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Perception of Visual Information by Human Brain
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3D Model of the Primary Visual Cortex V1
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Replicated from R. Duits, U. Boscain, F. Rossi, Y. Sachkov,
Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2), JMIV, 2013.



3D Model of the Primary Visual Cortex

e D.H. Hubel and T.N. Wiesel, Receptive fields of single neurones in the
cat’s striate cortex, 1959. Nobel prize in 1981.

e Sub-Riemanian structures in neurogeometry of the vision:

— J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian
contact structure, 2003. (Heisenberg group.)

— G. Citti and A. Sarti, A Cortical Based Model of Perceptual Com-
pletion in the Roto-Translation Space, 2006. (SE(2) group.)

e Variational principle: recovered arc has minimal length in the space (z,y, 0):

/ \/52 (42 4+ 42) 4+ 62dt — min, under constraint § = arg (& +1i 9)
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SE(2): Group of Roto-translations of a Plane

The group of Euclidean motions (rototranslations) of the plane:
cosf —sinf =z
SE(2) = sinf cosf y ||0€S z,yeR %Ri’y X Sg.
0 0 1

Associated Lie algebra se(2) = Tiqg SE(2) = span(Ay, Ag, Ag),

0 0 1 0 -1 0 0 0 0
Ai=| 00 0], A,=[1 0 0|, A43=[0 0 1 ].
0 0 0 0 0 0 0 0 0

Lie algebra of left-invariant vector fields L = span(X;, Xo, X3)
X1(q) = qA1, Xao(q) =qA2, Xs(q) =qAs, q€SE(2).
Via the isomorphism SE(2) = RZ | x Sj

X) ~ Ay =cos00, +sin00,, Xo~ Ay =0y, X3~ A3 = —sind0, + cosp0,.
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Left-invariant Sub-Riemannian Problem on SE(2)

P L e —
Y(t) = ur(t) Aul, ) +u2(t) Azl
Ay = cos60, +sin60,, A =0y,
v(0)=1d, (1) =y,

v(t) € SEQ2),  (ui(t),uz(t)) €R®

e |. Moiseev, Yu. L. Sachkov, Maxwell strata in sub-Riemannian
problem on the group of motions of a plane, (2010)

 Yu. L. Sachkov, Conjugate and cut time in sub-Riemannian
problem on the group of motions of a plane, (2010)

 Yu. L. Sachkov, Cut locus and optimal synthesis in the sub-
Riemannian problem on the group of motions of a plane, (2011)



Anthropomorphic Image Reconstruction

By given binary or grayscale image represented as series of isophotes
(level lines of brightness) with some corrupted regions to restore the
image in a natural (for human eye) way.
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[1] A. Mashtakov, A. Ardentov, Yu. Sachkov, Parallel Algorithm and Software
for Image Inpainting via Sub-Riemannian Minimizers on the Group of Roto-
translations, NMTMA, 2013.



4D Model of the Primary Visual Cortex

e S. Zucker, The computational connection in vision: Early orientation se-
lection, 1986. (Hypothesis of detectors of curvatre in V1).

e J. Petitot, Landmarks for Neurogeometry. In: Citti G., Sarti A. (eds)
Neuromathematics of Vision, 2014. (Sub-Riemannian model in space of
positions, orienttions and curvatures).

Giovanna Citti
Alessandro Sarti Editors

Neuromathematics
RN

@ Springer




4D Model of the Primary Visual Cortex

Configuration of a neuron — position, orientation and curvature
M =SE(2) x R=RZ  x S; xRy

Sub-Riemannian (SR) structure (M, A, G):

distribution A = span(Ay,.A4s),

Ay = cos00, +sin00, + kOy, Az = Ok
inner product G = w! @ w! + w2 @w?, (W', A;) = .
v:[0,T] — M — horizontal (i.e. admissible) curve if
Y(t) € Ay for ae. t € [0,T7.

SR minimizers are horizontal curves v that have minimum length

10) = | /Gl (30),3(0) dt = min.

SR geodesics are curves whose short arcs are SR minimizers.



Optimal Control Formulation

Y(t) = ua(8) Al +uz(t) Azl
A = (30398 +sin 00, + kOp, Az = Ok,

— 4o, f)/(T) = {1,

/ \/ul t) dt — min,

(1) = (2(t),y(t), 0 ) € M =SE(2) xR, (u1(t),us(t)) € R®

Remark 1. Due to invariance under parallel translations and rotations in
the (z,y) plane, without loss of generality, we can reduce the problem for an
arbitrary qo = (xo, Yo, 0o, ko) to the case gy = (0,0, 0, kg).

Remark 2. By virtue of Cauchy-Schwarz inequality the problem of mini-
mizing the length is equivalent to the problem of minimizing the action

dt — min .

) + a3
J—/ 2
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Existence of Optimal Control

e For any qo, ¢1 € M there exists a horizontal curve =, connecting q¢ to q;.
The system is completely controllable by Chow-Rashevsky theorem.

As = [Ah/lz] = —0yp, Ay= [«41,«43] — —sin 00, + cos Qay
det(Aq,...,A4) =1

e Existence of optimal control by Filippov theorem.

