Liouville integrability in a fourdimensional model of the visual cortex

Alexey Mashtakov

Ailamazyan Program System Institute of RAS

Based on joint work with I. Galyaev

The mathematics of vision: from cortical-inspired modelling to perception International Conference on Mathematical Neuroscience Digital Edition, June 30, 2021

Perception of Visual Information by Human Brain

3D Model of the Primary Visual Cortex V1

Replicated from R. Duits, U. Boscain, F. Rossi, Y. Sachkov, Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2), JMIV, 2013.

3D Model of the Primary Visual Cortex

- D.H. Hubel and T.N. Wiesel, Receptive fields of single neurones in the cat's striate cortex, 1959. Nobel prize in 1981.
- Sub-Riemanian structures in neurogeometry of the vision:
 - J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure, 2003. (Heisenberg group.)
 - G. Citti and A. Sarti, A Cortical Based Model of Perceptual Completion in the Roto-Translation Space, 2006. (SE(2) group.)
- Variational principle: recovered arc has minimal length in the space (x, y, θ) :

SE(2): Group of Roto-translations of a Plane

The group of Euclidean motions (rototranslations) of the plane:

$$\operatorname{SE}(2) = \left\{ \left(\begin{array}{ccc} \cos\theta & -\sin\theta & x \\ \sin\theta & \cos\theta & y \\ 0 & 0 & 1 \end{array} \right) \mid \theta \in S^1, \ x, y \in \mathbb{R} \right\} \cong \mathbb{R}^2_{x,y} \rtimes S^1_{\theta}.$$

Associated Lie algebra $se(2) = T_{Id} SE(2) = span(A_1, A_2, A_3),$

$$A_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Lie algebra of left-invariant vector fields $L = span(X_1, X_2, X_3)$

$$X_1(q) = qA_1, \quad X_2(q) = qA_2, \quad X_3(q) = qA_3, \quad q \in SE(2).$$

Via the isomorphism $\operatorname{SE}(2) \cong \mathbb{R}^2_{x,y} \rtimes S^1_{\theta}$

 $X_1 \sim \mathcal{A}_1 = \cos \theta \partial_x + \sin \theta \partial_y, \quad X_2 \sim \mathcal{A}_2 = \partial_\theta, \quad X_3 \sim \mathcal{A}_3 = -\sin \theta \partial_x + \cos_\theta \partial_y.$

Left-invariant Sub-Riemannian Problem on SE(2)

$$\dot{\gamma}(t) = u_1(t) \ \mathcal{A}_1|_{\gamma(t)} + u_2(t) \ \mathcal{A}_2|_{\gamma(t)},$$

$$\mathcal{A}_1 = \cos\theta\partial_x + \sin\theta\partial_y, \quad \mathcal{A}_2 = \partial_\theta,$$

$$\gamma(0) = \mathrm{Id}, \qquad \gamma(T) = g,$$

$$l(\gamma) = \int_0^T \sqrt{u_1^2(t) + u_2^2(t)} \ \mathrm{d}t \to \min,$$

$$\gamma(t) \in \mathrm{SE}(2), \quad (u_1(t), u_2(t)) \in \mathbb{R}^2$$

- I. Moiseev, Yu. L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane, (2010)
- Yu. L. Sachkov, Conjugate and cut time in sub-Riemannian problem on the group of motions of a plane, (2010)
- Yu. L. Sachkov, Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane, (2011)

Anthropomorphic Image Reconstruction

By given binary or grayscale image represented as series of isophotes (level lines of brightness) with some corrupted regions to restore the image in a natural (for human eye) way.

Input (Corrupted) Image Input Image with Detected Restored Image Corrupted Regions

[1] A. Mashtakov, A. Ardentov, Yu. Sachkov, *Parallel Algorithm and Software* for Image Inpainting via Sub-Riemannian Minimizers on the Group of Rototranslations, NMTMA, 2013.

4D Model of the Primary Visual Cortex

- S. Zucker, The computational connection in vision: Early orientation selection, 1986. (Hypothesis of detectors of curvatre in V1).
- J. Petitot, Landmarks for Neurogeometry. In: Citti G., Sarti A. (eds) Neuromathematics of Vision, 2014. (Sub-Riemannian model in space of positions, orienttions and curvatures).

