ≤ C
√
x2 − y2 − 4|z|

does not hold for any constant C ∈ R.

(5) It was proved that there exist non-Hamiltonian maximizers, i.e., maximizers that are not

projections of the Hamiltonian vector field H⃗, H = 1
2
(h22 − h21), related to the problem.
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Figure 1: The Heisenberg beak ∂A

Figure 2: View of ∂A along y-axis Figure 3: View of ∂A along z-axis
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5 Pontryagin maximum principle

In this section we compute extremal trajectories of the sub-Lorentzian problem (3.2)–(3.5). The
majority of results of this section were obtained by M. Grochowski [12,13] in another notation, we
present these results here for further reference.

Denote points of the cotangent bundle T ∗M as λ. Introduce linear on fibers of T ∗M Hamiltonians
hi(λ) = ⟨λ,Xi⟩, i = 1, 2, 3. Define the Hamiltonian of the Pontryagin maximum principle (PMP)
for the sub-Lorentzian problem (3.2)–(3.5)

hνu(λ) = u1h1(λ) + u2h2(λ)− ν
√
u21 − u22, λ ∈ T ∗M, u ∈ U, ν ∈ R.

It follows from PMP [4, 19] that if u(t), t ∈ [0, t1], is an optimal control in problem (3.2)–
(3.5), and q(t), t ∈ [0, t1], is the corresponding optimal trajectory, then there exists a curve
λ· ∈ Lip([0, t1], T

∗M), π(λt) = q(t)1, and a number ν ∈ {0,−1} for which there hold the con-
ditions for a.e. t ∈ [0, t1]:

1. the Hamiltonian system λ̇t = h⃗νu(t)(λt)
2,

2. the maximality condition hνu(t)(λt) = maxv∈U h
ν
v(λt) ≡ 0,

3. the nontriviality condition (ν, λt) ̸= (0, 0).

A curve λ· that satisfies PMP is called an extremal, and the corresponding control u(·) and
trajectory q(·) are called extremal control and trajectory.

5.1 Abnormal case

Theorem 1. In the abnormal case ν = 0 extremals λt and controls u(t) have the following form
for some τ1, τ2 ≥ 0:

(1) h3(λt) ≡ const > 0:

t ∈ (0, τ1) ⇒ h1(λt) = h2(λt) < 0, u1(t) = −u2(t),
t ∈ (τ1, τ1 + τ2) ⇒ h1(λt) = −h2(λt) < 0, u1(t) = u2(t).

(2) h3(λt) ≡ const < 0:

t ∈ (0, τ1) ⇒ h1(λt) = −h2(λt) < 0, u1(t) = u2(t),

t ∈ (τ1, τ1 + τ2) ⇒ h1(λt) = h2(λt) < 0, u1(t) = −u2(t).

(3) h3(λt) ≡ 0:

(h1, h2)(λt) ≡ const ̸= (0, 0), h1(λt) ≡ −|h2(λt)|,
u(t) ≡ const, u1(t) ≡ ±u2(t), ± = − sgn(h1h2(λt)).

Proof. Apply the PMP for the case ν = 0.

Corollary 1. Along abnormal extremals H(λt) ≡ 0, where H = 1
2
(h22 − h21).

1where π : T ∗M → M is the canonical projection, π(λ) = q, λ ∈ T ∗
q M

2where h⃗(λ) is the Hamiltonian vector field on T ∗M with the Hamiltonian function h(λ)
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5.2 Normal case

In the normal case (ν = −1) extremals exist only for h1 ≤ −|h2|.3 In the case h1 = −|h2|
normal controls and extremal trajectories coincide with the abnormal ones. And in the domain
{λ ∈ T ∗M | h1 < −|h2|} extremals are reparametrizations of trajectories of the Hamiltonian vector

field H⃗ with the Hamiltonian H = 1
2
(h22 − h21). In the arclength parametrization, the extremal

controls are
(u1, u2)(t) = (−h1(λt), h2(λt)), (5.1)

and the extremals satisfy the Hamiltonian ODE λ̇ = H⃗(λ) and belong to the level surface {H(λ) =
1
2
}, in coordinates:

ḣ1 = −h2h3, ḣ2 = −h1h3, ḣ3 = 0,

q̇ = coshψX1 + sinhψX2,

h1 = − coshψ, h2 = sinhψ, ψ ∈ R.

We denote c = h3 and obtain a parametrization of normal trajectories q(t) = π ◦ etH⃗(λ0), λ0 ∈
H−1

(
1
2

)
∩ T ∗

q0
M . If c = 0, then

x = t coshψ, y = t sinhψ, z = 0. (5.2)

If c ̸= 0, then

x =
sinh(ψ + ct)− sinhψ

c
, y =

cosh(ψ + ct)− coshψ

c
, z =

sinh(ct)− ct

2c2
. (5.3)

Summing up, we obtain the following characterization of normal trajectories in the sub-Lorent-
zian problem (3.2)–(3.5).

Theorem 2. Normal controls and trajectories either coincide with abnormal ones (in the case
h1(λt) = −|h2(λt)|, see Th. 1), or can be arclength parametrized to get controls (5.1) and future
directed timelike trajectories (5.2) if c = 0, or (5.3) if c ̸= 0.

In particular, along each normal extremal H(λt) ≡ const ∈
{
0, 1

2

}
.

Consequently, normal trajectories are either nonstrictly normal (i.e., simultaneously normal and
abnormal) in the case H = 0, or strictly normal (i.e., normal but not abnormal) in the case H = 1

2
.

