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Abstract—We consider a kinematic model of a spherical robot
on an inhomogeneous surface. We study a problem of the optimal
motion of the robot from a given initial configuration to a
given final one. The problem is formulated as the problem of
optimal rolling of a sphere on a plane with a given external
cost. The external cost describes the landscape and encodes the
inhomogeneity of the surface. We apply a necessary optimality
condition — Pontryagin maximum principle, and characterize
the extremals. Finally, we present an example of the rolling along
the extremal trajectory, obtained via an interface developed in
Wolfram Mathematica.

Index Terms—Plate-ball problem, Inhomogeneous plane,
Spherical Robot, Hamiltonian system, Pontryagin maximum
principle

I. INTRODUCTION

Spherical mobile robots are an alternative to traditional
wheeled robots. They are gaining popularity nowadays due
to their manoeuvrability and ability to move in difficult ter-
rain [1]. There are many different designs of spherical mobile
robots. They differ in the principle of motion and in the type of
actuators used. Some typical designs can be found in [2]–[4].

The dynamics of a mobile robot is determined by a system
with nonholonomic constraints that describes the rolling of
one body (a sphere) on the surface of another body (rolling
surface). The problem of rolling surfaces is of great interest
in mechanics, robotics, and control theory, see, e.g., [5]–[9].
A typical dynamic model of the motion of a spherical robot
is given by the problem of rolling a sphere on a plane [10].

In this paper, we neglect dynamical effects and consider a
rather simple kinematic model. In such a model, the velocity is
controlled, in contrast to the acceleration, which is controlled
in dynamic models. Nevertheless, such a kinematic model is
adequate for motion planning for a spherical robot that is
moving slowly. In this case, a trajectory of the kinematic model
can be followed by the robot with a necessary precision.

We consider a kinematic model of a spherical mobile robot
rolling on a nonhomogeneous surface. The robot is given by
a unit sphere that can roll on a surface without slipping and
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twisting. The inhomogeneous surface is represented by a plane
R2 with a given smooth external cost

C : R2 → [ε,+∞) : (x, y) 7→ C(x, y), ε > 0.

The external cost encodes the inhomogeneity of the rolling
surface. The higher the value of the external cost at the point,
the slower the robot moves. Such a model is described by a
nonholonomic system in the configuration space

G = R2 × SO3,

where SO3 is the Lie group of rotations of the space R3.
A configuration of the robot is given by g = (x, y,R) ∈ G,

where (x, y) ∈ R2 are Cartesian coordinates of the contact
point between the robot and the rolling plane, and R ∈ SO3

describes the orientation of the robot in space. By the ori-
entation of the robot we mean the position of orthonormal
frame attached to the center of the robot relative to some
fixed coordinate system in three-dimensional space. The third
coordinate axis is perpendicular to the plane along which the
robot is rolling, and the origin lies in this plane, see Fig. 1
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Fig. 1. A model of spherical robot on a plane

The problem with uniform cost C = 1 is the well-known
problem of rolling of a sphere on a plane without slipping
and twistings. It was stated in [11] by J. Hammersley. Then
A. Arthurs and G. Walsh [12] proved integrability of the
Hamiltonian system of Pontryagin maximum principle (PMP).
V. Jurdjevic in [13], [14] showed that planar projections of
extremal trajectories (x(t), y(t)) are Euler elasticae (see [15],978-1-6654-2407-3/21/$31.00 ©2021 IEEE



[16]). He gave a description of different qualitative types
of extremal trajectories and obtained differential equations
for evolution of Euler angles along the extremals. Explicit
parametrizations of the extremals by Jacobi elliptic functions
were obtained in [17]. Study of optimality of the extremals
were iniciated by Yu. Sachkov in [18], where he described
continuous and discrete symmetries in the problem and derived
equations on Maxwell points, the points reachable by multiple
extremals in the same time. It is known that after a Maxwell
point an extremal is no longer optimal. The first instance of
time, when an extremal reaches a Maxwell point is called
the Maxwell time. In such a way, the Maxwell time gives an
upper bound on cut time, the instance of time, after which an
extremal is no longer optimal. Asymptotic case of rolling of
a sphere along the sinusoids of small amplitudes were studied
in [19], where, in particular, limiting behaviour of the Maxwell
time has been described.