4D Model of the Primary Visual Cortex

- Configuration of a neuron position, orientation and curvature $M = \operatorname{SE}(2) \times \mathbb{R} = \mathbb{R}^2_{x,y} \times S^1_{\theta} \times \mathbb{R}_k$
- Sub-Riemannian (SR) structure (M, Δ, \mathcal{G}) :

distribution $\Delta = \operatorname{span}(\mathcal{A}_1, \mathcal{A}_2),$

$$\mathcal{A}_1 = \cos\theta \partial_x + \sin\theta \partial_y + k \partial_\theta, \quad \mathcal{A}_2 = \partial_k$$

inner product $\mathcal{G} = \omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2$, $\langle \omega^i, \mathcal{A}_j \rangle = \delta_i^j$.

• $\gamma: [0,T] \to M$ – horizontal (i.e. admissible) curve if

$$\dot{\gamma}(t) \in \Delta_{\gamma(t)}$$
 for a.e. $t \in [0, T]$.

SR minimizers are horizontal curves γ that have minimum length

$$l(\gamma) = \int_0^T \sqrt{\mathcal{G}|_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} \, dt \to \min \, dt$$

• SR geodesics are curves whose short arcs are SR minimizers.

Optimal Control Formulation

$$\dot{\gamma}(t) = u_1(t) \ \mathcal{A}_1|_{\gamma(t)} + u_2(t) \ \mathcal{A}_2|_{\gamma(t)},$$
$$\mathcal{A}_1 = \cos\theta\partial_x + \sin\theta\partial_y + k\partial_\theta, \quad \mathcal{A}_2 = \partial_k,$$
$$\gamma(0) = q_0, \qquad \gamma(T) = q_1,$$
$$l(\gamma) = \int_0^T \sqrt{u_1^2(t) + u_2^2(t)} \ dt \to \min,$$
$$\gamma(t) = (x(t), y(t), \theta(t), k(t)) \in M = \operatorname{SE}(2) \times \mathbb{R}, \quad (u_1(t), u_2(t)) \in \mathbb{R}^2$$

Remark 1. Due to invariance under parallel translations and rotations in the (x, y) plane, without loss of generality, we can reduce the problem for an arbitrary $q_0 = (x_0, y_0, \theta_0, k_0)$ to the case $q_0 = (0, 0, 0, k_0)$.

Remark 2. By virtue of Cauchy-Schwarz inequality the problem of minimizing the length is equivalent to the problem of minimizing the action

$$J = \int_{0}^{T} \frac{u_1^2(t) + u_2^2(t)}{2} \, dt \to \min.$$

• For any $q_0, q_1 \in M$ there exists a horizontal curve γ , connecting q_0 to q_1 . The system is completely controllable by Chow-Rashevsky theorem.

$$\mathcal{A}_3 = [\mathcal{A}_1, \mathcal{A}_2] = -\partial_{\theta}, \quad \mathcal{A}_4 = [\mathcal{A}_1, \mathcal{A}_3] = -\sin\theta\partial_x + \cos\theta\partial_y$$
$$\det(\mathcal{A}_1, \dots, \mathcal{A}_4) = 1$$

• Existence of optimal control by Filippov theorem.

Theorem.

For any $q_0, q_1 \in M$ there exists an optimal trajectory connecting q_0 to q_1 .