Strictly normal arclength-parametrized trajectories are described by the exponential mapping

Exp : N → Ã, (λ, t) 7→ q(t) = π ◦ etH⃗(λ), (5.4)

N = C × R+, R+ = (0,+∞), C = T ∗
IdM ∩H−1

(
1

2

)
≃ R2

ψ,c,

Ã = intA = I+(q0)

given explicitly by formulas (5.2), (5.3).
In papers [12,13] were obtained formulas equivalent to (5.2), (5.3).

3The set {(h1, h2) ∈ (R2)∗ | h1 ≤ −|h2|} is the polar set to U in the sense of convex analysis.
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Remark 2. Projections of strictly normal (future directed timelike) trajectories to the plane (x, y)
are:

� either rays y = kx, x ≥ 0, k ∈ (−1, 1) (for c = 0), see Fig. 4,

� or arcs of hyperbolas with asymptotes x = ±y > 0 (for c ̸= 0), see Fig. 5.

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0

y

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0

y

Figure 4: Strictly normal (x(t), y(t)),
c = 0

Figure 5: Strictly normal (x(t), y(t)),
c ̸= 0

Projections of nonstrictly normal (future directed lightlike) trajectories to the plane (x, y) are
broken lines with one or two edges parallel to the rays x = ±y > 0, see Fig. 6.

Projections of all extremal trajectories (as well as of all admissible trajectories) to the plane
(x, y) are contained in the angle {(x, y) ∈ R2 | x ≥ |y|}, which is the projection of the attainable set
J+(q0) to this plane.

Remark 3. The Hamiltonian H = 1
2
(h22 − h21) is preserved on each extremal. On the other hand,

since the problem is left-invariant, the extremals respect the symplectic foliation on the dual of the
Heisenberg Lie algebra T ∗

IdM = {(h1, h2, h3)} consisting of 2-dimensional symplectic leaves {h3 =
const ̸= 0} and 0-dimensional leaves {h3 = 0, (h1, h2) = const}. Thus projections of extremals to
T ∗
IdM = {(h1, h2, h3)} belong to intersections of the level surfaces

{
H = const ∈

{
0, 1

2

}}
with the

symplectic leaves:

� branches of hyperbolas h21 − h22 = 1, h1 < 0, h3 ̸= 0,

� points (h1, h2) = const, H ∈
{
0, 1

2

}
, h1 ≤ −|h2|, h3 = 0,

� angles h1 = −|h2|, h3 ̸= 0.

See Figs. 7, 8.
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-0.5

0.5

1.0

y

Figure 6: Nonstrictly normal (x(t), y(t))

Figure 7: Strictly normal
(h1(t), h2(t), h3(t))

Figure 8: Nonstrictly normal
(h1(t), h2(t), h3(t))
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Remark 4. In the sense of work [12], strictly normal extremal trajectories q(t) = π◦etH⃗(λ), λ ∈ C,

are Hamiltonian since they are projections of trajectories of the Hamiltonian vector field H⃗.
On the other hand, nonstrictly normal extremal trajectories given by items (1), (2) of Th. 1 are

non-Hamiltonian, e.g., the broken curves{
et(X1+X2), t ∈ [0, τ1],

e(t−τ1)(X1−X2) ◦ eτ1(X1+X2), t ∈ [τ1, τ2],
(5.5)

and {
et(X1−X2), t ∈ [0, τ1],

e(t−τ1)(X1+X2) ◦ eτ1(X1−X2), t ∈ [τ1, τ2],
(5.6)

for 0 < τ1 < τ2. See item (5) in Sec. 4. Although, each smooth arc of the broken trajectories (5.5),

(5.6) is a reparametrization of projection of a trajectory of the Hamiltonian vector field H⃗ contained
in a face of the angle {(h1, h2, h3) ∈ T ∗

IdM | h1 = −|h2|}, see Fig. 8.

6 Inversion of the exponential mapping

Theorem 3. The exponential mapping Exp : N → Ã is a real-analytic diffeomorphism. The
inverse mapping Exp−1 : Ã → N , (x, y, z) 7→ (ψ, c, t), is given by the following formulas:

z = 0 ⇒ ψ = artanh
y

x
, c = 0, t =

√
x2 − y2, (6.1)

z ̸= 0 ⇒ ψ = artanh
y

x
− p, c = (sgn z)

√
sinh 2p− 2p

2z
, t =

2p

c
, (6.2)

where p = β
(

z
x2−y2

)
, and β :

(
−1

4
, 1
4

)
→ R is the inverse function to the diffeomorphism

α : R →
(
−1

4
,
1

4

)
, α(p) =

sinh 2p− 2p

8 sinh2 p
.

See plots of the functions α(p) and β(z) in Figs. 9 and 10 respectively.

Proof. The exponential mapping is real-analytic since the strictly normal extremals are trajectories
of the real-analytic Hamiltonian vector field H⃗. We show that Exp is bijective.

Formulas (6.1) follow immediately from (5.2).
Let c ̸= 0. Then formulas (5.3) yield

x =
2

c
sinh p cosh τ, y =

2

c
sinh p sinh τ, z =

1

2c2
(sinh 2p− 2p), (6.3)

p =
ct

2
, τ = ψ +

ct

2
. (6.4)

Thus

x2 − y2 =
4

c2
sinh2 p, (6.5)

z

x2 − y2
=

sinh 2p− 2p

8 sinh2 p
= α(p).
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p

-0.25

0.25

α

-0.25 0.25
z

β

Figure 9: Plot of α(p) Figure 10: Plot of β(z)

The function α(p) is a diffeomorphism from R to
(
−1

4
, 1
4

)
, thus it has an inverse function, a diffeo-

morphism β :
(
−1

4
, 1
4

)
→ R. So p = β( z

x2−y2 ). Now formulas (6.2) follow from (6.3), (6.4).
So Exp is a smooth bijection with a smooth inverse, i.e., a diffeomorphism.