In this paper, we consider the problem with non-uniform
external cost. We formulate the problem as an optimal control
problem, apply a necessary optimality condition — Pontryagin
maximum principle (PMP), and derive the Hamiltonian system
of PMP that determines the extremals. We provide a numerical
solution to the Hamiltonian system and develop an interface
in Wolfram Mathematica that imitates the movement of the
spherical robot on a non-homogeneous surface.

II. STATEMENT OF THE PROBLEM

Denote by (x, y) ∈ R2 the contact point between the sphere
and the plane. The problem of optimal motion of the spherical
robot on an inhomogeneous surface is formulated as follows.
For any two given configurations g0, g1 ∈ G, one aims to
find the controls u1(t), u2(t) ∈ L∞([0, T ],R), such that the
corresponding trajectory γ : [0, T ] → G transfers the system
from g0 to g1,

γ(0) = g0, γ(T ) = g1,

and the projection of γ to the plane (x, y) has minimal
weighted (by external cost) length∫ T

0

C(x(t), y(t))
√
ẋ2(t) + ẏ2(t) dt→ min .

The velocity of the center of the sphere is controlled. The
admissible rolling can be imagined as follows: the sphere is
covered from above by a plane parallel to the rolling plane,
which moves in directions parallel to the rolling plane. The
resulting movement is rolling without twisting or slipping. The
dynamics of such a motion is given by

γ̇(t) = u1(t) A1|γ(t) + u2(t) A2|γ(t) ,

where Ai are the basis left–invariant vector fields on the Lie
group G = R2×SO3, which correspond to infinitesimal rolling
along the Ox axis for i = 1 and along the Oy axis for i = 2.
Next we derive the control system explicitly.

Remark 1: The external cost C(x, y) can be understood
as viscosity of the plane. The center of the sphere rolling
along a path through a point (x, y) moves with bounded speed

√
u21(x, y) + u22(x, y) ≤ 1/C(x, y). Restriction of the set of

admissible controls by above inequality leads to equivalent
formulation of the problem as a time minimization problem.
By given boundary configurations, we aim to find a path of
the sphere rolling on the inhomogeneously viscous plane from
the initial to the final configuration by minimal time.

The Lie group SO3 is represented by the matrices

SO3 = {R : R3 → R3 |RRT = Id, detR = 1}.

Denote by so3 the space of skew-symmetric matrices of order
3. It is the tangent space to the group SO3 at the unit element:

so3 = {ρ : R3 → R3 | ρ = −ρT } = TIdSO3.

The space so3 is spanned by basis elements ρx, ρy , ρz , where

[ρx, ρy, ρz] = 0 0 0
0 0 −1
0 1 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

 0 −1 0
1 0 0
0 0 0

 .
Let R ∈ SO3 denote the rotation of the space R3, at which

the vectors of the moving frame ei, specifying the orientation
of the sphere, are transformed into unit vectors of the basis
coordinate system:

Re1 =

 1
0
0

 , R e2 =

 0
1
0

 , R e3 =

 0
0
1

 .

Rolling without twisting or slipping is determined by the
following control system [13], [14]:

ẋ(t) = u1(t), ẏ(t) = u2(t), Ṙ(t) = R(t) (u2(t)ρx−u1(t)ρy) .

From a geometrical viewpoint, this system is a left-invariant
control system on G. Without loss of generality, one can
choose the unity e = (0, 0, Id) as the initial condition. Any
trajectory with another initial condition is obtained via the left
shift on the group. The left-invariant basis vector fields that
correspond to infinitesimal rolling along Ox, Oy are given by

A1 =
∂

∂ x
−Rρy, A2 =

∂

∂ y
+Rρx.

To describe the orientation of the sphere, it is convenient,
along with the rotation matrix R, to use quaternions [20].
Quaternions are an extension of complex numbers. Just as
the rotation of a plane can be described by multiplying by a
complex number, quaternions are used to describe the rotations
of three-dimensional space. Quaternions form an associative
division algebra over real numbers. They are formed by adding
to the real numbers three imaginary units i, j, k.

Every quaternion has a form

q = q0 + q1i+ q2j + q3k, ql ∈ R.

The sum of quaternions is defined as the sum of vectors.
The product of a quaternion with a real number is com-
mutative, and in general the product of two quaternions is
non-commutative. The rule for multiplying imaginary units is



defined as follows: i2 = j2 = k2 = −1, i j = −j i = k,
j k = −k j = i, k i = −i k = j.

