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Motivation: Applications in robotics and image processing

e Motion planning problem for a car-like mobile robot that can
move forward and rotate in place

e Extraction of salient curves in images. E.g. vessel tracking on
images of human retina.




Preliminaries

e T he group of motions of a plane SEr, = M ~ R%y X 391 S q:

aq' = ((2,),6) (@, 4),6') = (Ro(2',y) + (2,9),6 +¢').

where Ry is a counter-clockwise planar rotation on angle 6.
The Lie algebra se, = span(Xy, Xo, X3), where

0 0 0 0
X1 =c0s0— +sinf0—, X, =0y, X3= —sinf— 4 cosH—.
1 ox + oy 2 ¢ 3 ox T oy

e By given a dynamics on M, an extremal trajectory is called a
trajectory that satisfies the optimality condition — PMP.

e The wavefront is a set of all points in configuration space M,
reachable by all the extremal trajectories in a fixed time T'.




Model of a Car on a Plane

¢ =u1X1(q) +uxX2(q),



Set of Admissible Controls

Uy Uy

Sachkov (2010) Duits (2018)



Statement of the Problem

Consider the following control system (dynamics):

P

T = u1 COSH,
{ Yy = 1wuySiné,
0= uy,

(z,y,0) = q € SEx = M,
u%—l—u%ﬁ 1, u;1 > 0.

By given qg, q1 € M we aim to find the controls u1(t), us(t) such
that the corresponding trajectory ~ : [0,T] — M transfers the
system from qg to g1 by minimal time

v(0) =q0, ~(T) =q1, T — min.

Here u; are L°°([0,T],R), and ~ is a Lipschitzian curve on M.



Controllability of the System

Theorem. In the time minimization problem for the left-invariant
control system on the group of motions of a plane with admis-
sible control in a semicircle, there always exists an optimal tra-
jectory that transfers the system from an arbitrary given initial
configuration to an arbitrary given final configuration.



Pontryagin Maximum Principle (PMP)

e A necessary condition of optimality is given by PMP.
e Denote (p1,po,p3) € T*M. The Pontryagin function

Hy,=p1V1— u? Ccos 6 +poV1-— u?sin @ + p3u.

o Let (u(t),q(t)), t € [0,T] be an optimal process. Then
OH, . OHy

o " 1T Top

- Hamiltonian system p = —

- Maximum condition

H = uen['l_afl] Hy(p(t),q(t)) € {0, 1}.

e Left-invariant Hamiltonians

hi = pj1cosf + posinf, ho =p3, hz=piSinfd — poCosh.



Abnormal Extremal Controls and Trajectories

Theorem. Abnormal extremal control exists when A1 < 0 and
has a form u1(t) =0, ux(t) € I = [—1,1] — arbitrary L ([0,T],1)
function that satisfies the condition

t
h1ocosUs>(t) — hzgsinUs(t) < 0, where Ux(t) = /o us (7)dr,

for all ¢t € [0,T].

Theorem. Abnormal extremal trajectoriy has a form

x(t) =0, y() =0, 06(t)=sot.



h3 "

First Integrals of the

The Hamiltonian

|

|h2|7 for hl < Oa
Jh?+h3, for hy >0,

Hamiltonian System

The Casimir

E = h% + h3.



Dynamics of Normal Hamiltonian System

/
/
#

hy >0 - T = 1
Phase portrait on the level surface H = 1 of the Hamiltonian.



Normal Extremal Controls

Theorem. A normal extremal control (u1(t),us(t)) is uniquely
determined by hig € (—o0, 1], so e {—-1,1}, hzg€R.

Let E=h2, 4+ h2., h 72 for h10 =0,
e — , p—
10 77300 20 32\/1 — h%y, for hig > 0;
or — sign h1p, for hig #= 0,
1= at=1p) sign h30, for th = 0, h30 75 O;
<0 — ) Signhszo, for hzp 7 O,
37 S92, for h30 = 0;

o= (s1+1)/2¢€{0,1}.



In the general case E ¢ {0,1} the control uy(t) is defined on
time intervals formed by splitting the ray t > 0 by instances
to € {0 =18,t3,t3,...} as

( hoo € [—1, 1], for t = to,

up(t) =4 —s5 7en (§-0(0),k), noute @7 7T,
Cup (77TN) € {=1,1}, npute (g T T,

: _ —_1
where j € {2n — 1|n € N}, k_\/E'

The extremal control uwq(t) is given by u-s(t) = \/1 — u%(t).



Here f'j_a(t) = % (t — té_a) — 33 F(O{y —or k),

aj_s = arg ( sk (u2(t‘7 )+ 1\/1 — uz(tj U))) e (—m,m],

[ s9, for j —o =0,
0 : _
J-o _ ) 5283, for ) —o =1,
3 —s} 772, for E > 1,
4772, for E< 1.



Extremal Trajectories

e T he extremal trajectories are obtained by integration
t ¢

uy(r) cosO(r)dr, y(t)Z/ul(T) sin6(r) dr, 9(t)=/u2(7') dr.
0 0
e EXxplicit parametrization by Jacobi elliptic functions

x(t) =

O—_




Optimality of Extremal Trajectories

An optimal trajectory does not have internal turn points.

Proof by contradiction. For ~ : [0,T] — SE»> with an internal
turn point there exists a shortcut ~g : [0,Tp] — SE-s.

To = 0o +1lac + 101] < T.



Structure of Optimal Synthesis

Theorem. Any optimal trajectory has a form

te | [0,¢5) [t§,t5) [t5, 7]
x (1) 0 xs(t) 1
y(t) 0 ys(t) Y1
0(t) | sit  0s(t)  0s(t3) + so(t — t3),

where 0 < t§ < t3 < T — control switching points, the signs
s; = x1 are determined by initial values, the trajectory

(zs(t),ys(t),0s(t)) =: qs(t),

¢s(t5) = (0,0,65), qs(t3) = (21,v1,65)

IS a sub-Riemannian length minimizer in SE»> that does not have
internal cusps in its planar projection (i.e. for any t € (¢§,t3) the
inequality #s(¢)2 4+ ys(¢)2 > 0 holds).



Wavefront along Optimal Trajectories

Wavefronts along optimal trajectories for T' = g, T, %”, 2T.

Duits et.al. Optimal Paths for Variants of the 2D and 3D Reeds—Shepp Car
with Applications in Image Analysis, JMIV, 2018.



Conclusion

e Solution to the left-invariant control problem, with the set of
admissible controls containing zero on the boundary.

e Proof of existence of optimal control

e EXxplicit formulas for extremal controls and trajectories

e Partial analysis of optimality

e Structure of optimal synthesis



Thank you for your attention!