7 Optimality of extremal trajectories

We study optimality of extremal trajectories. The main tool is a sufficient optimality condition
(Th. 4) based on a field of extremals (see [4], Sec. 17.1).

We prove optimality of all extremal trajectories (Theorems 7, 8) without apriori theorem on
existence of optimal trajectories. Such a theorem was recently proved [21], and it can shorten the
proof of optimality in our work.

7.1 Sufficient optimality condition

Let M be a smooth manifold, then the cotangent bundle T ∗M bears the Liouville 1-form s = pdq ∈
Λ1(T ∗M) and the symplectic 2-form σ = ds = dp ∧ dq ∈ Λ2(T ∗M). A submanifold L ⊂ T ∗M is
called a Lagrangian manifold if dimL = dimM and σ|L = 0.

Consider an optimal control problem

q̇ = f(q, u), q ∈M, u ∈ U,

q(t0) = q0, q(t1) = q1,

J [q(·)] =
∫ t1

t0

φ(q, u) dt→ min,

t0 is fixed, t1 is free.
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Let gu(λ) = ⟨λ, f(q, u)⟩ − φ(q, u), λ ∈ T ∗M , q = π(λ), u ∈ U , be the normal Hamiltonian of
PMP. Suppose that the maximized normal Hamiltonian G(λ) = maxu∈U gu(λ) is smooth in an open

domain O ⊂ T ∗M , and let the Hamiltonian vector field G⃗ ∈ Vec(O) be complete.

Theorem 4. Let L ⊂ G−1(0) ∩ O be a Lagrangian submanifold such that the form s|L is exact.
Let the projection π : L → π(L) be a diffeomorphism on a domain in M . Consider an extremal

λ̃t = etG⃗(λ0), t ∈ [t0, t1], contained in L, and the corresponding extremal trajectory q̃(t) = π(λ̃t).
Consider also any trajectory q(t) ∈ π(L), t ∈ [t0, τ ], such that q(t0) = q̃(t0), q(τ) = q̃(t1). Then
J [q̃(·)] < J [q(·)].

Proof. Completely similarly to the proof of Th. 17.2 [4].

7.2 Optimality in the reduced sub-Lorentzian problem
on the Heisenberg group

We apply Th. 4 to the reduced sub-Lorentzian problem (3.10)–(3.13). For this problem the max-
imized Hamiltonian G = 1 −

√
h21 − h22 is smooth on the domain O = {λ ∈ T ∗M | h1 < −|h2|},

and the Hamiltonian vector field G⃗ ∈ Vec(O) is complete. In the domain O the Hamiltonian vector

fields G⃗ and H⃗ have the same trajectories up to a monotone time reparametrization; moreover, on
the level surface

{
H = 1

2

}
= {G = 0} they just coincide between themselves.

Define the set
L =

{
etG⃗(λ0) | λ0 ∈ C, t > 0

}
. (7.1)

Lemma 1. L ⊂ T ∗M is a Lagrangian manifold such that s|L is exact.

Proof. Consider a smooth mapping

Φ : (T ∗
IdM ∩G−1(0))× R+ → T ∗M, (λ0, t) 7→ etG⃗(λ0).

Since

rank

(
∂ Φ

∂ (t, λ0)

)
= rank

(
G⃗(λ), etG⃗∗

(
h2

∂

∂ h1
+ h1

∂

∂ h2

)
, etG⃗∗

∂

∂ h3

)
= rank

(
G⃗(λ0), h2

∂

∂ h1
+ h1

∂

∂ h2
,
∂

∂ h3

)
= rank

(
−h1X1 + h2X2, h2

∂

∂ h1
+ h1

∂

∂ h2
,
∂

∂ h3

)
= 3,

then L is a smooth 3-dimensional manifold.
Further, π(L) = Exp(N) = Ã by Th. 3. Moreover, since Exp = π ◦ Φ and Exp : N → Ã is a

diffeomorphism by Th. 3, then π : L → Ã is a diffeomorphism as well.
Let us show that σ|L = 0. Take any λ = etG⃗(λ0) ∈ L, (λ0, t) ∈ N , then TλL = RG⃗(λ) ⊕

etG⃗∗ (Tλ0C). Take any two vectors TλL ∋ vi = riG⃗(λ) + etG⃗∗ wi, wi ∈ Tλ0C, i = 1, 2. Then

σ(v1, v2) = r1σ(G⃗(λ0), w2) + r2σ(w1, G⃗(λ0)) = 0
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since σ(wi, G⃗(λ0)) = ⟨dG,wi⟩ = 0 by virtue of wi ∈ Tλ0C = {dG = 0}.
So the 1-form s|L is closed. But Ã is simply connected, thus L is simply connected as well.

Consequently, s|L is exact by the Poincaré lemma.

Theorem 5. For any point q1 ∈ intA = I+(q0) the strictly normal trajectory q(t) = Exp(λ, t),
t ∈ [0, t1], is the unique optimal trajectory of the reduced sub-Lorentzian problem (3.10)–(3.13)
connecting q0 with q1, where (λ, t1) = Exp−1(q1) ∈ N .