- $\bullet~{\rm A}~{\rm necessay}~{\rm optimality}~{\rm condition}-{\rm Pontryagin}~{\rm maximum}~{\rm principle}~({\rm PMP}).$
- Pontryagin function

$$h_u^{\nu} = \langle p, u_1 \mathcal{A}_1 + u_2 \mathcal{A}_2 \rangle + \nu \frac{u_1^2 + u_2^2}{2}, \quad p \in T^*M, \ \nu \in \{-1, 0\}.$$

- If $(u(t), q(t)), t \in [0, T]$, is an optimal process then
 - 1. the Hamiltonian system $\dot{p} = -\frac{\partial h_u^{\nu}}{\partial q}, \ \dot{q} = \frac{\partial h_u^{\nu}}{\partial p};$
 - 2. the maximum condition $h_{u(t)}^{\nu}(p(t), q(t)) = \max_{u \in \mathbb{R}^2} h_u^{\nu}(p(t), q(t));$
 - 3. the nontriviality condition $(p(t), \nu) \neq (0, 0) \ \forall t \in [0, T].$

Abnormal Case of Pontryagin Maximum Principle

• Let $h_i = \langle p, \mathcal{A}_i \rangle$:

$$h_1 = a\cos\theta + b\sin\theta + ck, \quad h_2 = d.$$

- The Pontryagin function $h_u^0 = u_1 h_1 + u_2 h_2$ is unbounded for $h_1^2 + h_2^2 \neq 0$.
- The maximum condition implies $h_1 = h_2 \equiv 0$.
- Let p = (a, b, c, d). The Hamiltonian system implies

$$\dot{a} = 0, \quad \dot{b} = 0, \quad \dot{c} = -u_1(-a\sin\theta + b\cos\theta), \quad \dot{d} = -u_1c.$$

• The maximum condition with the Hamiltonian system imply $u_1 \equiv 0$. **Theorem.** Abnormal extremal trajectories have the form

$$\gamma(t) = \left(0, 0, 0, \int_0^T u_2(\tau) d\tau\right), \quad u_2(\tau) = \pm 1.$$

Remark. The optimal abnormal trajectories have the form $\gamma(t) = (0, 0, 0, \pm t)$.

Normal Case of Pontryagin Maximum Principle

- Let $h_i = \langle p, \mathcal{A}_i \rangle$: $h_1 = a \cos \theta + b \sin \theta + ck, \quad h_2 = d.$
- The Pontryagin function $h_u^{-1} = u_1 h_1 + u_2 h_2 (u_1^2 + u_2^2)/2.$
- The maximum condition implies $u_1 = h_1, u_2 = h_2$.
- Let p = (a, b, c, d). Veritical part of the Hamiltonian system

$$\begin{cases} \dot{a} = 0, \\ \dot{b} = 0, \\ \dot{c} = -(b\cos\theta - a\sin\theta)(kc + a\cos\theta + b\sin\theta), \\ \dot{d} = -c(ck + a\cos\theta + b\sin\theta), \end{cases}$$

• The Hamiltonian system

$$\begin{cases} \dot{x} = h_1 \cos \theta, \\ \dot{y} = h_1 \sin \theta, \\ \dot{\theta} = h_1 k, \\ \dot{k} = h_2, \end{cases} \begin{cases} \dot{h}_1 = -h_2 h_3, \\ \dot{h}_2 = h_1 h_3, \\ \dot{h}_3 = h_1 h_4, \\ \dot{h}_4 = -k h_1 (k h_3 + h_1). \end{cases}$$
¹⁴

Normal Case of Pontryagin Maximum Principle

- SR arc-length parameterization $u_1^2 + u_2^2 = 1$.
- The Hamiltonian $H = (h_1^2 + h_2^2)/2 = 1/2$.
- Introduce the polar angle $\alpha \in S^1$: $h_1 = \cos \alpha$, $h_2 = \sin \alpha$.

Theorem. Naturally parameterized normal extremal trajectories are solutions to the system

$$\begin{cases} \dot{x} = \cos \alpha \cos \theta, \\ \dot{y} = \cos \alpha \sin \theta, \\ \dot{\theta} = k \cos \alpha, \\ \dot{k} = \sin \alpha, \end{cases} \begin{cases} \dot{\alpha} = h_3, \\ \dot{h}_3 = h_4 \cos \alpha, \\ \dot{h}_4 = -k \cos \alpha (kh_3 + \cos \alpha). \end{cases}$$

Normal Case of Pontryagin Maximum Principle

- SR arc-length parameterization $u_1^2 + u_2^2 = 1$.
- The Hamiltonian $H = (h_1^2 + h_2^2)/2 = 1/2$.
- Introduce the polar angle $\alpha \in S^1$: $h_1 = \cos \alpha$, $h_2 = \sin \alpha$.

