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Motivation: Applications in robotics and image processing

e Motion planning problem for a car-like mobile robot that can
move forward and rotate in place

e Extraction of salient curves in images. E.g. vessel tracking on
images of human retina.




Preliminaries

e T he group of motions of a plane SEr, = M ~ R%y X 391 S q:

aq' = ((2,),6) (@, 4),6') = (Ro(2',y) + (2,9),6 +¢').

where Ry is a counter-clockwise planar rotation on angle 6.
The Lie algebra se, = span(Xy, Xo, X3), where

0 0 0 0
X1 =c0s0— +sinf0—, X, =0y, X3= —sinf— 4 cosH—.
1 ox + oy 2 ¢ 3 ox T oy

e By given a dynamics on M, an extremal trajectory is called a
trajectory that satisfies the optimality condition — PMP.

e The wavefront is a set of all points in configuration space M,
reachable by all the extremal trajectories in a fixed time T'.




Model of a Car on a Plane

¢ =u1X1(q) +uxX2(q),



Set of Admissible Controls

Uy Uy

Sachkov (2010) Duits (2018)



Statement of the Problem

Consider the following control system (dynamics):

P

T = u1 COSH,
{ Yy = 1wuySiné,
0= uy,

(z,y,0) = q € SEx = M,
u%—l—u%ﬁ 1, u;1 > 0.

By given qg, q1 € M we aim to find the controls u1(t), us(t) such
that the corresponding trajectory ~ : [0,T] — M transfers the
system from qg to g1 by minimal time

v(0) =q0, ~(T) =q1, T — min.

Here u; are L°°([0,T],R), and ~ is a Lipschitzian curve on M.



Controllability of the System

Theorem. In the time minimization problem for the left-invariant
control system on the group of motions of a plane with admis-
Sible control in a semicircle, there always exists an optimal tra-
jectory that transfers the system from an arbitrary given initial
configuration to an arbitrary given final configuration.



Pontryagin Maximum Principle (PMP)

e A necessary condition of optimality is given by PMP.
e Denote (p1,po,p3) € T*M. The Pontryagin function

Hy,=p1V1— u? Ccos 6 +poV1-— u?sin @ + p3u.

o Let (u(t),q(t)), t € [0,T] be an optimal process. Then
OH, . OHy

o " 1T Top

- Hamiltonian system p = —

- Maximum condition

H = uen['l_afl] Hy(p(t),q(t)) € {0, 1}.

e Left-invariant Hamiltonians

hi = pj1cosf + posinf, ho =p3, hz=piSinfd — poCosh.



Abnormal Extremal Controls and Trajectories

Theorem. Abnormal extremal control exists when A1 < 0 and
has a form uy1(t) =0, us(t) € I = [—1,1] — arbitrary L ([0,T],1)
function that satisfies the condition

t
h1ocosUs>(t) — hzgsinUs(t) < 0, where Ux(t) = /o us (7)dr,

for all ¢t € [0,T].

Theorem. Abnormal extremal trajectoriy has a form

z(t) =0, y@) =0, 0(t)="Ux(®).



h3 "

First Integrals of the

The Hamiltonian

|

|h2|7 for hl < Oa
Jh?+h3, for hy >0,

Hamiltonian System

The Casimir

E = h% + h3.
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The Hamiltonian system of PMP

For hip < O
(=0, xz(tg) = =0, :
. . h1 = —soh3, hi1(tg) = hio,
For hip > 0O
& = hycosd, xz(tg) =zo, [ h1 = —hohs, hi(to) = hio,
y=hysin6, y(to) =yo, | ha = hihz,  h2(lo) = hoo,
0 = ho, 0(to) = 0o, | hz =hah1, ha(to) = h3zo.

(1)

(2)



Dynamics of Normal Hamiltonian System

/
/
#

hy >0 - T = 1
Phase portrait on the level surface H = 1 of the Hamiltonian.



Normal Extremal Controls

Theorem. A normal extremal control (uq(t),us(t)) is uniquely
determined by h{y € (—o00,1], s95€ {-1,1}, hY,eR.

The function uq () is given by uq(t) = \/1 — u%(t), t € [0,T].