Proof. Take any λ0 ∈ C, t1 > t0 > 0. Then the Lagrangian manifold L (7.1) and the extremal

λ̃t = etG⃗(λ0), t ∈ [t0, t1], satisfy hypotheses of Th. 4. Thus the trajectory q̃(t) = π(λ̃t), t ∈ [t0, t1],
is a strict maximizer for the reduced sub-Lorentzian problem (3.10)–(3.13).

Take any λ1 ∈ C, t2 > 0, and consider the extremal trajectory q̄(t) = Exp(λ1, t), t ∈ [0, t2]. Take

any q̂ ∈ Ã. The set A is an attainable set of a left-invariant control system on a Lie group, thus
it is a semigroup. Consequently, q̂ · q̄(t) is an extremal trajectory contained in Ã. By the previous
paragraph, this trajectory is a strict maximizer for the reduced sub-Lorentzian problem (3.10)–
(3.13). By left invariance of this problem, the same holds for the trajectory q̄(t), t ∈ [0, t2].

Denote the cost function for the equivalent reduced sub-Lorentzian problems (3.6)–(3.9) and
(3.10)–(3.13):

d̃(q1) = sup{l(q(·)) | traj. q(·) of (3.6)–(3.9), q(0) = q0, q(t1) = q1}
= sup{t1 > 0 | ∃ traj. q(·) of (3.10)–(3.13) s.t. q(0) = q0, q(t1) = q1},

where q1 ∈ intA = I+(q0). This function has the following description and regularity property.

Theorem 6. Let q = (x, y, z) ∈ I+(q0). Then

d̃(q) =
√
x2 − y2 · p

sinh p
, p = β

(
z

x2 − y2

)
. (7.2)

The function d̃ : I+(q0) → R+ is real-analytic.

Proof. Let q ∈ I+(q0), then the sub-Lorentzian length maximizer from q0 to q for the reduced sub-

Lorentzian problem (3.10)–(3.13) is described in Th. 5, and the expression for d̃(q) in (7.2) follows
from the expression for t in (6.2).

The both functions
√
x2 − y2 and p

sinh p
are real-analytic on I+(q0), thus d̃ is real-analytic as

well.

7.3 Optimality in the full sub-Lorentzian problem
on the Heisenberg group

In this subsection we consider the full sub-Lorentzian problem (3.2)–(3.5).

Theorem 7. Let q1 ∈ I+(q0). Then the sub-Lorentzian length maximizers for the full problem (3.2)–
(3.5) are reparametrizations of the corresponding sub-Lorentzian length maximizer for the reduced
problem (3.10)–(3.13) described in Th. 5.

In particular, d|I+(q0)
= d̃.

14



Proof. Let q(t), t ∈ [0, t1], be a trajectory of the full problem (3.2)–(3.5) such that q(0) = q0,
q(t1) = q1, and let q(·) be not a trajectory of the reduced problem (3.6)–(3.9) (that is, there exist
0 ≤ τ1 < τ2 ≤ t1 such that (u1 − |u2|)|[τ1,τ2] ≡ 0). Let q̃(t), t ∈ [0, t̃1], be the optimal trajectory
in the reduced problem (3.10)–(3.13) connecting q0 with q1. We show that l(q(·)) < l(q̃(·)). By
contradiction, suppose that l(q(·)) ≥ l(q̃(·)).

Let l(q(·)) = l(q̃(·)). The trajectory q(·) does not satisfy the PMP for the full problem (3.2)–
(3.5) (see Sec. 5), thus it is not optimal in this problem. Thus there exists a trajectory q̄(·) of this
problem with the same endpoints and l(q̄(·)) > l(q̃(·)). The curve q̄(·) cannot be a trajectory of
the reduced system since its length is greater than the maximum l(q̃(·)) in this problem. So we can
denote q̄(·)) as q(·) and assume that l(q(·)) > l(q̃(·)).

After time reparametrization we obtain that the control u(t) = (u1(t), u2(t)) corresponding to
the trajectory q(t), t ∈ [0, t1], satisfies u1(t) ≡ 1, thus |u2(t)| ≤ 1.

For any δ ∈ (0, 1) define a function

uδ2(t) =


u2(t) for |u2(t)| ≤ 1− δ,

1− δ for u2(t) > 1− δ,

δ − 1 for u2(t) < δ − 1,

so that
|uδ2(t)| ≤ 1− δ, |uδ2(t)− u2(t)| ≤ δ, t ∈ [0, t1]. (7.3)

Define an admissible control uδ(t) = (1, uδ2(t)), t ∈ [0, t1], and consider the corresponding trajectory
qδ(t), t ∈ [0, t1], of the reduced problem (3.6)–(3.9) with qδ(0) = q0. Denote its endpoint q

δ(t1) = qδ1.
By virtue of the second inequality in (7.3),

l(qδ(·)) =
∫ t1

0

√
1−

(
uδ2(t)

)2
dt→

∫ t1

0

√
1− u22(t)dt = l(q(·)),

max
t∈[0,t1]

∥qδ(t)− q(t)∥ → 0

as δ → +0. So for sufficiently small δ > 0 we have

l(qδ(·)) > l(q̃(·)) and ∥qδ1 − q1∥ is small,

where ∥ · ∥ is any norm in M ∼= R3. In particular, qδ1 ∈ I+(q0) for small δ > 0.
Now let q̂δ(t), t ∈

[
0, t̂δ1

]
, be the optimal trajectory in the reduced problem (3.10)–(3.13) with

the boundary conditions q̂δ(0) = q0, q̂
δ
(
t̂δ1
)
= qδ1. Then for small δ > 0

l
(
q̂δ(·)

)
≥ l(qδ(·)) > l(q̃(·)),∥∥qδ1 − q1
∥∥ =

∥∥q̂δ (t̂δ1)− q̃(t1)
∥∥ is small.