Denote by S3 the set of quaternions of unit length. This is a
three-dimensional sphere in four-dimensional space. A quater-
nion q ∈ S3 defines a rotation of the space I = span (i, j, k):

q ∈ S3 ⇒ Rq(a) = qaq−1, a ∈ I, Rq ∈ SO3
∼= SO(I).

S3 is a double cover of SO3. Since the projection π : S3 →
SO3 is a local diffeomorphism, any vector field A on SO3 has
a unique lift to S3. Therefore, the control system has a unique
lift from SO3 to S3. Using the expression of rotation matrix
via components of quaternions, see [21], we obtain

A1 = ∂x +
q2
2
∂q0 +

q3
2
∂q1 −

q0
2
∂q2 −

q1
2
∂q3 , (1)

A2 = ∂y −
q1
2
∂q0 +

q0
2
∂q1 +

q3
2
∂q2 −

q2
2
∂q3 . (2)

Thus, we obtained the following statement of the problem
on the Lie group Ḡ = R2 × S3 3 (x, y, q) = g. For a given
terminal condition g1 and an external cost C(g) := C(x, y),
one aims to find a trajectory γ : [0, T ]→ Ḡ that satisfies

γ̇(t) = u1(t) A1|γ(t) + u2(t) A2|γ(t) , (3)

γ(0) = e, γ(T ) = g1, (u1, u2) ∈ R2 (4)∫ T

0

C(γ(t))
√
u21(t) + u22(t) dt→ min,

where A1 and A2 are given by (1)-(2).
The problem can be simplified. The Cauchy-Schwarz in-

equality ensures that the original problem is equivalent to the
problem of minimizing the action

J =
1

2

∫ T

0

C2(γ(t))
(
u21(t) + u22(t)

)
dt→ min . (5)

By virtue of Rashevsky-Chow theorem [9], the system is
completely controllable. Filippov theorem guarantees exis-
tence of optimal trajectories.

III. EXTREMAL CONTROLS AND TRAJECTORIES

In this section, we apply to problem (3)-(5) a necessary
optimality condition given by PMP [9], [22].

For ν ∈ {0, 1} define the Pontryagin function

Hu(p, g) = 〈p, u1 A1|g + u2 A2|g〉 −
ν

2
C2(g)

(
u21 + u22

)
.

The case ν = 0 is called the abnormal case, and the case
ν = 1 is called the normal case. Abnormal extremals do not
depend on the minimizing functional, they are determined only
by the control system. Abnormal extremals in problem (3)-(5)
are given by rolling of the sphere along straight lines [18].
Next we consider the normal case of PMP ν = 1.

PMP states that if (u(t), γ(t)), t ∈ [0, T ] is the optimal
control and the corresponding optimal trajectory, then the
following conditions hold:

1) the Hamiltonian system ṗ = −∂Hu

∂q
, γ̇ =

∂Hu

∂p
;

2) the maximum condition

Hu(t)(p(t), γ(t)) = max
u∈R2

Hu(p(t), γ(t)) =: H = 1.

Natural coordinates in cotangent bundle for left-invariant
control problems in Lie groups are given by left invariant
Hamiltonians [23]. In our case, we define them as follows:

hi(p, g) = 〈p, Ai|g〉, g ∈ Ḡ, p ∈ T ∗g Ḡ.

Application of PMP gives the Pontryagin function

Hu(p, g) = u1h1(p, g) + u2h2(p, g)− 1

2
C2(g)

(
u21 + u22

)
.

The maximum condition gives the (maximized) Hamiltonian

H(p, g) =
1

2 C2(g)

(
h21(p, g) + h22(p, g)

)
= 1 (6)

and expressions for the extremal controls

u1(t) =
h1(t)

C2(γ(t))
, u2(t) =

h2(t)

C2(γ(t))
. (7)

Application of PMP leads to a Hamiltonian systems in
cotangent bundle T ∗Ḡ that describes extremals. The subsys-
tem for state variables x, y, qi is called the horizontal part, and
the subsystem for conjugate variables h1, . . . , h5 is called the
vertical part of the Hamiltonian system. An extremal control is
determined by a solution of the vertical part, while an extremal
trajectory is a solution to the horizontal part. We present
explicitly the Hamiltonian system of PMP in problem (3)-(5)
in the following theorem.