The function us(t) = ho(t) is defined on time intervals formed
by splitting the interval ¢t € [0,T] by instances

to € {0=1t3,t§,43,..., T},
where the switching point t} depends on the state
ho = (hig"ss50 > h50").
achieved at t%‘l, and is determined by the recurrent formula

to(hl 1) = min{t > t5 1 [he(t, b 1) =0}, kg = h(th(hg D), hg ).



Here h(t, hi) = (hi(t, hb), ho(t, hb), ha(t, hb)) = vert (etHh'L)
the solution of the vertical part of the Hamiltonian system of
PMP with the initial value R}, for time ¢ > t}, which has a form

(1), for (hYy < 0)V (h}y=0Ashyssy > 0),
(2), for (h >0)V (hzo = 0 A shgshyg < 0),

where si, = { sign hy, for hiy # 0,



Explicit Parametrization of the Extremals

For hi1g < O solution to the vertical part is given by

hl(t) = hio COS(t — to) — so h3p sin(t — tO),
ho(t) = hoo,
h3(t) = h3pcos(t —tg) + sp h1gsin(t — tg).

Solution to the horizontal part is given by

r(t) =z, y(t) =yo, 0(t) =00+ s2(t—tg).

The instance of switching is determined by

t1 —to = arg (—soh3p0 — ih10) € (0, 7).

A corresponding motion of the car is an in-place rotation.



Explicit Parametrization of the Extremals
Let M = E—2=h%+h3-2.

The vertical part is reduced to the Cauchy problem
ho + Mho + 2h3 = 0,

with the initial conditions

ho(to) = hoo, ha(tg) = h1ghag = \/1 — h3q h3o.

00 s3F(ayk), for £ > 1,

—5233% + soF(a, k), for E <1,

Let £(t) = {

(87
where s» = sign hog, s3 = sign hzg, F(a, k) = da .
s = sign hog, s3 = sign hzg, F(a, k) g\/l_kQSinQG




An explicit solution to the Cauchy problem is given by

ho(t) = —scn (&(1), k),
where
1

1
k= — = :
NV > >
E \/1—h20‘|‘h30

¢ = S3, for £ > 1,
| —so, for E<1.

The remaining components of the momentum covector are

h(t) = sn (€0, k), hs(t) = hso+ (dn (£(),k) — dn (£(t0), k).

The car is moving along the sub-Riemannian geodesics in SE»
whose planar projections do not have cusps.



Extremal Trajectories

e T he extremal trajectories are obtained by integration
t ¢

uy(r) cosO(r)dr, y(t)Z/ul(T) sin6(r) dr, 9(t)=/u2(7') dr.
0 0
e EXxplicit parametrization by Jacobi elliptic functions

x(t) =

O—_




Optimality of Extremal Trajectories

An optimal trajectory does not have internal turn points.

Proof by contradiction. For ~ : [0,T] — SE»> with an internal
turn point there exists a shortcut ~g : [0,Tp] — SE-s.

To = 0o +1lac + 101] < T.



Structure of Optimal Synthesis

Theorem. Any optimal trajectory has a form

te | [0,t8) [t td) [t5, T
x(t) 0 xs(t) xq
y(t) | O ys(t) Y1
O(t) | sit 0s(t)  0s(t) + sa(t — ),
where 0 < t§ < t2 < T — control switching points, the signs

s; = x1 are determined by initial values, the trajectory
(zs(t),ys(t),0s(t)) =: gs(2),

¢s(t5) = (0,0,05), qs(t3) = (z1,v1,65)

IS a sub-Riemannian length minimizer in SE»> that does not have
internal cusps in its planar projection (i.e. for any t € (¢§,t3) the
inequality @s(¢)2 4+ ys(t)2 > 0 holds).



Wavefront along Optimal Trajectories

Wavefronts along optimal trajectories for T' = g, T, %”, 2T.

Duits et.al. Optimal Paths for Variants of the 2D and 3D Reeds—Shepp Car
with Applications in Image Analysis, JMIV, 2018.



Conclusion

e Solution to the left-invariant control problem, with the set of
admissible controls containing zero on the boundary.

e Proof of existence of optimal control

e EXxplicit formulas for extremal controls and trajectories

e Partial analysis of optimality

e Structure of optimal synthesis



Thank you for your attention!