By virtue of Th. 6, the sub-Lorentzian distance d̃ : I+(q0) → R+ in the reduced problem (3.10)–
(3.13) is continuous, thus for small δ > 0

|l
(
q̂δ(·)

)
− l(q̃(·))| = |d̃(qδ1)− d̃(q1)| is small.
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Summing up, for small δ > 0 the difference

l(q(·))− l(q̃(·)) <
(
l(q(·))− l

(
qδ(·)

))
+
(
l
(
q̂δ(·)

)
− l (q̃(·))

)
becomes arbitrarily small, a contradiction. Thus q̃(·) is optimal and q(·) is not optimal in the full
sub-Lorentzian problem (3.2)–(3.5).

Theorem 8. Let q1 = (x1, y1, z1) ∈ ∂A = J+(q0) \ I+(q0), q1 ̸= q0. Then an optimal trajectory in
the full sub-Lorentzian problem (3.2)–(3.5) is a future directed lightlike piecewise smooth trajectory
with one or two subarcs generated by the vector fields X1±X2. In detail, up to a reparametrization:

(1) If z1 = 0, then

u(t) ≡ const = (1,±1), q(t) = et(X1±X2) = (t,±t, 0), t ∈ [0, t1], t1 = x1.

(2) If z1 > 0, then

t ∈ [0, τ1] ⇒ u(t) ≡ (1,−1), q(t) = et(X1−X2) = (t,−t, 0),
t ∈ [τ1, τ1 + τ2] ⇒ u(t) ≡ (1, 1),

q(t) = e(t−τ1)(X1+X2)eτ1(X1−X2) = (t, t− 2τ1, τ1(t− τ1)),

τ1 =
x1 − y1

2
, τ2 =

x1 + y1
2

.

(3) If z1 < 0, then

t ∈ [0, τ1] ⇒ u(t) ≡ (1, 1), q(t) = et(X1+X2) = (t, t, 0),

t ∈ [τ1, τ1 + τ2] ⇒ u(t) ≡ (1,−1),

q(t) = e(t−τ1)(X1−X2)eτ1(X1+X2) = (t, 2τ1 − t,−τ1(t− τ1)),

τ1 =
x1 + y1

2
, τ2 =

x1 − y1
2

.

The broken lightlike trajectories with two arcs described in items (1), (2) of Th. 8 are shown in
Fig. 21.

Proof. Let q(t), t ∈ [0, t1], be a future directed nonspacelike trajectory connecting q0 and q1. If q(·)
is not lightlike, then there exists a future directed timelike arc q(t), t ∈ [s1, s2], 0 ≤ s1 < s2 ≤ t1,
thus q(t1) ∈ intA, a contradiction. Thus q(·) is lightlike, and the statement follows by direct
computation of trajectories of the lightlike vector fields X1 ±X2.

Corollary 2. For any q1 ∈ J+(q0), q1 ̸= q0, there is a unique, up to reparametrization, sub-Lorent-
zian length minimizer in the full problem (3.2)–(3.5) that connects q0 and q1:

� if q1 ∈ intA = I+(q0), then q(·) is a future directed timelike strictly normal trajectory described
in Theorems 5, 7.

� if q1 ∈ ∂A = J+(q)\I+(q0), then q(·) is a future directed lightlike nonstrictly normal trajectory
described in Th. 8.
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Corollary 3. Any sub-Lorentzian length maximizer of problem (3.2)–(3.5) of positive length is
timelike and strictly normal.

Remark 5. The broken trajectories described in items (2), (3) of Th. 8 are optimal in the sub-Lo-
rentzian problem, while in sub-Riemannian problems trajectories with angle points cannot be optimal,
see [20]. Moreover, these broken trajectories are normal and nonsmooth, which is also impossible in
sub-Riemannian geometry.

8 Sub-Lorentzian distance

Denote d(q) := d(q0, q), q ∈ J+(q0).

Theorem 9. Let q = (x, y, z) ∈ J+(q0). Then

d(q) =
√
x2 − y2 · p

sinh p
, p = β

(
z

x2 − y2

)
. (8.1)

In particular:

(1) z = 0 ⇐⇒ d(q) =
√
x2 − y2,

(2) q ∈ J+(q0) \ I+(q0) ⇐⇒ d(q) = 0.

Remark 6. In the right-hand side of the first equality in (8.1), we assume by continuity that
p

sinh p
= 1 for p = 0 and p

sinh p
= 0 for p = ∞. See the plot of the function p

sinh p
in Fig. 11.

-2 -1 1 2-3 3
p

0.5

1

p/sinh(p)

Figure 11: Plot of p
sinh p

Proof. Let q ∈ I+(q0), then the sub-Lorentzian length maximizers from q0 to q are described in

Theorem 7 and the expression for d|Ã = d̃ was obtained in Th. 6. In particular, if z = 0, then

p = 0 and d(q) =
√
x2 − y2, and vice versa.

Let q ∈ J+(q0) \ I+(q0), then the sub-Lorentzian length maximizers from q0 to q are described

in Th. 8. Thus d(q) = 0, which agrees with (8.1) since in this case |z|
x2−y2 = 1

4
, so p = ∞.