Theorem. Naturally parameterized normal extremal trajectories are solutions to the system

$$\begin{cases} \dot{x} = \cos \alpha \cos \theta, \\ \dot{y} = \cos \alpha \sin \theta, \\ \dot{\theta} = k \cos \alpha, \\ \dot{k} = \sin \alpha, \end{cases} \begin{cases} \dot{\alpha} = h_3, \\ \dot{h}_3 = h_4 \cos \alpha, \\ \dot{h}_4 = -k \cos \alpha (kh_3 + \cos \alpha). \end{cases}$$

Can we solve this system analytically? The question of integrability of the system.

Liouville Integrability of Hamiltonian Systems

Hamiltonian system on a symplectic manifold N, dim N = 2d, is said to be Liouville integrable if it has d functionally independent first integrals in involution, i.e., if there exist functions $f_1 = H, f_2, \ldots, f_d \in C^{\infty}(N)$, constant on the trajectories of the system and such that $\{f_i, f_j\} = 0, i, j = 1, \ldots, d$, and f_1, \ldots, f_d are functionally independent on an open everywhere dense subset of N.

Examples of Nonintegrable SR problems

- Montgomery, R., Shapiro, M., and Stolin, A., A Nonintegrable Sub-Riemannian Geodesic Flow on a Carnot Group, J. Dynam. Control Systems, 1997.
- Bizyaev, I.A., Borisov, A.V., Kilin, A.A. et al. Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups, Regul. Chaot. Dyn., 2016.
- L. V. Lokutsievskiy, Yu. L. Sachkov, Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater, Mat. Sb., 2018.

First Integrals in the 4D Model of V1

The Hamiltonian system

$$\begin{cases} \dot{x} = h_1 \cos \theta, \\ \dot{y} = h_1 \sin \theta, \\ \dot{\theta} = h_1 k, \\ \dot{k} = h_2, \end{cases} \begin{cases} \dot{h}_1 = -h_2 h_3, \\ \dot{h}_2 = h_1 h_3, \\ \dot{h}_3 = h_1 h_4, \\ \dot{h}_4 = -k h_1 (k h_3 + h_1). \end{cases}$$

has the following first independent integrals:

1. the Hamiltonian $H = \frac{h_1^2 + h_2^2}{2}$,

2.
$$a = (h_1 + kh_3)\cos\theta - h_4\sin\theta,$$

3.
$$b = h_4 \cos \theta + (h_1 + kh_3) \sin \theta$$
.

To prove Liouville integrability we need to find one more independent first integral.

Numerical Analysis of Liouville Integrability

Numerical Analysis of Liouville Integrability

$$\dot{\alpha} = h_3,$$

$$\dot{h}_3 = h_4 \cos \alpha,$$

$$\dot{h}_4 = -k \cos \alpha (kh_3 + \cos \alpha),$$

$$\dot{k} = \sin \alpha.$$

• One-parametric family of periodic trajectories

$$\alpha(t) = \frac{\pi}{2} + t h_3(0), \ h_3(t) = h_3(0), \ h_4(t) = 0, \ k(t) = \frac{\sin(t h_3(0))}{h_3(0)}$$

- The period equals $T = \left|\frac{2\pi}{h_3(0)}\right|$.
- Transversal submanifold k = 0.
- 4 random initial values h_0 from a small neighborhood of the value $\alpha(0) = \frac{\pi}{2}, h_3(0) = 1, h_4(0) = 0$ have been chosen.
- The Poincare map has been computed for 1000 iterations.

Numerical Analysis of Liouville Integrability

Numerical simulations show Liouville integrability and existance of one more independent first integral.

Conclusion

- The 4-dimensional SR model of V1 is considered
- Proof of controllability and existence of optimal control
- Application of PMP
- Parameterization of abnormal geodesics
- The Hamiltonian system for normal geodesics
- Numerical investigation of Liouville integrability of normal geodesic flow

Thank you for your attention!