Theorem.
For any qg, g1 € M there exists an optimal trajectory connecting gy to q;.
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Pontryagin Maximum Principle

e A necessay optimality condition — Pontryagin maximum principle (PMP).
e Pontryagin function

u%+u%

h, = (p,u1 A1 +uzAsz) + v 5

peT*M, ve{-1,0}.

o If (u(t),q(t)), t € [0,T], is an optimal process then

OhY OhY
1. the Hamiltonian system p = ——2%, ¢ = —2;
dq dp
2. the maximum condition h;(t) (p(t),q(t)) = m?,R:;: hY (p(t),q(t));
U e

3. the nontriviality condition (p(t),v) # (0,0) Vt € [0,T].
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Abnormal Case of Pontryagin Maximum Principle

o Let h; = (p, A;):
hi =acos@ +bsinf + ck, hy =d.

e The Pontryagin function hg — u1hy + usho is unbounded for h% + h% = 0.
e The maximum condition implies h; = hy = 0.

e Let p=(a,b,c,d). The Hamiltonian system implies

a=0, b=0, ¢ = —uy(—asinf + bcosb), d= —ujc.

e The maximum condition with the Hamiltonian system imply u; = 0.

Theorem. Abnormal extremal trajectories have the form

v(t) = (O,O,O,‘/O ’UQ(T)dT) , o ug(T) = £1.

Remark. The optimal abnormal trajectories have the form ~(¢) = (0, 0,0, +t¢).
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Normal Case of Pontryagin Maximum Principle

Let hz = (p, ./43>

hi =acosf +bsinf + ck, hy =d.

The Pontryagin function h; ! = uihy + ushg — (u% + u%) /2.

The maximum condition implies u; = hq1, us = hs.

Let p = (a,b, c,d). Veritical part of the Hamiltonian system

4

a=0,

b=0,

¢ = —(bcos —asinb)(kc+ acos + bsinb),

The Hamiltonian system

4

\

T = hycos?,

y — hl Sin9,
0 = hik,
k= ho,

\ d = —c(ck + acosf + bsin §),

hi = —hghs,
hy = hihs,
]:2’3 — h1h43

hy = —khy (khs + hy).
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Normal Case of Pontryagin Maximum Principle

e SR arc-length parameterization u% + u3 = 1.
e The Hamiltonian H = (h% + h3)/2 =1/2.

e Introduce the polar angle a« € S':  h; =cosa, hy =sina.

Theorem. Naturally parameterized normal extremal trajectories are
solutions to the system

(& = cosacosb, )

o
) = cosasin @, T

0 = k cos | "3 = hacosa,
: ’ | ha = —kcosa(khs + cosa).

N

|k =sina,
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Normal Case of Pontryagin Maximum Principle

e SR arc-length parameterization u% + u3 = 1.
e The Hamiltonian H = (h% + h3)/2 = 1/2.

e Introduce the polar angle a« € S':  h; =cosa, hy =sina.

Theorem. Naturally parameterized normal extremal trajectories are
solutions to the system

(& = cosacosb, )

. . o= h3a
Yy = cosasinf,

N

{ hs = hycosa,

0 = k cos o,
: | ha = —kcosa(khs + cosa).

|k =sina,

Can we solve this system analytically?
The question of integrability of the system.
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Liouville Integrability of Hamiltonian Systems

Hamiltonian system on a symplectic manifold N, dim N = 2d, is said to be Li-
ouville integrable if it has d functionally independent first integrals in involution,
i.e., if there exist functions fi = H, fo,..., fq € C°°(N), constant on the tra-
jectories of the system and such that {f;, f;} =0,4¢,5=1,...,d, and f1,..., fq
are functionally independent on an open everywhere dense subset of V.

Examples of Nonintegrable SR problems

e Montgomery, R., Shapiro, M., and Stolin, A., A Nonintegrable Sub-Riemannian
Geodesic Flow on a Carnot Group, J. Dynam. Control Systems, 1997.

e Bizyaev, I.A., Borisov, A.V., Kilin, A.A. et al. Integrability and non-
integrability of sub-Riemannian geodesic flows on Carnot groups, Regul.
Chaot. Dyn., 2016.

e L. V. Lokutsievskiy, Yu. L. Sachkov, Liouville integrability of sub-Riemannian
problems on Carnot groups of step 4 or greater, Mat. Sb., 2018.
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First Integrals in the 4D Model of V1

The Hamiltonian system

(& = hycosb, ([ h1 = —hshs,
) §=hisinb, ) hy = hahs,
0 = hik, hs = hihy,
| k= hy, \ hy = —khy(khs + hy).

has the following first independent integrals:

h24h2

1. the Hamiltonian H = —5-2,

2. a = (hy + khs)cosf — hysin,
3. b= hycosO+ (h1 + khs)sin 0.

To prove Liouville integrability we need to find one more
independent first integral.
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Numerical Analysis of Liouville Integrability

Poincare map

Transversal submanifold

Periodic trajectory

Initial value near
the periodic one
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Numerical Analysis of Liouville Integrability

(G = h/37
hs = hy cos Q,
hy = —k cos a(khs + cos o),

.k =sina.

e One-parametric family of periodic trajectories

sin(t h3(0))

a(t) = 5 4 tha(0), ha(t) = ha(0), ha(t) =0, k(t) =

2 h3(0)

e The period equals T' = |+ (0)|
e Transversal submanifold £ = 0.

e 4 random initial values hgy from a small neighborhood of the value
a(0) = 5, h3(0) = 1, hy(0) = 0 have been chosen.

e The Poincare map has been computed for 1000 iterations.



Numerical Analysis of Liouville Integrability

Numerical simulations show Liouville integrability and
existance of one more independent first integral.
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Conclusion

The 4-dimensional SR model of V1 is considered

Proof of controllability and existence of optimal control
Application of PMP

Parameterization of abnormal geodesics

The Hamiltonian system for normal geodesics

Numerical investigation of Liouville integrability of normal
geodesic flow
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Thank you for your attention!
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