We plot restrictions of the sub-Lorentzian distance to several planar domains:

� d|z=0 =
√
x2 − y2 to the domain J+(q0) ∩ {z = 0} = {x ≥ |y|, z = 0}, see Fig. 12,

� d|y=0 to the domain J+(q0) ∩ {y = 0} = {−x2/4 ≤ z ≤ x2/4, y = 0}, see Fig. 13,
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Figure 12: Plot of d|z=0 Figure 13: Plot of d|y=0

Figure 14: Plot of d|x=1
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� d|x=1 to the domain J+(q0) ∩ {x = 1} = {y2 + 4|z| ≤ 1, x = 1}, see Fig. 14.

The sub-Lorentzian distance has the following regularity properties.

Theorem 10. (1) The function d(·) is continuous on J+(q0) and real-analytic on I+(q0).

(2) The function d(·) is not Lipschitz near points q = (x, y, z) with x = |y| > 0, z = 0.

Proof. (1) follows from representation (8.1).

(2) follows from item (1) of Th. 9 since the function d|z=0 =
√
x2 − y2 is not Lipschitz near

points with x = |y| > 0.

Remark 7. Item (1) of Th. 10 improves item (2) of Sec. 4.

Remark 8. Item (2) of Th. 10 is visualized in Fig. 12 since the cone given by the plot of d|z=0 =√
x2 − y2 has vertical tangent planes at points x = |y| > 0.
Moreover, item (2) of Th. 10 can be essentially detailed by a precise description of the asymp-

totics of the sub-Lorentzian distance d(q) as q → ∂A, this will be done in a forthcoming paper [22].

Remark 9. The sub-Lorentzian distance d : J+(q0) → [0,+∞) is not uniformly continuous since
the same holds for its restriction d|z=0 =

√
x2 − y2 on the angle {x ≥ |y|}.

As was shown in [13], the sub-Lorentzian distance d(q) admits a lower bound by the function√
x2 − y2 − 4|z| and does not admit an upper bound by this function multiplied by any constant

(see item (4) in Sec. 4). Here we precise this statement and prove another upper bound.

Theorem 11. (1) The ratio

√
x2 − y2 − 4|z|

d(q)
takes any values in the segment [0, 1] for q =

(x, y, z) ∈ J+(q0).

(2) For any q = (x, y, z) ∈ J+(q0) there holds the bound d(q) ≤
√
x2 − y2, moreover, the ratio

d(q)√
x2 − y2

takes any values in the segment [0, 1].

The two-sided bound√
x2 − y2 − 4|z| ≤ d(q) ≤

√
x2 − y2, q ∈ J+(q0), (8.2)

is visualized in Fig. 15, which shows plots of the surfaces (from below to top):√
x2 − y2 = 1, d(q) = 1,

√
x2 − y2 − 4|z| = 1, q ∈ J+(q0).

Proof. (1) It follows from (8.1) that

x2 − y2 − 4|z|
d2(q)

=
sinh2 p− sinh p cosh p+ p

p2
,

and the function in the right-hand side takes all values in the segment [0, 1] for q ∈ J+(q0).

(2) It follows from (8.1) that d(q)√
x2−y2

= p
sinh p

. When q ∈ J+(q0), the ratio p
sinh p

takes all values

in the segment [0, 1], see Remark 6 after Th. 9.
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Figure 15: Bound (8.2)

9 Symmetries

Theorem 12. (1) The hyperbolic rotations X0 = y ∂
∂ x

+ x ∂
∂ y

and reflections ε1 : (x, y, z) 7→
(x,−y, z), ε2 : (x, y, z) 7→ (x, y,−z) preserve d(·).

(2) The dilations Y = x ∂
∂ x

+ y ∂
∂ y

+ 2z ∂
∂ z

stretch d(·):

d(esY (q)) = esd(q), s ∈ R, q ∈ J+(q0).

Proof. (1) The flow of the hyperbolic rotations

esX0 : (x, y, z) 7→ (x cosh s+ y sinh s, x sinh s+ y cosh s, z), s ∈ R, (x, y, z) ∈M,

preserves the exponential mapping:

esX0 ◦ Exp(ψ, c, t) = Exp(ψ + s, c, t), (ψ, c, t) ∈ N, s ∈ R,

thus d(esX0(q)) = d(q) for q ∈ I+(q0). Moreover, the flow esX0 preserves the boundary ∂A =
J+(q0) \ I+(q0), thus d(esX0(q)) = d(q) = 0 for q ∈ J+(q0) \ I+(q0).

Further, it is obvious from (8.1) that the reflections ε1, ε2 preserve d(·).
(2) The flow of the dilations

esY : (x, y, z) 7→ (xes, yes, ze2s), s ∈ R, (x, y, z) ∈M,

acts on the exponential mapping as follows:

esY ◦ Exp(ψ, c, t) = Exp(ψ, ce−2s, tes), (ψ, c, t) ∈ N, s ∈ R,

thus d(esY (q)) = esd(q) for q ∈ I+(q0). The equality d(esY (q)) = esd(q) = 0 for q ∈ J+(q0) \ I+(q0)
follows since the flow esY preserves the boundary ∂A = J+(q0) \ I+(q0).
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10 Sub-Lorentzian spheres

10.1 Spheres of positive radius

Sub-Lorentzian spheres
S(R) = {q ∈M | d(q) = R}, R > 0,

are transformed one into another by dilations:

S(esR) = esY (S(R)), s ∈ R,

thus we describe the unit sphere

S = S(1) = {Exp(λ, 1) | λ ∈ C}. (10.1)

Theorem 13. (1) The unit sub-Lorentzian sphere S is a regular real-analytic manifold diffeomor-
phic to R2.