Theorem 1: A normal extremal trajectory γ(t) =
(x(t), y(t), q(t)) in problem (3)-(5) is uniquely determined
by the parameters s1 = ±1, h02 ∈ [−

√
2 C(e),

√
2 C(e)],

h3, . . . , h
0
5 ∈ R, and given by a solution to the following

Hamiltonian system:

ẋ(t) =
h1(t)

C2(γ(t))
,

ẏ(t) =
h2(t)

C2(γ(t))
,

q̇0(t) =
−h2(t)q1(t) + h1(t)q2(t)

2C2(γ(t))
,

q̇1(t) =
h2(t)q0(t) + h1(t)q3(t)

2C2(γ(t))
,

q̇2(t) =
−h1(t)q0(t) + h2(t)q3(t)

2C2(γ(t))
,

q̇3(t) = −h1(t)q1(t) + h2(t)q2(t)

2C2(γ(t))
.

(8)



ḣ1(t) =
1

C3(γ(t))
∂xC(γ(t)) +

h2(t)h3(t)

C2(γ(t))
,

ḣ2(t) =
1

C3(γ(t))
∂yC(γ(t)) +

h1(t)h3(t)

C2(γ(t))
,

ḣ3(t) =
h1(t)h4(t) + h2(t)h5(t)

C2(γ(t))
,

ḣ4(t) = −h1(t)h3(t)

C2(γ(t))
,

ḣ5(t) = −h2(t)h3(t)

C2(γ(t))
,

(9)



with the initial condition

h1(0) = s1

√
2C2(e)− (h02)2, hi(0) = h0i , i = 2, . . . , 5.

Proof: For a left-invariant control problem with the
Hamiltonian H , the vertical part of the Hamiltonian system
of PMP has a form, see [9],

ḣi = {H,hi} ,

where {·, ·} denotes the Poisson bracket (see [24]).
The non-zero Lie brackets between Ai are given by

[A1,A2] = A3, [A1,A3] = A4, [A2,A3] = A5,

[A1,A4] = [A2,A5] = −A3, [A4,A5] = A3,

[A3,A4] = A5, [A3,A5] = −A4.

Using the standard relation between Poisson and Lie brack-
ets {hi, hj} = 〈p, [Ai,Aj ]〉, we obtain vertical part (8).

Substitution of expression (7) to control system (3) gives
horizontal part (8).

Restriction to the parameter h1(0) is due to (6).

IV. COMPUTATIONAL MODEL OF A SPHERICAL ROBOT
MOVING ALONG THE EXTREMALS

Based on the numerical integration of the Hamiltonian
system we developed software in Wolfram Mathematica that
simulates the rolling of a spherical robot along the extremal
trajectories. The input parameters are the external cost C(x, y)
and the initial values of the covector s1, h0i , i ∈ {2, . . . , 5}.
The software generates the animation of the resulting motion
of the spherical robot. Inhomogenity of the plain is visualized
by vertical displacment of a point by the value of the external
cost C(x, y) − 1. In such a way, the inhomogeneous plane is
represented by the surface z(x, y) = C(x, y)− 1.

See an example of the output in Fig. 2. In this example,
the parameters are set as follows. We fix the domain (x, y) ∈
[−2, 5]× [−2, 7]. We plot a sphere of unit radius in 3D space
with verical z-coordinate from the interval z ∈ [−3, 4]. The
external cost is chosen C(x, y) = 1 + sin2 x

5 + cos2 y5 . The
initial configuration of the sphere is e = (0, 0, 1), the initial
value of momentum covector is s1 = 1, h02 = 1√

2
, h3(0) = 1,

h4(0) = 1
2 , h5(0) = 1

2 . The end time is T = 60. In this
experiment, the final configuration is g1 = (4.68, 3.76, 0.057+
0.74 i− 0.49 j − 0.45 k).

V. CONCLUSION

We considered the kinematic model of a spherical robot
rolling on an inhomogeneous surface. We studied a problem
of the optimal motion of the robot from a given initial
configuration to a given final one. The problem was formulated
as the problem of optimal rolling of a sphere on a plane with a
given external cost. The external cost describes the landscape
and encodes the inhomogeneity of the surface. We derived
optimal control formulation of the problem as a problem on
Lie group Ḡ = R2 × S3. We applied a necessary optimality
condition — PMP, and derived the Hamiltonian system of

Fig. 2. Rolling of a spherical robot along the extremal trajectory

PMP that determines the extremals in Theorem 1. Finally, we
developed an interface in Wolfram Mathematica that imitates
the movement of the spherical robot on an inhomogeneous
surface and presented an example of the resulting rolling along
the extremal trajectory in Fig. 2.
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