(2) Let q = Exp(ψ, c, 1) ∈ S, (ψ, c) ∈ C, then the tangent space

TqS =

{
v =

3∑
i=1

viXi(q) | −v1 cosh(ψ + c) + v2 sinh(ψ + c) + v3c = 0

}
. (10.2)

(3) S is the graph of the function x =
√
y2 + f(z), where f(z) = e ◦ k(z), e(w) = sinh2 w

w2 ,
k(z) = b(z)/2, b = a−1, a(c) = sinh c−c

2c2
.

(4) The function f(z) is real-analytic, even, strictly convex, unboundedly and strictly increasing
for z ≥ 0. This function has a Taylor decomposition f(z) = 1 + 12z2 + O(z4) as z → 0 and
an asymptote 4|z| as z → ∞:

lim
z→∞

(f(z)− 4|z|) = 0. (10.3)

(5) The function f(z) satisfies the bounds

4|z| < f(z) < 4|z|+ 1, z ̸= 0. (10.4)

(6) A section of the sphere S by a plane {z = const} is a branch of the hyperbola x2 − y2 = f(z),
x > 0. A section of the sphere S by a plane {x = const > 1} is a strictly convex curve
y2 + f(z) = x2 diffeomorphic to S1.

(7) The sub-Lorentzian distance from the point q0 to a point q = (x, y, z) ∈ Ã may be expressed
as d(q) = R, where x2 − y2 = R2f(z/R2).

(8) The sub-Lorentzian ball B = {q ∈M | d(q) ≤ 1} has infinite volume in the coordinates x, y, z.

See in Fig. 16 a plot of the sphere S (above in red) and the Heisenberg beak ∂A (at the bottom
in blue). Different sub-Lorentzian length maximizers connecting q0 and S are shown in Fig. 17. A
plot of the function f(z) illustrating bound (10.4) is shown in Fig. 18. Sections of the sphere S by
the planes {x = 1, 2, 3} are shown in Fig. 19.
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Figure 16: The sphere S and the Heisen-
berg beak ∂A

Figure 17: Maximizers connecting q0
and S
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Figure 18: Plot of f(z) and bound
(10.4)

Figure 19: Sections of S by the planes
{x = 1, 2, 3}
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Proof. (1) Since Exp : C×R+ → Ã is a diffeomorphism, the parametrization (10.1) of the sphere S
implies that it is a smooth 2-dimensional manifold diffeomorphic to R2. Moreover, the exponential
mapping is real-analytic, thus S is real-analytic as well.

(2) Let q = Exp(λ0, 1) ∈ S, λ0 = (ψ, c, q0) ∈ C, and let λ1 = eH⃗(λ0). Then

TqS = λ⊥1 = {v ∈ TqM | ⟨λ1, v⟩ = 0}. (10.5)

Since h1(λ1) = − cosh(ψ + c), h2(λ1) = sinh(ψ + c), h3(λ1) = c, representation (10.2) follows from
(10.5).

(3) It follows from (10.2) that the 2-dimensional manifold S projects regularly to the coordinate
plane (y, z), thus it is a graph of a real-analytic function x = F (y, z). Since etX0(S) = S, t ∈ R,
then

0 = X0(F (y, z)− x)|S = F (y, z)
∂ F

∂ y
(y, z)− y.

Integrating this differential equation, we get F (y, z) =
√
y2 + f(z) for a real-analytic function f(z).

Since S ∩ {z = 0} =
{
x =

√
y2 + 1, z = 0

}
, then f(0) = 1.

Let z ̸= 0. Then z = sinh c−c
2c2

= a(c) by virtue of (5.3). The function a : R → R is a
diffeomorphism, denote the inverse function b = a−1. By virtue of (6.5), we have f(z) = x2 − y2 =
4
c2
sinh2 p, whence f(a(c)) = 4

c2
sinh2 p, thus f(a) = e( b

2
(a)), where e(x) = sinh2 x

x2
. Item (3) follows.

(4) We have already proved that f(z) is real-analytic. Since ε1(S) = S, then f is even. Immediate
computation shows that k′(z) > 0, z > 0, and e′(x) > 0, x > 0, whence f ′(z) > 0, z > 0. Similarly
it follows that f ′′(z) > 0 for z > 0. By virtue of the expansions k(z) = 6z + O(z2), z → 0 and
e(x) = 1+ x2

3
+O(x4), x→ 0, we get f(z) = 1+12z2+O(z4), z → 0. Finally, it easily follows from

the definition of the function f(z) that limz→∞(f(z)− 4|z|) = 0.

(5) follows from (4).

(6) It is straightforward that S ∩ {z = const} = {x2 − y2 = f(z), x > 0, z = const} is a branch
of a hyperbola.

The section S ∩{x = const > 1} = {y2+ f(z) = x2, x = const > 1} is a smooth compact curve,
thus diffeomorphic to S1. If y ≥ 0, then this curve is given by the equation y =

√
x2 − f(z), which

is a strictly concave function (this follows by twice differentiation).

(7) Take any point q = (x, y, z) ∈ Ã, then there exists s ∈ R such that e−sY (q) ∈ S, i.e.,

d(q) = es, see item (2) of Th. 12. Denoting R = es, we get x
R
=
√

y2

R2 + f
(
z
R2

)
, and item (7) of this

theorem follows.

(8) The unit ball is given explicitly by

B =
{
(x, y, z) ∈ R3 |

√
y2 + 4|z| ≤ x ≤

√
y2 + f(z)

}
,

thus its volume is evaluated by the integral

V (B) =

∫ +∞

−∞
dy

∫ +∞

−∞
dz
(√

y2 + f(z)−
√
y2 + 4|z|

)
= +∞.
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Remark 10. Thanks to bound (10.4) of the function f(z), the sphere S =
{
x =

√
y2 + f(z)

}
is

contained in the domain{
q = (x, y, z) ∈M |

√
y2 + 4|z| < x ≤

√
y2 + 4|z|+ 1

}
.

The bounding functions of this domain provide an approximation of the function
√
y2 + f(z) defining

S up to the accuracy

√
y2 + 4|z|+ 1−

√
y2 + 4|z| = 1√

y2 + 4|z|+ 1 +
√
y2 + 4|z|

≤ min

(
1,

2

|y|
,

1√
|z|

)
.

10.2 Sphere of zero radius

Now consider the zero radius sphere

S(0) = {q ∈M | d(q) = 0}.

Theorem 14. (1) S(0) = J+(q0) \ I+(q0) = ∂J+(q0) = ∂I+(q0) = ∂A.

(2) S(0) is the graph of a continuous function x = Φ(y, z) :=
√
y2 + 4|z|, thus a 2-dimensional

topological manifold.

(3) The function Φ(y, z) is even in y and z, real-analytic for z ̸= 0, Lipschitz near z = 0, y ̸= 0,
and Hölder with constant 1

2
, non-Lipschitz near (y, z) = (0, 0).

(4) S(0) is filled by broken lightlike trajectories with one or two edges described in Th. 8, and is
parametrized by them as follows:

S(0) =
{
eτ2(X1−X2)eτ1(X1+X2) = (τ1 + τ2, τ1 − τ2,−τ1τ2) | τi ≥ 0

}
∪
{
eτ2(X1+X2)eτ1(X1−X2) = (τ1 + τ2, τ2 − τ1, τ1τ2) | τi ≥ 0

}
.

(5) The flows of the vector fields Y,X0 preserve S(0). Moreover, the symmetries Y , X0 provide a
regular parametrization of

S(0) ∩ {sgn z = ±1} =
{
esY ◦ erX0(q±) | r, s > 0

}
, (10.6)

where q± = (x±, y±, z±) is any point in S(0) ∩ {sgn z = ±1}.

(6) The sphere S(0) = {16z2 = (x2 − y2)2, x2 − y2 ≥ 0, x ≥ 0} is a semi-algebraic set.

(7) The zero-radius sphere is a Whitney stratified set with the stratification

S(0) =
(
S(0) ∩ {z > 0}

)
∪
(
S(0) ∩ {z < 0}

)
∪
(
S(0) ∩ {z = 0, y > 0}

)
∪
(
S(0) ∩ {z = 0, y < 0}

)
∪ {q0}.
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(8) Intersection of the sphere S(0) with a plane {z = const ̸= 0} is a branch of a hyperbola
{x2 − y2 = 4|z|, x > 0, z = const}, intersection with a plane {z = 0} is an angle {x =
|y|, z = 0}, intersection with a plane {y = kx}, k ∈ (−1, 1), is a union of two half-parabolas
{4z = ±(1 − k2)x2, x ≥ 0, y = kx}, and intersection with a plane {y = ±x} is a ray
{y = ±x, z = 0}.

The Heisenberg beak S(0) = ∂A is plotted in Figs. 1–3 as a graph of the function x =
√
y2 + 4|z|

by virtue of (4.1), and in Fig. 20 as a parametrized surface by virtue of (10.6) with q± = (2, 0,±1).

Figure 20: The Heisenberg beak ∂A

Proof. (1), (2) follow from item (2) of Th. 9 and item (3) of Sec. 4.

(3) and (6)–(8) are obvious.

(4) follows from Th. 8.

(5) follows from Th. 12.

Lightlike maximizers filling S(0) are shown in Fig. 21. Sub-Lorentzian spheres or radii 0, 1, 2,
3 are shown in Fig. 22.

Remark 11. The spheres

S(1) =
{
(x, y, z) ∈M | x =

√
y2 + f(z), y, z ∈ R

}
,

S(0) =
{
(x, y, z) ∈M | x =

√
y2 + 4|z|, y, z ∈ R

}
tend one to another as z → ∞ since for any y ∈ R

lim
z→∞

(√
y2 + f(z)−

√
y2 + 4|z|

)
= 0

by virtue of (10.3). The same holds for any spheres S(R1), S(R2), Ri ∈ [0,+∞).
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Figure 21: Lightlike maximizers filling
S(0)

Figure 22: Sub-Lorentzian spheres or
radii 0, 1, 2, 3

11 Conclusion

The results obtained in this paper for the sub-Lorentzian problem on the Heisenberg group differ
drastically from the known results for the sub-Riemannian problem on the same group:

1. The sub-Lorentzian problem is not completely controllable.

2. Filippov’s existence theorem for optimal controls cannot be immediately applied to the sub-
Lorentzian problem.

3. In the sub-Lorentzian problem all extremal trajectories are infinitely optimal, thus the cut
locus and the conjugate locus for them are empty.

4. The sub-Lorentzian length maximizers coming to the zero-radius sphere are nonsmooth (con-
catenations of two smooth arcs forming a corner, nonstrictly normal extremal trajectories).

5. Sub-Lorentzian spheres and sub-Lorentzian distance are real-analytic if d > 0.

It would be interesting to understand which of these properties persist for more general sub-Lorent-
zian problems (e.g., for left-invariant problems on Carnot groups).

The authors thank A.A.Agrachev, L.V.Lokutsievskiy, and M. Grochowski for valuable discus-
sions of the problem considered.
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